
Monotonicity Prior for Cloud Tomography
Supplementary Material

Tamar Loeub1, Aviad Levis2, Vadim Holodovsky1, and Yoav Y. Schechner1

1 Viterbi Faculty of Electrical Engineering,
Technion - Israel Institute of Technology, Haifa, Israel
2 Computing and Mathematical Sciences Department,
California Institute of Technology, Pasadena, CA, USA
tamarloeub@gmail.com, aviad.levis@gmail.com,

vholod@ef.technion.ac.il, yoav@ee.technion.ac.il

Abstract. This is a supplementary document to the main manuscript.
Here we provide the mathematical derivation of the gradient of the image
formation model and additional details about run times.

1 Outline

This supplementary material contains two parts. The first part (Secs. 2 and 3)
details the mathematical derivation of the gradient of the image fitting term, and
the prior. The second part, Sec. 4, provides additional information regarding the
simulations, i.e., run time, figures, and framework, and configuration details.
Moreover, we present an additional test and application: rendering a new view-
point from the reconstructed medium.

2 Gradient of the Image Fitting Term

We now describe the calculation of the gradient of the image model. Recall
Eq. (14) from the main manuscript, which is the analytical formulation of a
clear signal at detector d. It is the expectation of a photon to reach d, multiplied
by the number of photons (Nphot) generated at the source,

id(β) = Nphot

∫
Ld

P (L)IB(L)dL. (1)

Here P (L) is the probability density of a general path L ∈ Ld. Index a photon
by p, and an interaction point by b. The Monte-Carlo (MC) estimation of the
signal at detector d is

id(β) ≈
Nphot∑
p=1

B∑
b=1

I leb [L(d, p)] , (2)

where I leb [L(d, p)] is given in Eq. (17) of the main manuscript.
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Fig. 1: Illustration of a photon path from a detector through the medium. The
gradient is calculated according to the process described in Sec. 2 of this sup-
plementary document, and specifically, Eq. (19) herein.

Note that while P (L) is not needed explicitly for rendering, it is useful to
associate a probability to a given path. The usefulness is clear when approach-
ing the inverse problem. Following the definition of the transmittance function
a (xb−1xb), in Eq. (16) of the main manuscript, associate with a scattering event
at xb a probability a (xb−1xb) f(θb−1,b). Here, f(θb−1,b) is the phase function of
the scattering angle θb−1,b. Each scattering event and each extinction sampling is
independent. Hence, inspired by [1], the probability P associated with a general
path L is

P (L) =

B−1∏
b=1

a (xb−1xb)βbf(θb−1,b) . (3)

Note the different forms of Eq. (1) and Eq. (2) above:

– The probability P (L) in the integral is eliminated during summation, be-
cause path probability dictates the MC sampling in the sum.

– Point xB is not expected to reach the sun, when sampling a small number of
photons. Hence the signal in the summation relies on local estimation from
all nodes, in lieu of I(B).

We summarize the approximation of MC radiative transfer (RT) using the fol-
lowing operations:

IB =⇒
becomes

B∑
b=1

I leb [L(d, p)] ; Nphot

∫
Ld

P (L)(·)dL =⇒
becomes

Nphot∑
p=1

(·) . (4)

The optimization problem described in the paper is solved iteratively using
stochastic gradient descent (SGD). This requires, specifically, estimation of the



Monotonicity Prior for Cloud Tomography - Supplementary Material 3

gradient of F (β). A component of the gradient corresponding to voxel v is given
by

∂F (β)

∂βc
v

=

Ndetectors∑
d=1

[
id(β)− imeasured

d

] ∂id(β)

∂βc
v

. (5)

We now assess ∂id(β)/∂βc
v, i.e., how image pixels change in response to an in-

finitesimal perturbation of the medium β. Changes in the medium generally lead
to new paths being sampled as described in the paper. However, it is computa-
tionally demanding to sample new paths per degree of freedom of β. To derive
the gradient using existing paths, we use Eq. (1) for differentiation:

∂id(β)

∂βc
v

= Nphot

∫
Ld

∂[P (L)IB(L)]

∂βc
v

dL . (6)

The term inside the integral of Eq. (6) above can be written

∂[P (L)IB(L)]

∂βc
v

=

[
IB(L)

P (L)

∂P (L)

∂βc
v

+
∂IB(L)

∂βc
v

]
P (L) . (7)

Then, applying the transformations of Eq. (4) above, the sampled gradient is
assessed by

∂id
∂βc

v

≈
Nphot∑
p=1

B∑
b=1

∂id(p, b)

∂βc
v

, (8)

where
∂id(p, b)

∂βc
v

=
I leb [L(d, p)]

P (L)

∂P (L)

∂βc
v

+
∂I leb [L(d, p)]

∂βc
v

. (9)

Therefore,

∂id(p, b)

∂βc
v

= I leb [L(d, p)]
∂ log[P (L)]

∂βc
v

+
∂I leb [L(d, p)]

∂βc
v

. (10)

We now derive the terms of Eq. (10) above. In calculating I leb , the only

term explicitly dependent on βc
v is a

(
xbx

�
b

)
. Generally, the line segment xbx

�
b

traverses several voxels, as illustrated in Fig. 1 above. Let Vv be the domain of

voxel v. The intersection of voxel v with xbx
�
b is of length

l�v =
∣∣∣xbx�

b ∩ Vv
∣∣∣ . (11)

Notice that if xb,x
�
b ∩ Vv = ∅, then l�v = 0. Using Eq. (11) above and Eq. (16)

of the main manuscript, the transmittance a is

a
(
xbx

�
b

)
=
∏
v

exp
[
−l�v (βa

v + βc
v)
]
. (12)
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Following Eqs. (10,12) above,

∂I leb [L (d, p)]

∂βc
v

= −l�v I leb [L (d, p)] . (13)

Using Eq. (3) above,

∂ log [P (L)]

∂βc
v

=

B−1∑
b=1

[
∂ log [a (xb−1xb)]

∂βc
v

+
∂ log(βb)

∂βc
v

]
. (14)

Here we used the fact that given a scattering particle (air or cloud droplet) at
xb, the phase function f(θb−1,b) is independent of βc

v.

Generally, the line segment denoted xb−1xb traverses several voxels, as illus-
trated in Fig. 1 above. The length of the intersection of a voxel v with the set
xb−1xb is

lb−1,v = |xb−1xb ∩ Vv| . (15)

Similarly to Eq.(11) above, lb−1,v = 0 if xb−1xb ∩Vv = ∅. Using Eq. (15) above
and Eq. (16) of the main manuscript, the transmittance is

a (xb−1xb) =
∏
v

exp [−lb−1,v (βa
v + βc

v)] , (16)

hence
∂ log [a (xb−1xb)]

∂βc
v

= −lb−1,v . (17)

Most line segments xb−1xb cross relatively few voxels. Thus, the output of
Eq. (17) above is sparse over the domain.

The term ∂ log(βb)/∂β
c
v in Eq. (14) above is relevant only to the particular

voxel at which scattering occurs. Moreover, air density is known irrespective of
βc
v. Scattering by an air molecule yields a null value of ∂ log(βb)/∂β

c
v. Conse-

quently,

∂ log(βb)

∂βc
v

=

{
1/βc

v xb ∈ Vv & scatter is by a cloud droplet

0 else
. (18)

Compounding Eqs. (10,13,14,17,18) above,

∂id(x)

∂βc
v

≈ −
Nphot∑
p=1

B∑
b=1

I leb [L(d, p)] ·(
l�v + lb−1,v −

{
1
βc
v

xb ∈ Vv & scattered by a cloud

0 else

)
.

(19)
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3 Gradient of The Prior

Recall the formulation of the prior,

R(βc) =
1

2
µ1‖Aβc‖22 + µ2Rmon(βc) , (20)

where

Rmon(βc) = −1ᵀ tanh (c1Dzβ
c) tanh (c2β

c)1 {βc > 0} . (21)

The gradient of the regularization term is

∂R(βc)

∂βc = µ1A
ᵀAβc + µ2

∂Rmon(βc)

∂βc . (22)

The corresponding gradient of the monotonicity term is

∂Rmon(βc)

∂βc = −

[
c1Dz cosh−2 (c1Dzβ

c) tanh (c2β
c)

+ c2 tanh (c1Dzβ
c) cosh−2 (c2β

c)

]
1 {βc > 0} .

(23)

Here cosh−2(q) is a diagonal matrix. The diagonal is defined by the squared-
reciprocal of the hyperbolic-cosine of each element of the argument vector. Recall
that we use SGD to solve the optimization problem in Eq. (5) of the main
manuscript,

β̂ = arg min
β≥0

[F (β) +R(β)] . (24)

After each SGD iteration, we clip negative values of βc.

4 Additional Details about the Simulations

As described in Sec. 6 of the main manuscript, estimation is done in coarse-to-
fine stages. We used six stages in scene F, and eight stages in scene C. The number
of voxels and pixels used in each stage of scene F, for example, are plotted in
Fig. 2 below.

The cost function in Eq. (24) above is a combination of a data fitting term
F (β), and a regularization term R(β). Moreover, recall the local reconstruction
error measure,

ε =
‖β̂ − βtrue‖1
‖βtrue‖1

. (25)

This measure ε compares the iteratively-estimated model to the ground truth.
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Fig. 2: The coarse-to-fine parameters as a function of the stages of the algorithm.
This figure displays the increasing number of voxels, pixels, photons per pixel,
and the overall number of photons.

We plot two criteria:

– The cost function from Eq. (24) above, as it evolves during SGD.

– The error measure Eq. (25) above, evolving during SGD.

Both are plotted as a function of time, during runs on our server. Scene F ran
on a two CPUs Intel R© Xeon R© Platinum 8175M 2.40GHz with 24 cores each.
And scene C ran on a two CPUs Intel R© Xeon R© Processor E5-2680 v4 2.40GHz
with 14 cores each.

Overall, the criteria are plotted in Fig. 3 and Fig. 4 herein. Termination of
each stage is color-marked in the plots here using a vertical colored line. Run
time is displayed in log-scale. Fig. 3 herein corresponds to scene F. Fig. 4 herein
corresponds to scene C.

Fig. 5 herein presents the effect of the monotonicity prior, beyond a smooth-
ness prior (scene F). The left plot presents how the cost function Eq. (24) above
evolves during the whole SGD process. The right figure presents a zoom-in of the
error measure Eq. (25) above in the last stage of the coarse-to-fine solution. The
orange lines present the cost Eq. (24) above, and error Eq. (25) above without
the monotonicity prior, i.e., R(βc) = 1

2µ1‖Aβc‖22. The blue lines present these
respective costs when solving the full optimization problem, as formulated in
the main manuscript, including the monotonicity prior. Here the regularization
term is R(βc) = 1

2µ1‖Aβc‖22 + µ2Rmon(βc). As stated in the main manuscript,
the monotonicity prior improves the quality and convergence.
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Fig. 3: Recovery of scene F. These plots present [Left] the cost function Eq. (24)
above, and [Right] the error function ε Eq. (25) above, as functions of run time.

Fig. 4: Recovery of scene C. These plots present [Left] the cost function Eq. (24)
above, and [Right] the error function ε Eq. (25) above, as functions of run time.
The hierarchical solution enables a faster convergence to a better solution.

Fig. 5: This figure illustrates the recovery of scene F, using exclusively the
smoothness prior (orange line), or using monotonicity compounded with smooth-
ness (blue line), as formulated in Eq. (24) above. [Left] The cost function eval-
uation, as a function of run time. [Right] The error ε during the last stage, as a
function of run time on our server. The error ε significantly improves using the
monotonicity prior.
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Rendering
from ground truth

Rendering
from estimated volume

Fig. 6: Rendering a new viewpoint, 50.4◦ off-nadir. This viewpoint was not used
during the reconstruction of scene C. This image was not an input to tomographic
recovery. [Left] Image rendered from the ground-truth medium. [Right] Image
rendered from the estimated medium.

Finally, Fig. 6 presents an application of scattering tomography. Here we
render a new viewpoint, that was not included in the input measurements of
scene C. For comparison, we render an image using the ground truth medium.
Then we render the same viewpoint using the estimated medium.
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