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1 Introduction

In this document, we provide more details about the human experiments per-
formed for this paper. We additionally show ablation experiments, qualitative
results and quantitative comparisons to further motivate our model.

2 The VidRank and Odd One Out games

As explained in Section 3.1, we created the VidRank game to measure human
performance on the Set Completion task. We built a web-based UI to show a
set of 2 to 4 reference videos along 5 query videos. The user was tasked to
rank the query videos according to how close they were to the general concept
represented by the reference videos. Figure 1 shows an example question from
our game. Quality was ensured through “vigilance” questions, where one query
was either obviously similar to the references (same class and similar visual
properties) or drastically different. We positioned three vigilance rounds per set
of 10 questions, and discarded data from users that failed more than one.

To obtain human performance for the Odd One Out task, we created the
Odd One Out game using a similar UI, where users were tasked with finding the
video that did not belong to the set. We showed users sets of 3-5 videos, and
allowed them to select the suspected outlier. We again positioned “vigilance”
rounds, where one video was clearly dissimilar to the rest (all videos shared the
same action class while the odd one out was selected from a dissimilar class).

To obtain the baselines presented in the main paper, we collected human
responses from our two games through Amazon Mechanical Turk (AMT). We
obtained 400 human responses for each task and dataset, ensuring that at least
20 participants attempted each question. We validated the coherence of the
responses by computing split-half consistency curves. These curves are produced
by separating the users into two groups, calculating scores inside each group
separately, and correlating the resulting values. It is a measure of agreement
between participants, and a rank correlation of 0.7 or higher generally indicates
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high consistency across humans on the evaluated task, and thus good quality
data. We show the results in Figure 2.

We measured the rank correlation between human decision-making and our
algorithmic ranking for the set completion task, and the accuracy at selecting
the video farthest to the abstraction for the odd one out task. We show the
results for both datasets in Figure 3.

Fig. 1: VidRank UI With an intuitive click and drag interface, humans are tasked to
rank 5 query videos (bottom row) according to how close they are to the abstract action
inferred from the reference videos (top row). As the videos are 3 to 10 sec. long, reference
and query videos are shown simultaneously as GIFs. They contain one semantic action
for Kinetics, and multiple related ones for M-MiT (e.g. boating, sailing).

Fig. 2: Split-half consistency curves of human responses for the Set Completion task
(left) and Odd One Out task (right). As can be seen, our results show a strong level
of consistency between human groups, attaining 0.82 and 0.85 rank correlation for the
set completion and odd one out tasks respectively.
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Fig. 3: Human performance on the set completion (left) and odd one out (right) tasks.
We show results in terms of rank correlation for the set completion task, and accuracy
for the odd one out task. Humans were tested with the same sets that were used for
evaluating the model. Our model is very close to human performance.

3 Word Embeddings Ablation Analysis

In section 4.2 of the main paper, we described how we utilize natural language
supervision in the form of pretrained word embeddings to generate high-level
representations of similarities across a set of videos. In this section, we investigate
the contribution of this additional supervision by ablating it and observing how
it affects performance on the tasks described in Section 6. For all the referenced
tables in this section, the model labeled SAM is the function g◦B that is trained
without the embedding loss Lmse, and SAM + Embed corresponds to e ◦ g ◦ B
trained with the embedding loss included.

N = 2 N = 3 N = 4
Dataset Model Top1 Top5 Top1 Top5 Top1 Top5

M-MiT
SAM 32.1 64.9 37.2 73.0 42.2 78.3

SAM + Embeddings 34.0 66.9 41.1 77.1 47.2 83.8

Kinetics
SAM 58.9 85.1 63.7 90.7 67.0 93.8

SAM + Embeddings 60.5 86.0 65.3 91.6 69.9 94.6

Table 1: Set Abstraction Ablations: Evaluation on Classification accuracy (percent)
of SAM trained with and without the embedding loss.

Table 1, which lists the set abstraction classification performance of our pro-
posed model with and without the embedding loss Lmse, shows that this addi-
tional supervision signal does not disrupt performance on the primary training
task. In fact, this loss actually helps to improve performance on both datasets,
with the Kinetics model showing the larger of the two effects.

While the embedding loss term produced modest improvements to perfor-
mance on the set abstraction task, the value of the learned semantic represen-
tation is significant in downstream tasks. Table 2 makes a similar comparison
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Dataset Model N = 1 N = 2 N = 3 N = 4 Avg

M-MiT
SAM 0.437 0.491 0.515 0.525 0.492

SAM + Embeddings 0.471 0.515 0.555 0.558 0.525

Kinetics
SAM 0.354 0.476 0.481 0.497 0.452

SAM + Embeddings 0.523 0.627 0.659 0.606 0.604

Table 2: Set Completion Ablation: Rank Correlation of our model trained with and
without the embedding loss term computed using the embedding distance between a
video and the abstraction (embedding) of a reference set of size N on the set completion
task.

N = 3 N = 4
Dataset Model Top-1 Top-2 Top-1 Top-2

M-MiT
SAM 60.90 81.35 62.00 76.35

SAM + Embeddings 85.90 92.80 83.18 91.44

Kinetics
SAM 64.20 83.00 68.37 76.03

SAM + Embeddings 85.90 92.80 83.18 91.44

Table 3: Odd One Out detection ablation: We investigate the how the embedding
loss affect our model’s ability to predict the element that does not belong to the set.

between our model trained with and without the embedding loss, revealing that
the language-enhanced features significantly outperform those learned to only
predict the abstract category. However, it should be noted that even the fea-
tures used to predict the abstraction show large performance gains over those
obtained from the model baseline described in Section 6.3. The odd one out
detection task enjoys similar performance gains as a result of using the learned
language embeddings, as seen by the trends in Table 3.

4 Additional Quantitative Results

As explained in section 4.1, we experimented with I3D [1] and 3DResNet50 [3]
backbones to choose our final video feature network B. We performed our tests
on the Kinetics dataset, and we present the results for our three tasks in tables 4,
5 and 6. We observed comparable performance on recognizing set abstractions,
but more dominant results from 3DResNet50 on our two other tasks. As our I3D
numbers are generally lower than the 3DResNet50 results, we chose the latter
network as our main backbone.
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N = 2 N = 3 N = 4
Dataset Model Top1 Top5 Top1 Top5 Top1 Top5

Kinetics

Chance 0.44 2.18 0.44 2.18 0.44 2.18
3DResNet50 29.9 49.1 22.1 42.8 17.9 40.4

I3D 27.7 48.1 21.7 40.9 17.1 39.1
3DResNet50 (BCE) 2.8 25.0 2.2 22.2 0.5 22.5

I3D (BCE) 3.6 23.9 4.1 24.2 0.9 21.7
3DResNet50+RN [4] 53.9 83.0 61.6 90.2 66.0 93.8

I3D+RN [4] 49.3 78.8 63.3 89.3 71.7 94.5
3DResNet50+SAM (Ours) 60.5 86.0 65.3 91.6 69.9 94.6

I3D+SAM (Ours) 54.5 84.8 65.0 91.1 73.2 94.5

Table 4: Recognizing Set Abstractions: Classification accuracy (percent) of the
models evaluated on the set abstraction task. Here, N is the number of elements in the
set, and the topk chance level is the sum of the frequency of the topk most frequent
abstract nodes presented during evaluation.

Dataset Model N = 1 N = 2 N = 3 N = 4 Avg

Kinetics

Human Baseline 0.432 0.653 0.629 0.606 0.58
3DResNet50 0.339 0.421 0.431 0.459 0.413

I3D 0.321 0.409 0.412 0.444 0.411
3DResNet50+RN [4] - 0.491 0.487 0.489 0.489

I3D+RN [4] - 0.485 0.479 0.486 0.485
3DResNet50+SAM (Ours) 0.523 0.627 0.659 0.606 0.604

I3D+SAM (Ours) 0.508 0.607 0.628 0.589 0.595

Table 5: Set Completion: Rank Correlation of our model (3DResNet50+SAM), a
baseline (3DResNet50) and human ranking to the ranking achieved using the embed-
ding distance between a video and the abstraction of a reference set of size N on the
set completion task.

N = 3 N = 4
Dataset Model Top-1 Top-2 Top-1 Top-2

Kinetics

Human Baseline 87.31 - 85.40 -
3DResNet50 65.15 82.65 69.62 81.48

I3D 63.91 81.12 67.92 81.08
3DResNet50+RN [4] 40.11 70.97 30.48 54.41

I3D+RN [4] 39.19 70.97 28.98 52.11
3DResNet50+O3N [2] 55.14 80.59 66.00 81.80

I3D+O3N [2] 52.52 78.89 67.33 82.29
3DResNet50+SAM (Ours) 85.90 92.80 83.18 91.44

I3D+SAM (Ours) 83.71 91.24 83.03 90.85

Table 6: Odd One Out detection accuracy: Predict the element that does not
belong to the set. The language-enhanced features from the set abstraction network
are compared with the features from the corresponding base model.

5 Additional Qualitative results

Recognizing Set Abstractions. In Figure 4, we show all the predicted outputs
from our Set Abstraction Model on a single validation example. Given a set
of 4 videos, we predict a class for each element in the power set, totalling 15
predictions in this case.
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Fig. 4: All predicted outputs from our Set Abstraction Model on a validation example.
We predict a class for each element in the power set of the given videos. We show
confidence in parenthesis, and ground truth in brackets.
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Set Completion. In Figure 5, we show several qualitative examples of the set
completion task. We find that our model is able to correctly understand under-
lying concepts regardless of actors (e.g. man leaping, dog rising in the last row)
and match similar concepts such as the fish on the pan with the videos of cooking
third row). We observe that although our model is trained with supervision from
actions, some perceptual properties seem to be recognized and used to choose
the video that completes the set.

Fig. 5: More qualitative examples on the set completion task. Our model is able to
easily align concepts such as burying with actions shoveling and wrapping, or sprinting
with exercise related actions.

Finding The Odd One Out. In Figure 6, we show several qualitative examples
for the odd one out task with set sizes of 3 and 4, including some failure cases.
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Our model seems to fail in cases that could be ambiguous to humans if the name
of the action was not given.

Fig. 6: Qualitative examples on the odd one out task, for 3 (left) and 4 (right) videos in
the set We show some failure cases in the last two rows. The ground truth is highlighted
in blue, while the model selection is highlighted in red.
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