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Fig. S-1. Visualization of the difficulty of each loss in the loss function space. The ten
‘easiest’ losses are in red fonts, while the ten ‘most difficult’ losses are in blue fonts.

Fig. S-1 visualizes the training difficulty of each loss in the loss function
space. To quantify the difficulty, we do the weight initialization in Section 3.2 in
the main paper, but do not perform the weight rebalancing (i.e. λ = 0). Then,
after training, we compute the reduction in each loss, defined as

∆̄Li = w
(0)
i (L

(T )
i − L(0)

i ) (S-1)

where T is the number of training periods. We find that the depth loss `0D at
the finest scale is the easiest one with the most reduction. Table S-1 lists the
scaled reduction of each loss, where the scale factor is determined to normalize
the reduction of the easiest `0D to 1. Hence, a higher value means that the cor-
responding loss is an easy one. In Table S-1 and Fig. S-1, the ten ‘easiest’ losses
are in red fonts, while the ten ‘most difficult’ ones are in blue. We see that all
depth losses are on the easier side, while gradient losses at fine scales are on the
difficult side. Also, fine scale losses tend to be more difficult than coarse ones.
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Table S-1. Loss reduction rate of functions compared to the easiest loss function `0D.

Spatial scale

0 1 2 3 4 5

Depth losses `0D 1.000 `1D 0.999 `2D 0.999 `3D 0.997 `4D 0.990 `5D 0.996

Mean- `0M 0.864 `1M 0.863 `2M 0.862 `3M 0.859 `4M 0.850 `5M 0.852
removed `0M5 0.499 `1M5 0.488 `2M5 0.517 `3M5 0.568 `4M5 0.625 `5M5 0.685
losses `0M17 0.537 `1M17 0.592 `2M17 0.676 `3M17 0.736 `4M17 0.767 `5M17 0.795

`0M65 0.707 `1M65 0.795 `2M65 0.849 `3M65 0.907 `4M65 0.906 `5M65 0.808

Gradient `0r 0.448 `1r 0.461 `2r 0.475 `3r 0.505 `4r 0.551 `5r 0.624
losses `0c 0.468 `1c 0.491 `2c 0.507 `3c 0.532 `4c 0.569 `5c 0.636

`0rr 0.453 `1rr 0.424 `2rr 0.422 `3rr 0.445 `4rr 0.499 `5rr 0.591
`0rc 0.340 `1rc 0.355 `2rc 0.364 `3rc 0.380 `4rc 0.421 `5rc 0.504
`0cc 0.477 `1cc 0.457 `2cc 0.458 `3cc 0.467 `4cc 0.504 `5cc 0.593

Normal `0N 0.591 `1N 0.609 `2N 0.607 `3N 0.645 `4N 0.725 `5N 0.890
losses `0Nr 0.553 `1Nr 0.474 `2Nr 0.459 `3Nr 0.491 `4Nr 0.580 `5Nr 0.758

`0Nc 0.591 `1Nc 0.520 `2Nc 0.500 `3Nc 0.508 `4Nc 0.579 `5Nc 0.755

Fig. S-2 visualizes the correlation between losses. We see that depth losses
are less correlated with the other losses. This is consistent with the visualization
of the loss function space in Fig. S-1, in which depth losses are far from the
other losses. Also, each blue box includes correlation coefficients between the
same type of losses. Depth losses are highly correlated to one another. Similarly,
global-mean-removed losses are highly correlated. On the other hand, normal
losses are less correlated to one another.
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Fig. S-2. Visualization of the correlation matrix between the 78 losses. Correlation
coefficients between the same type of losses are within blue boxes.
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S-2 More Experimental Results

Experiments on KITTI [11]: We test the proposed algorithm on the KITTI
dataset. For evalution, we follow the Eigen et al.’s protocol [9], including the
split of training and test data. Table S-2 compares the proposed algorithm with
conventional algorithms. KITTI provides the depths of sparse pixels only. Thus,
many losses (local-mean-removed losses, gradient losses, and normal losses) and
relative depth maps, which consider the depth information of adjacent areas, are
not effective during training. Also, since the outdoor scenes include sky areas,
mean-removed losses may not be computed. In spite of these disadvantages,
the proposed algorithm provides comparable performance to the conventional
algorithms.

Table S-2. Performance comparison on the KITTI dataset [11]. * Kuznietsov et al.,
Semi-supervised deep learning for monocular depth map prediction, CVPR 2017.

Experimental results of KITTI [11]

δ1 δ2 δ3 RMSElin RMSElog ARD

Eigen et al. [9] 69.2% 89.9% 96.7% 7.156 0.270 0.190
Liu et al. [34] 65.6% 88.1% 95.8% 7.046 - 0.217
Godard et al. [12] 86.1% 94.9% 97.6% 4.935 0.206 0.114
Kuzniestsov et al.* 86.2% 96.0% 98.6% 4.621 0.189 0.113
Fu et al. [10] 93.2% 98.4% 99.4% 2.727 0.120 0.072

Proposed 86.4% 96.2% 98.6% 4.512 0.176 0.115

Different backbone networks: In this test, we verify that the proposed multi-
loss rebalancing algorithm is effective regardless of the backbone network. To this
end, we replace the encoder backbone with four widely-used networks: VGG16,
ResNet50, ResNet152, and SENet154. Table S-3 lists the performance of each
backbone. All models are trained for 9 epochs, except for the default model
(PNAS) in the paper. For comparison, Table S-3 also includes the results of Eigen
and Fergus [8], Laina et al. [25], Lee et al. [27], Hu et al. [16], which use VGG16,
ResNet50, ResNet152, and SENet154 as the backbones, respectively. We see
that, for each backbone, the proposed algorithm outperforms the conventional
algorithm using the same backbone.

Qualitative comparison on NYUv2 [41]: Fig. S-3 and Fig. S-4 qualitatively
compare depth estimation results of the proposed algorithm and the conventional
algorithms [3,8-10,16,25,28]. For easier comparison, depth maps (odd rows) and
error maps (even rows) are presented. Error maps visualize errors according to
the δn metrics. Specifically, yellow, red and black areas indicate areas where the
ratio between estimated depth and ground-truth depth is greater than 1.25, 1.252

and 1.253, respectively. Also, areas satisfying the δ1 criterion are shown in green,
and areas with no error are shown in blue. Fig. S-3 compares normal cases, while
Fig. S-4 is for difficult images with relatively big errors. The proposed algorithm
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Table S-3. Performance comparison of the proposed algorithm using different back-
bone networks. The conventional algorithms using the same backbones are also com-
pared. [8], [25], [27], and [16] adopt VGG16, ResNet50, ResNet152, and SENet154 as
the backbone networks, respectively.

The higher, the better The lower, the better

δ1 δ2 δ3 RMSElin ARD log10 RMSElog RMSEsi SRD

Proposed (VGG16) 77.2% 95.0% 99.0% 0.544 0.160 0.067 0.196 0.160 0.117
Proposed (ResNet50) 82.4% 96.3% 99.1% 0.482 0.138 0.058 0.174 0.142 0.094
Proposed (ResNet152) 86.0% 97.5% 99.4% 0.445 0.120 0.052 0.156 0.132 0.076
Proposed (SENet154) 87.1% 97.5% 99.4% 0.426 0.116 0.049 0.149 0.123 0.074
Proposed (PNAS) 87.0% 97.4% 99.3% 0.430 0.119 0.050 0.151 0.123 0.078

[8] (VGG16) 76.9% 95.0% 98.8% 0.641 0.158 - 0.214 0.171 0.121
[25] (ResNet50) 81.1% 95.3% 98.8% 0.573 0.127 0.055 0.195 - -
[27] (ResNet152) 81.5% 96.3% 99.2% 0.572 0.139 - 0.193 - 0.096
[16] (SENet154) 86.6% 97.5% 99.3% 0.530 0.115 0.050 - - -

provides more reliable results than the conventional algorithms. The differences
are more clearly observed in the challenging cases in Fig. S-4.
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Fig. S-3. Qualitative comparison of depth estimation results on NYUv2. For easier
comparison, depth maps (odd rows) and error maps (even rows) are provided. Rela-
tively easy cases are shown.
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Fig. S-4. Qualitative comparison of depth estimation results on NYUv2. For easier
comparison, depth maps (odd rows) and error maps (even rows) are provided. Rela-
tively hard cases are shown.
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S-3 Relative Depth Estimation

In addition to ordinary depth estimation (ODE), we apply the proposed algo-
rithm to relative depth estimation (RDE). More specifically, we define four kinds
of relative depth maps at four scales (2 ∼ 5). Thus, there are 16 kinds of relative
depth maps in total, which are shown in Fig. S-5. Note that we do not use the
two finest scales 0 and 1, which incur high decoding complexity. Each relative
depth map is named using the same conventions as the loss functions in Table 1.
For example, R2

M17 is defined as the relative depth map using the 17×17 average
filter at scale 2,

R2
M17 = log D2 − log D2 ~

J17

172
. (S-2)

Unlike the difference in (5), we use the log-difference for the relative depth
representation in (S-2), which makes the relative depth between 1m and 10m and
that between 10m and 100m treated equally. Also, we have R5

r = ∇r log D5. The
other relative depth maps are defined similarly. Note that Rr and Rc represent
details in the horizontal and vertical directions, respectively, and RM records
the ratio of each depth to the local average depth.
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Fig. S-5. Examples of 16 relative depth maps. The corresponding image I and ordinary
depth map D0 are also shown. Farther depths are in red, while closer ones in blue.

We design 16 decoders to estimate the 16 kinds of relative depth maps,
but all the decoders share the same encoder that is designed for the ordinary
depth estimator. The relative depth estimator is trained in the same way as
the ordinary depth estimator. Section S-4 describes the decoder structure of the
relative depth estimator.

We examine data distributions of various RGBD datasets. Fig. S-6 shows
the distributions of ordinary depths and relative depths in five public datasets
[11,39,41,43,45]. It also shows the symmetric KL-divergence between the datasets.
For ordinary depths in D0, there are big differences between datasets. Especially,
depths in the outdoor datasets KITTY and Make3D tend to be much bigger than
those in the indoor ones NYUv2 and SUNRGB-D. In contrast, relative depth
distributions in all datasets are quite similar to one another.

The relative depth estimator is trained by employing three indoor depths
[4,41,43], two outdoor depths [11,39] and two relative depths [5,45] datasets
jointly, without additional processing, such as the domain adaptation [24]. As
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Fig. S-6. The odd rows compare the distributions of ordinary depths in (a) and relative
depths in (b)∼(q) for five public datasets NYUv2 [41], SUNRGB-D [43], KITTI [11],
Make3D [39], and ReDWeb [45]. The even rows show the symmetric KL-divergence
between the datasets.

mentioned previously, relative depths have similar characteristics regardless of
datasets. Therefore, we develop only a single relative depth estimator using
the PNASNet backbone [33] and train it using all possible training data in all
datasets, except for the DIW dataset [5]. DIW provides depths labels only for a
pair of pixels per image. Thus we use DIW only for evaluation.

Fusing ordinary and relative depth maps: The ordinary depth estimator
and the relative depth estimator estimate a single ordinary depth map D0 and
16 relative depth maps, respectively. The 16 relative depth maps convey dif-
ferent depth components. The union of those components is equivalent to the
components of R2, which is D2 with the global scale removed. Thus, we fuse the
16 maps to R2 and interpolate it to obtain the finest relative depth map R0.
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Fig. S-7. At spatial scale k, each refining unit in (a) uses two modules in (b) and (c)
to combine relative depth maps and yield a refined depth map at scale k − 1.

Finally, we fuse the information in R0 with the ordinary depth map D0 to refine
it.

The ordinary map D0 has a higher resolution than the relative ones. Thus,
we decompose D0 into the low-resolution map D5 at scale 5 and the four residual
maps Dk

res, 0 ≤ k ≤ 4, by adopting the decomposition scheme in [28];

log Dk
res = log Dk − U

(
log Dk+1

)
(S-3)

where U is the bilinear interpolation to double the size of a depth map hori-
zontally and vertically. Then, D5 is combined with the four relative depth maps
R5

M17, R5
M5, R5

r , R5
c at the same scale, as well as the residual map D4

res, to yield
a refined D4. This is done by the fusing unit in Fig. S-7 (a).

Given Dk at scale k, the fusing unit uses two types of modules in Fig. S-7 (b)
and (c) to combine the relative maps, performs the bilinear interpolation, and
then adds the residual map Dk−1

res to yield a refined Dk−1 at scale k− 1. This is
repeated from k = 5 to 2 to yield a refined D1. Since there is no relative depth
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map at scale 1, the last fusing unit simply performs the bilinear interpolation
and adds the residual map D0

res to obtain a refined D0.

For each module in Fig. S-7 (b) or (c), let Dk
in and Dk

out denote the input
and output logarithmic depth maps, which are approximations of log Dk, re-
spectively. In Fig. S-7 (b), Dk

in is decomposed to the low-frequency component
Dk

in ~ Jn

n2 and the high-frequency component Dk
in − Dk

in ~ Jn

n2 . Since the high-
frequency component is computed in the same way as Eq. (13) in the paper, it
should convey the same information as Rk

Mn ideally. But, they are different in
practice due to depth estimation errors. Thus, these two approximations for the
high-frequency component are superposed with weights 1− γ and γ to generate
a more reliable approximation, which is then added to the low-frequency com-
ponent to yield Dk

out. Also, in Fig. S-7 (c), four maps Dk
left, Dk

right, Dk
top and

Dk
down are generated. For any pixel, if we know its depth and its gradients in

the row and column directions, we can estimate the depths of the four adjacent
pixels. Thus, from Dk

in and Rk
r , we can reconstruct Dk

left and Dk
right, which are

both approximations of log Dk. Similarly, from Dk
in and Rk

c , we obtain Dk
top and

Dk
down. Finally, by combining Dk

in with the four approximations, we obtain the
output Dk

out. In Fig. S-7 (b) and (c), a parameter γ is used to combine depth
maps. It is simply set to minimize ‖Dk

out − log Dk‖1 using training data.

S-4 Decoder Structure for RDE

In Fig. 1 in the paper, the decoders expand the encoder output to the resolution
of D0 for ODE and to those of (Rk

M17,R
k
M5,R

k
r ,R

k
c ), 2 ≤ k ≤ 5, for RDE.

Fig. S-8 (a) shows the structure of each decoder, which includes 5 up-sampling
blocks. For ODE, we set the hyper parameter nd = 1024. On the other hand,
we set nd = 256 for RDE, which have 16 decoders, to keep the overall number
of network parameters similar to those of ODE. Fig. S-8 (b) shows the detailed
structure of each up-sample block. We adopt ReLU for the activation. In RDE,
relative maps at scales 2 ∼ 5 are estimated. Thus, unlike ODE for D0, it is not
necessary to perform up-sampling 5 times. For the decoders for maps at scale
k, we eliminate the bilinear interpolation U from the last k up-sample blocks in
Fig. S-8 (a).

(a) Decoder structure
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(b) Up-sample block structure

C
o

n
v

A
ctiv

atio
n

C
o

n
v

A
ctiv

atio
n

Input 
Features

𝑛i

Output 
Features

𝑛i

2

𝑛i
𝑛i

2

3 × 3 3 × 3

Fig. S-8. The structure of a decoder: For each convolution block, the number of output
channels is specified at the top. Also, ne is the number of encoder output channels, ni

is the number of input channels to an up-sample block, and nd is a hyper-parameter
to control the number of network parameters in the decoder.
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Table S-4. Evaluation metrics for relative depth estimation: lij has a value of 1 or −1
depending on the relative relation between di and dj .

Metrics for relative depth perception

WHDR Weighted human disagreement rate [52]

for DIW [5],
∑

ij wij1(lij 6=l̂ij)∑
ij wij

WKDR Weighted Kinect disagreement rate [52]

for NYUv2 [41]

WKDR= WKDR for equivalent pairs of depths

WKDR 6= WKDR for inequivalent pairs of depths

S-5 Experiments for RDE

Fig. S-9 shows examples of estimated depth maps. In each example, a depth
map from ODE and 16 relative depth maps from RDE are provided. All these
17 estimated depth maps are combined into the final result (ODE + RDE). The
depth ratios between ODE + RDE and ODE are shown in the ‘Refined Area’
map. Note that ODE + RDE tends to refine depths near object boundaries.

Table S-4 lists the evaluation metrics for relative depth estimation. We follow
the evaluation protocol of [45] for relative depth perception. Table S-5 compares
relative depth estimation results. RDE means that only relative depth maps are
fused to yield the results, while ODE + RDE fuses both ordinary and relative
maps. Note that WKDR, WKDR= and WKDR6= are measured on NYUv2, while
WHDR is on DIW. DIW does not provide the ground-truth for dense depths.
Thus, for DIW, ODE cannot be trained, and only the performance of RDE is
reported. In terms of the three WKDR metrics, the proposed algorithm outper-
forms the conventional ones with large margins. Although RDE does not use the
training data of DIW, it also yields competitive WHDR result.

Table S-6 and Table S-7 compares ODE and ODE + RDE performance on
NYUv2 [41] and Make3D [39], respectively. We see that RDE improves the depth
estimation results in terms of all metrics.

Table S-5. Relative depth perception results. WHDR is a metric for the DIW
dataset [5], while the others are for NYUv2 [41].

The lower, the better

WHDR WKDR WKDR= WKDR 6=

Zoran et al. [52] - 43.5% 44.2% 41.2%
Chen et al. [5] 14.39% 28.3% 30.6% 28.6%
Xian et al. [45] 11.37% 29.1% 29.5% 29.7%

RDE 14.67% 15.5% 16.1% 17.0%
ODE + RDE - 13.2% 14.0% 14.4%



12 J. H. Lee and C. S. Kim

Depth Colorbar

Refine Ratio

Near Far

0% 10%

Image ODE Refined AreaODE + RDE

Spatial 

Scale
2 3 54

𝐑M5

𝐑M17

𝐑r

𝐑c

Image ODE Refined AreaODE + RDE

Spatial 

Scale
2 3 54

𝐑M5

𝐑M17

𝐑r

𝐑c

Image ODE Refined AreaODE + RDE

Spatial 

Scale
2 3 54

𝐑M5

𝐑M17

𝐑r

𝐑c

Image ODE Refined AreaODE + RDE

Spatial 

Scale
2 3 54

𝐑M5

𝐑M17

𝐑r

𝐑c

Fig. S-9. Examples of estimated ordinary and relative depth maps. ODE + RDE
combines all these depth maps. The refined parts using the relative depth maps are
depicted in the ‘Refined Area’ maps.

Table S-6. Effectiveness of RDE on NYUv2 [41].

The higher, the better The lower, the better

δ1 δ2 δ3 RMSElin ARD log10 RMSElog RMSEsi SRD

ODE 87.0% 97.4% 99.3% 0.430 0.119 0.050 0.151 0.123 0.078
ODE + RDE 87.4% 97.7% 99.5% 0.418 0.117 0.049 0.146 0.116 0.074

Table S-7. Effectiveness of RDE on Make3D [39].

Evaluated in 0-70m depth range

RMSElin ARD log10

ODE 5.87 0.231 0.082
ODE + RDE 4.87 0.206 0.075


