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1 Symbol Tables

Symbol tables for the paper are available in Section 8.

2 Subdivision Surface Implementation Details

For each face in the mesh, we construct 16 control points for the limit surface
and 12 control points for two tangent vector fields. We denote the extraction of
the control points by the very sparse matrices Lf ∈ RN×16 and L′f , L

′′
f ∈ RN×12

for all faces 1 ≤ f ≤ F . These matrices only depend on the mesh connectivity
and for a detailed review of their structure, we refer to [5]. U ∈ RN×3 denotes the
matrix representation of T ′ where the columns contain the x,y and z coordinates
of T ′. The respective limit control points are computed via

η(f) = UTLf , υ(f) = UTL′f , ξ(f) = UTL′′f . (1)

The surface point and the pair of tangent vectors are computed using
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Fig. 1: Visualization of our prescribed mean shape T̄ init with underlying subdivi-
sion surface from front (left) and back (right) view. The shape is manually split
into K+1 body parts (denoted by the different coloring) which leads to K joints.
The initial skinning weights W init are initialized using the body part segmen-
tation. A vertex in the interior of a body part is set to 1 for the corresponding
joint. Skinning weights for vertices on the body part boundary are set to 0.5
for the corresponding joint pair. The remaining entries in the skinning weight
matrix are set to 0. Vertex indices on the body part boundary are denoted by
the sets Ringk, where k denotes the corresponding joint index.

Following this approach we can compute the surface unit normal at a point
u = (s, t, f) with

S⊥f =
∂
∂sSf ×

∂
∂tSf

|| ∂∂sSf ×
∂
∂tSf ||2

. (6)

With the definitions for the surface and normal field of each surface patch the
whole surface S and normal field S⊥ is defined as

S(u;T ′) = S((s, t, f);T ′) = Sf (s, t;T ′), (7)

S⊥(u;T ′) = S⊥((s, t, f);T ′) = S⊥f (s, t;T ′). (8)

3 Model Initialization

The used mesh template with a segmentation into body parts is depicted in
Fig. 1. The initial joints are automatically positioned in the center of all vertices
that are on the boundary of a body part. Our OpenPose-to-surface correspon-
dences are depicted in Fig. 2.

4 Ablation Study

The shape blend-shapes are highly correlated. This is not surprising, as using
multiple shape blend-shapes for coarse variations like body height leads to a
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Fig. 2: Visualization of the model skeleton and OpenPose label correspondences.
Top: Skeleton joints are depicted in blue and red. Only the red joints are used
in E2D-joint. Surface correspondences used in E2D-surf are depicted in cyan. Left:
Surface correspondences on the face. Right: OpenPose keypoints. The red key-
points are used for E2D-joint and the cyan keypoints are used by E2D-surf. The
remaining keypoints are not used.
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lower error in Ebshape and Eshape. We depict the covariance matrix of the trained
shape blend-shapes S after training the unisex model in Fig. 3.

Side-by-side comparison of our model with SMPL: We fit our trained unisex
model to two animated sequences1 of SMPL. This results in two shape estimates
~β and two sequences of pose estimates. We provide a side-by-side comparison in
Fig. 4 and Fig. 5.

We showcase the factorization of shape and pose by generating 5 different
subjects and using the same pose parameters for each subject. In Fig. 6, 3 dif-
ferent poses are depicted. The effect of the pose blend-shapes are depicted in
Fig. 7.

We track the triangle area expansion and contraction of our model and SMPL
during an animated sequence. We fit our model to a SMPL sequence and compare
the local surface deformation behavior. The local area change is depicted in
Fig. 8.

We modify the weights of our sum of squares error function E drastically
to highlight the importance of selected terms. The failure cases are depicted in
Fig 9.

Fig. 3: Covariance matrix of the shape blend-shapes of our unisex model without
orthogonalization.

5 Optimization Implementation Details

Skinning Weights: We constrain the skinning weights to [0, 1] and parameterize
all skinning weights using the nonlinear squashing function

wk,i =
1

2
+

w̃k,i

2
√

1 + w̃2
k,i

(9)

which constrains the new variables w̃k,i ∈ R to the range wk,i ∈ (0, 1) for all K
joints and all N vertices.

1 smpl.is.tue.mpg.de
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SMPL Ours SMPL Ours

Fig. 4: Side-by-side comparison of the male SMPL model and our proposed unisex
model. A video for the whole sequence is also available in the supplementary
material.
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SMPL Ours SMPL Ours

Fig. 5: Side-by-side comparison of the female SMPL model and our proposed uni-
sex model. A video for the whole sequence is also available in the supplementary
material.
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Fig. 6: Five different subjects are depicted in three different poses. A video for
the whole sequence is also available in the supplementary material.
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Fig. 7: Pose blend-shapes before linear blend skinning (left column), with linear
blend skinning (right column). Linear blend skinning without any pose blend-
shapes is depicted in the center column. The depicted poses are part of the
Dynamic FAUST dataset [1] (used for our model training). A video for the
whole sequence is also available in the supplementary material.
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Fig. 8: Triangle mesh area visualization during changes in pose. Left: Animation
of SMPL and our model fitted to SMPL. Right: Each triangle is colored by the
area change of the triange with respect to the depicted reference pose. A video
for the whole sequence is also available in the supplementary material.
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λpshape ← 0.01λpshape λjoint ← 0

τ � 0 (no robust loss)

Fig. 9: Failure cases during training.

Rotation: We optimize on SO(3) by linearizing at our current estimation and
projecting the update step back onto SO(3) using the exponential map that can
be computed in closed form using the Rodrigues formula [2].

Surface Points: To optimize the surface correspondences u we follow the ap-
proach outlined in [6] where the surface is linearized at S(u,T ′) to get the
update with respect to the tangent plane at S(u,T ′). The tangent plane exists
everywhere due to the C2-continuity property of Catmull-Clark subdivision sur-
faces that is valid almost everywhere. To project the update step back onto the
surface we move the update in each patch and transform with respect to each
new patch that is crossed. This update procedure is computed on the current
surface estimate before it is updated.

Discrete Correspondence Updates: We interleave the joint optimization of surface
correspondences with discrete updates to jump e.g . across fingers. We employ a
combination of two different discrete update strategies:

I We sample points on the model surface S, store them in a fast temporary
data structure, query the data point p and set the closest point to the closest
surface point if it is closer than the current estimate. This mirrors the NICP
correspondence update step.

II Given a measured point p and a corresponding normal n one fast way to
approximate the nearest neighbor is using ray-casting where we seek the
intersection point of the current surface S and the ray originating from p
in normal direction n. We reject points where the model surface normal S⊥

and data n span an angle that is larger than 90 degrees. We use an off-the-
shelf implementation from the ray-tracing kernel collection Embree [7] which
implements fast ray to Catmull-Clark subdivision surface intersections.

We disable continuous surface optimization during the first few iterations
and use discrete update strategy (II) at each iteration. After a few steps, we
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enable continuous surface optimization and switch to discrete update strategy
(I) every 5th iteration to enable hops of correspondences between distant body
parts (e.g . fingers and legs).

Robust Least Squares: To optimize the robust cost function φ with off-the-shelf
nonlinear least squares solvers, we follow the approach outlined in [8] by lifting
the robust kernel.

An additional parameter ψ is introduced per data point as well as one term
per data point. Following [9] for the robust Geman-McClure error function the
new lifted cost is

Erobust =
∑

(ψ,p,u,R,m,~β)∈D′

(
ψ2||S(u,M(R,m, ~β;Θ))− p||2 + τ2(

√
ψ2 − 1)2

)
, (10)

where τ ∈ R+ relates to the radius of the kernel andD′ ⊂ R×D. This formulation
is again a nonlinear least squares objective. We anneal τ during our optimization,
starting with τ � 0 and lowering τ as the optimization progresses.

Function Splitting: Optlang cannot handle the long residual term expression
EData. To simplify the expression we split the residuals into many subexpressions
with the introduction of additional latent variables and regularization terms.

In general, let us assume we have the following optimization problem

arg min
X

||h(g(X))||2F , (11)

then we introduce a new optimization problem

arg min
X,Y

||h(Y )||2F + λ||Y − g(X)||2F , (12)

where the function chain is replaced by a simpler term and a coupling term
λ ∈ R+ through the introduction of additional latent variables Y . This approach
is commonly used in alternating registration and model training to split the
model-regularized nonrigid registration and model parameter updates [4]. The
introduced latent variables are referred to as “registrations” in this context. In
practice λ cannot be set to an arbitrarily high value due to numerical instabilities.
In contrast, we use this method to simplify individual error terms and enable
large scale joint optimization. The downside of this approach is the introduction
of additional variables. A split of Eq. (1) of the paper would introduce 3Nn
scalar variables denoted by 1T , 2T , . . . , nT ∈ R3N . The new regularization term
would be

λT
∑

(iT ,β,R,m)

||T̄ + S~β + P vec(R1 − I,R2 − I, . . . , RK − I)− iT ||2 (13)

and in the model formulation we replace T by iT for all 1 ≤ i ≤ n. In total, we
split the data term at the following subexpressions of S(u,T ′):
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1. Eq. (1) of the paper: T introduces 3Nn variables,

2. Eq. (2) of the paper: J introduces 3KQ variables,

3. Eq. (5) of the paper: T ′ introduces 3Nn variables and

4. SupMat Eq. 1: η(f), υ(f) and ξ(f) introduce nF (16 + 12 + 12) variables.

Optimization on the GPU: As mentioned, we solve the nonlinear least squares
objective using the Optlang framework [3]. In particular, we use the modified
version introduced in [10] that supports optimization on SO(3) and on surface
points that live on Catmull-Clark subdivision surfaces. We choose the Levenberg-
Marquardt solver with an inexact, iterative preconditioned conjugate gradient
implementation that is used to solve the damped normal equations that arise in
Levenberg-Marquardt during each optimization step. We use diagonal Jacobi-
preconditioning that is implemented in Optlang.

6 Hyperparameter Settings

The hyperparameter settings are listed in Table 1. The subject-specific shape
regularization is different for each subject and denoted by λshape,i. The number
of scans for the i-th subject is denoted by ni. At Levenberg-Marquardt iteration
0, 15, 50 and 75 we modify the weighting. The weights were refined during the
development of our approach in an iterative, incremental fashion. We do not
claim that these parameter settings are optimal or that the parameter depen-
dencies work for arbitrary object classes and dataset modalities. Future work is
required to find a more systematic approach for these parameter settings.

7 Detailed Experimental Results

An anonymized in-depth inspection of the FAUST correspondence challenge is
possible on the dataset website. JOMS (Joint Optimization for Multi-Person
Shape Models from Markerless 3D-Scans) results can be inspected for the intra-
subject (JOMS-intra) and the inter-subject (JOMS-inter) challenge.
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Parameter Iter 0 Iter 15 Iter 50 Iter 75

λData 0 0 30 30

λ2D-surf
P
4L

P
4L

P
256L

P
256L

λ2D-joint
P
4L

P
4L

P
256L

P
256L

λmean
nP

F (B+1)
nP

F (B+1)
4nP

9F (B+1)
nP

9F (B+1)

λbshape
nP

F (B+1)
nP

F (B+1)
4nP

9F (B+1)
nP

9F (B+1)

λpshape � 0 � 0 10nP
9F (B+1)

10nP
36F (B+1)

λjoint
25nP

(B+1)K
25nP

(B+1)K
25nP

(B+1)K
1

100

λweights 100 100 100 0

λconvex
100n2P2

N2
100n2P2

N2
100n2P2

N2
100n2P2

N2

λshape,i
182Pnni

QB
9Pnni
QB

Pnni
4QB

Pnni
16QB

λpose
0.01512P

K
0.01512P

K
0.01512P

K
0

λground 0 0 (100L)2

N2
(100L)2

N2

λsymm
100nP

(B+1)N
100nP

(B+1)N
100nP

(B+1)N
100nP

(B+1)N

Table 1: Hyperparameter setting changes at different Levenberg-Marquardt it-
erations.
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8 Symbol Tables

Model

Θ = (T̄ ,S, J̄ ,J ,P,W) aggregated model parameters
~β ∈ RB subject specific blend-shape coefficients
(R,m) ∈ SO(3)K+1 × R3 pose specific parameters
T̄ ∈ R3N mean shape
T shape after blend-shape deformations
ti ∈ R3 i-th vertex in T
T ′ shape after linear blend skining
t′i ∈ R3 i-th vertex in T ′

S ∈ R3N×B shape blend-shapes
P ∈ R3N×9K corrective pose blend-shapes
J̄ ∈ R3K mean skeleton joint locations corresponding to

T̄
J ∈ R3K×B skeleton basis shapes corresponding to S
J ∈ R3K skeleton joint locations after skeleton basis

shapes application

J (b)
k ∈ R3 position of the k-th joint of the b-th skeleton

basis shape
W ∈ [0, 1]K×N linear blend skinning weights
wk,i ∈ [0, 1] linear blend skinning weight for vertex ti and

the k-th joint

M(R,m, ~β;Θ) parametric model without applied subdivision
surfaces

S(u;T ′) : Ω × R3N → R3 subdivision surface evaluation at arbitrary
surface coordinates

S2 ⊂ R3 points on the unit sphere
S⊥(u;T ′) : Ω × R3N → S2 subdivision surface normal evaluation at arbi-

trary surface coordinates
u ∈ Ω = [0, 1]2 × {1, 2, · · · , F} local parameterization on the surface S
Lf ∈ RN×16;L′f , L

′′
f ∈ RN×12 sparse subdivision matrices for limit control

points of the patch indexed by f
U ∈ RN×3 matrix representation of T ′

η(f), υ(f), ξ(f) limit control points for the patch indexed by
f

Optimization

φ(x) robust Geman-McClure kernel
ψ latent lifting variable
τ ∈ R+ kernel radius parameter
∆ ∈ RN×N discrete Laplace-Beltrami operator

(matrix representation)
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Cardinalities

N model vertex count
F model quad face count
K skeleton joint count
B number of shape blend-shapes
n number of scans in the training set
ni number of scans for the i-th subject
Q number of subjects in the training set
P number of sampled measurements per scan

Functions

vec(·) vectorization function

Objective

Θ̂ MAP model parameter estimate
Γ = (B,R,U) aggregated latent parameters
B set of Q latent shape vectors β
R set of n latent pose configurations (R,m)
U set of nP latent surface correspondences u
p ∈ R3 measurement
E• error terms
λ• error term weights
Π set of virtual cameras
π : R3 → R2 camera specific projection
qk ∈ R2 2D OpenPose joint keypoints for the k-th joint
q ∈ R2 2D OpenPose surface keypoints
R̄ ∈ SO(3)K mean body pose
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