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Abstract. In this paper, we propose a generic neural-based hair render-
ing pipeline that can synthesize photo-realistic images from virtual 3D
hair models. Unlike existing supervised translation methods that require
model-level similarity to preserve consistent structure representation for
both real images and fake renderings, our method adopts an unsupervised
solution to work on arbitrary hair models. The key component of our
method is a shared latent space to encode appearance-invariant structure
information of both domains, which generates realistic renderings condi-
tioned by extra appearance inputs. This is achieved by domain-specific
pre-disentangled structure representation, partially shared domain en-
coder layers and a structure discriminator. We also propose a simple yet
effective temporal conditioning method to enforce consistency for video
sequence generation. We demonstrate the superiority of our method by
testing it on a large number of portraits and comparing it with alternative
baselines and state-of-the-art unsupervised image translation methods.
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1 Introduction

Hair is a critical component of human subjects. Rendering virtual 3D hair mod-
els into realistic images has been long studied in computer graphics, due to the
extremely complicated geometry and material of human hair. Traditional graph-
ical rendering pipelines try to simulate every aspect of natural hair appearance,
including surface shading, light scattering, semi-transparent occlusions, and soft
shadowing. This is usually achieved by leveraging physics-based shading models
of hair fibers, global illumination rendering algorithms, and artistically designed
material parameters. Given the extreme complexity of the geometry and asso-
ciated lighting effects, such a direct approximation of physical hair appearance
requires a highly detailed 3D model, carefully tuned material parameters, and
a huge amount of rendering computation. However, for interactive application
scenarios that require efficient feedback and user-friendly interactions, such as
games and photo editing softwares, it is often too expensive and unaffordable.

With the recent advances in generative adversarial networks, it becomes nat-
ural to formulate hair rendering as a special case of the conditional image genera-
tion problem, with the hair structure controlled by the 3D model, while realistic
appearance synthesized by neural networks. In the context of image-to-image
translation, one of the major challenges is how to bridge both the source and
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target domains for proper translation. Most existing hair generation methods
fall into the supervised category, which demands enough training image pairs
to provide direct supervision. For example, sketch-based hair generation meth-
ods [34,28,49] construct training pairs by synthesizing user sketches from real
images. While several such methods are introduced, rendering 3D hair models
with the help of neural networks do not receive similar treatment. The exist-
ing work on this topic [66] requires real and fake domains considerably overlap,
such that the common structure is present in both domains. This is achieved at
the cost of a complicated strand-level high-quality model, which allows for ex-
tracting edge and orientation maps that serve as the common representations of
hair structures between real photos and fake models. However, preparing such a
high-quality hair model is itself expensive and non-trivial even for a professional
artist, which significantly restricts the application scope of this method.

In this paper, we propose a generic neural-network-based hair rendering
pipeline that provides efficient and realistic rendering of a generic low-quality
3D hair model borrowing the material features extracted from an arbitrary ref-
erence hair image. Instead of using a complicated strand-level model to match
real-world hairs like [66], we allow users to use any type of hair model requiring
only the isotropic structure of hair strands be properly represented. Particularly,
we adopt sparse polygon strip meshes which are much more widely used in in-
teractive applications [65]. Given the dramatic difference between such a coarse
geometry and real hair, we are not able to design common structure representa-
tions at the model level. Therefore, supervised image translation methods will
be infeasible due to the lack of paired data.

To bridge the domains of real hair images and low-quality virtual hair mod-
els in an unsupervised manner, we propose to construct a shared latent space
between both real and fake domains, which encodes a common structural rep-
resentation from distinct inputs of both domains and renders the realistic hair
image from this latent space with the appearance conditioned by an extra ref-
erence. This is achieved by 1) different domain structure encodings used as the
network inputs, to pre-disentangle geometric structure and chromatic appear-
ance for both real hair images and 3D models; 2) a UNIT [39]-like architecture
adopted to enable common latent space by partially sharing encoder weights
between two auto-encoder branches that are trained with in-domain supervi-
sion; 3) a structure discriminator introduced to further match the distribution
of the encoded structure features; 4) supervised reconstruction enforced on both
branches to guarantee all necessary structure information is kept in the shared
feature space. In addition, to enable temporally-smooth animation rendering,
we introduce a simple yet effective temporal condition method with single image
training data only, utilizing the exact hair model motion fields. We demonstrate
the effectiveness of the pipeline and each key component by extensively testing
on a large amount of diverse human portraits and various hair models. We also
compare our method with general unsupervised image translation methods, and
show that due to the limited sampling ability on the synthetic hair domain, all
existing methods fail to produce convincing results.
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2 Related Work

Image-to-image translation aims at converting images from one domain to an-
other while keeping the structure of the source image unchanged. The litera-
ture contains various methods performing this task in different settings. Paired
image-to-image translation methods [27,64] operate when pairs of images in both
domains are available. For example, semantic labels to scenes [64,48,8], edges to
objects [54], and image super-resolution [33,29]. However, paired data are not
always available in many tasks. Unsupervised image-to-image translation tackles
a setting in which paired data is not available, while sampling from two domains
is possible [40,58,73,12,55,39,26]. Clearly, unpaired image-to-image translation is
an ill-posed problem for there are numerous ways an image can be transformed
to a different domain. Hence, recently proposed methods introduce constraints
to limit the number of possible transformations. Some studies enforce certain
domain properties [1,55], while other concurrent works apply cycle-consistency
to transform images between different domains [69,73,31]. Our work differs from
existing studies that we focus on a specific challenging problem, which is the real-
istic hair generation, where we want to translate manually designed hair models
from the domain of rendered images to the domain of real hair. For the purpose
of controllable hair generation, we leverage rendered hair structure and arbitrary
hair appearance to synthesize diverse realistic hairstyles. The further difference
in our work compared to the image-to-image translation papers is unbalanced
data. The domain of images containing real hair is far more diverse than that
of rendered hair, making it even more challenging for classical image-to-image
translation works to address the problem.

Neural style transfer is related to image-to-image translation in a way that image
style is changed while content is maintained [9,16,25,36,38,37,63,20]. Style in
this case is represented by unique style of an artist [16,63] or is copied from
an example image provided by the user. Our work follows the research idea
from example-guide style transfer that hairstyle is obtained from reference real
image. However, instead of changing the style of a whole image, our aim is
to keep the appearance of the human face and background unchanged, while
having full control over the hair region. Therefore, instead of following exiting
works that inject style features into image generation networks directly [25,48],
we propose a new architecture that combines only hair appearance features and
latent features that encodes image content and adapted hair structure for image
generation. This way we can achieve the goal that only the style of the hair
region is manipulated according to the provided exemplar image.

Domain Adaptation addresses the domain-shift problem that widely exists be-
tween the source and target domains [53]. Various feature-based methods have
been proposed to tackle the problem [32,17,18,13,62]. Recent works on adver-
sarial learning for the embedded feature alignment between source and target
domains achieve better results than previous studies [14,15,41,60,22,61]. Efforts
using domain adaptation for both classification and pixel-level prediction tasks
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have gained significantly progress [1,10,60]. In this work, we follow the challeng-
ing setting of unsupervised domain adaptation that there is no corresponding
annotation between source and target domains. We aim at learning an embed-
ding space that only contains hair structure information for both rendered and
real domains. Considering the domain gap, instead of using original images as
input, we use rendered and real structure map as inputs to the encoders, which
contain both domain-specific layers and shared layers, to obtain latent features.
The adaptation is achieved by adversarial training and image reconstruction.

Hair Modeling, Rendering, and Generation share a similar goal with our pa-
per, which is synthesizing photo-realistic hair images. With 3D hair models
manually created [65,70], captured [47,19,42,23,71], or reconstructed from im-
ages [6,5,24,3,4,72], traditional graphical hair rendering methods focus on im-
proving rendering quality and performance by either more accurately modeling
the special hair material and lighting behaviours [43,44,11,68], or approximat-
ing certain aspects of rendering pipeline to reduce the computation complexity
[74,45,52,50,67]. However, the extremely huge computation cost for realistic hair
rendering usually prohibits them to be directly applied in real-time applications.
Utilizing the latest advances in GANs, recent works [34,28,49,46,59] achieved im-
pressive progress on conditioned hair image generation as supervised image-to-
image translation. A GAN-based hair rendering method [66] proposes to perform
conditioned 3D hair rendering by starting with a common structure representa-
tion and progressively enforce various conditions. However, it requires the hair
model to be able to generate consistent representation (strand orientation map)
with real images, which is challenging for low-quality mesh-based models, and
cannot achieve temporally smooth results.

3 Approach

Let h be the target 3D hair model, with camera parameters c and hair mate-
rial parameters m, we formulate the traditional graphic rendering pipeline as
Rt(h,m, c). Likewise, our neural network-based rendering pipeline is defined as
Rn(h, r, c), with a low-quality hair model h and material features extracted from
an arbitrary reference hair image r.

3.1 Overview of Network Architecture

The overall system pipeline is shown in Fig.1, which consists of two parallel
branches for both domains of real photo (i.e., real) and synthetic renderings
(i.e., fake), respectively.

On the encoding side, the structure adaptation subnetwork, which includes a
real encoder Er and a fake encoder Ef , achieves cross-domain structure embed-
ding e. Similar to UNIT[39], we share the weights of the last few ResNet layers
in Er and Ef to extract consistent structural representation from two domains.
In addition, a structure discriminator Ds is introduced to match the high-level
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Real Branch
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Fig. 1. The overall pipeline of our neural hair rendering framework. We use
two branches to encode hair structure features, one for the real domain and the other for
the fake domain. A domain discriminator is applied to the outputs from both encoders,
to achieve domain invariant features. We also use two decoders to reconstruct images
for two domains. The decoder in the real domain is different from the one in the fake
domain, for it is conditioned on a reference image. Additionally, to generate consistent
videos, we apply a temporal condition on the real branch. During inference, we use the
encoder in the fake branch to get hair structure features from a 3D hair model and use
the generator in the real branch to synthesized an appearance conditioned image.

feature distributions between two domains to enforce the shared latent space
further to be domain invariant.

On the decoding side, the appearance rendering subnetwork, consisting of Gr

and Gf for the real and fake domain respectively, is attached after the shared
latent space e to reconstruct the images in the corresponding domain. Each
decoder owns its exclusive domain discriminator Dr and Df to ensure the re-
construction matches the domain distribution, besides the reconstruction losses.
The hair appearance is conditioned in an asymmetric way that Gr accepts the
extra condition of material features extracted from a reference image r by using
material encoder Em, while the unconditional decoder Gf is asked to memorize
the appearance, which is made on purpose for training data generation (Sec.4.1).

At the training stage, all these networks are jointly trained using two sets of
image pairs (s,x) for both real and fake domains, where s represents a domain-
specific structure representation of the corresponding hair image x in this do-
main. Both real and fake branches try to reconstruct the image G(E(x)) from
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its paired structure image s independently through their own encoder-decoder
networks, while the shared structural features are enforced to match each other
consistently by the structure discriminator Ds. We set the appearance reference
r = x in the real branch to fully reconstruct x in a paired manner.

At the inference stage, only the fake branch encoder Ef and the real branch
decoder Gr are activated. Gr generates the final realistic rendering using struc-
tural features encoded by Ef on the hair model. The final rendering equation
Rn can be formulated as:

Rn(h, r, c) = Gr(Ef (Sf (h, c)), Em(r)), (1)

where the function Sf (h, c) renders the structure encoded image sf of the model
h in camera setting c.

3.2 Structure Adaptation

The goal of the structure adaptation subnetwork, formed by the encoding parts
of both branches, is to encode cross-domain structural features to support final
rendering. Since the inputs to both encoders are manually disentangled struc-
ture representation (Sec.4.1), the encoded features E(s) only contain structural
information of the target hair. Moreover, as the appearance information is either
conditioned by extra decoder input in a way that non-spatial-varying structural
information is leaked (the real branch) or simple enough to be memorized by the
decoder (the fake branch) (Sec.3.3), the encoded features should also include all
the structural information necessary to reconstruct x.

Er and Ef share a similar network structure: five downsampling convolution
layers followed by six ResBlks. The last two ResBlks are weight-sharing to enforce
the shared latent space. Ds follows PatchGAN[27] to distinguish between the
latent feature maps from both domains:

LDs
= Esr

[log(Ds(Er(sr)))] + Esf
[log(1−Ds(Ef (sf )))]. (2)

3.3 Appearance Rendering

The hair appearance rendering subnetwork decodes the shared cross-domain hair
features into the real domain images. The decoders Gr and Gf have different
network structures and do not share weights since the neural hair rendering is a
unidirectional translation that aims to map the rendered 3D model in the fake
domain to real images in the real domain. Therefore, Gf is required to make
sure the latent features e encode all necessary information from the input 3D
model, instead of learning to render various appearance. On the other hand, Gr

is designed in a way to accept arbitrary inputs for realistic image generation.
Specifically, the unconditional decoder Gf starts with two ResBlks, and then

five consecutive upsampling transposed convolutional layers followed by one final
convolutional layer. Gr adopts a similar structure as Gf , with each transposed
convolutional layer replaced with a SPADE[48] ResBlk to use appearance feature
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maps ar,sr
at different scales to condition the generation. Assuming the binary

hair mask of the reference and the target images are mr and ms, the appear-
ance encoder Em extracts the appearance feature vector on r ×mr with five
downsampling convolutional layers and an average pooling. This feature vector
Em(r) is then used to construct the feature map ar,sr

by duplicating it spatially
in the target hair mask ms as follows:

ar,sr (p) =

{
Em(r), if msr

(p) = 1,

0, if msr
(p) = 0.

(3)

To make sure the reconstructed real image Gr(Er(sr),ar,sr ) and the recon-
structed fake image Gf (Ef (sf )) belong to their respective distributions, we ap-
ply two domain specific discriminator Dr and Df for the real and fake domain
respectively. The adversarial losses write as:

LDr = Exr [log(Dr(xr))] + Esr,r[log(1−Dr(Gr(Er(sr),ar,sr )))], (4)

LDf
= Exf

[log(Df (xf ))] + Esf
[log(1−Df (Gf (Ef (sf ))))]. (5)

We also adopt perceptual losses to measure high-level feature distance utilizing
the paired data:

Lp =

L∑
l=0

‖Ψl(Gr(Er(sr),ar,sr ))− Ψl(xr)‖1

+‖Ψl(Gf (Ef (sf )))− Ψl(xf )‖1,

(6)

where Ψl(i) computes the activation feature map of input image i at the lth
selected layer of VGG-19[56] pre-trained on ImageNet[51].

Finally, we have the overall training objective as:

min
E,G

max
D

(λsLDs
+ λg(LDr

+ LDf
) + λpLp). (7)

3.4 Temporal Conditioning

The aforementioned rendering network is able to generate plausible single-frame
results. However, despite the hair structure is controlled by smoothly-varying
inputs of sf with the appearance conditioned by a fixed feature map ar,sr

, the
spatially-varying appearance details are still generated in a somewhat arbitrary
manner which tends to flicker in time (Fig.5). Fortunately, with the availability
of the 3D model, we can calculate the exact hair motion flow wt for each pair of
frames t−1 and t, which can be used to warp image i from t−1 to t as W(i,wt).
We utilize this dense correspondences to enforce temporal smoothness.

Let I = {i0, i1, . . . , iT } be the generated result sequence, we achieve this
temporal conditioning by simply using the warped result of the previous frame
W(it−1,wt) as an additional condition, stacked with the appearance feature map
ar,sr , to the real branch decoder Gr when generating the current frame it.
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3D Hair Input Fake Hair Structure Real Hair Structure
Fake Domain Real Domain

Fig. 2. Training data preparation. For the fake domain (left), we use hair model
and input image to generate fake rendering and model structure map. For the real
domain (b), we generate image structure map for each image.

We achieve temporally consistent by changing the real branch decoder only
with temporally finetuning. During temporal training, we fix all other networks
and use the same objective as Eq.7, but randomly (50% of chance) concate-
nate xr into the condition inputs to the SPADE ResBlks of Gt

r. The generation
pipeline of the real branch now becomes Gt

r(Er(sr),ar,sr
,xr), so that the net-

work learns to preserve the consistency if the previous frame is inputted as the
temporal condition, or generate randomly from scratch if the condition is zero.

Finally, we have the rendering equation for sequential generation:

it = Rn(h, r, ct) =

{
Gr(Ef (stf ),ar,st

f
), if t = 0,

Gt
r(Ef (stf ),ar,st

f
,W(it−1,wt)). if t > 0,

stf = Sf (h, ct).

(8)

4 Experiments

4.1 Data Preparation

To train the proposed framework, we generate a dataset that includes image
pairs (s,x) for both real and fake domains. In each domain, s→ x indicates the
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mapping from structure to image, where s encodes only the structure informa-
tion, and x is the corresponded image that conforms to the structure condition.

Real Domain. We adopt the widely used FFHQ[30] portrait dataset to
generate the training pairs for the real branch, given it contains diverse hairstyles
on shapes and appearances. To prepare real data pairs, we use original portrait
photos from FFHQ as xr, and generate sr to encode only structure information
from hair. However, obtaining sr is a non-trivial process since hair image also
contains material information, besides structural knowledge. To fully disentangle
structure and material, and construct a universal structural representation s of
all real hair, we apply a dense pixel-level orientation map in the hair region,
which is formulated as sr = Sr(xr), calculated with oriented filter kernels [47].
Thus, we can obtain sr that only consists of local hair strand flow structures.
Example generated pairs are presented in Fig.2b.

For the purpose of training and validation, we randomly select 65, 000 images
from FFHQ as training, and use the remaining 5, 000 images for testing. For
each image xr, we perform hair segmentation using off-the-shelf model [4], and
calculate sr for the hair region.

Fake Domain. There are multiple ways to model and render virtual hair
models. From coarse to fine, typical virtual hair models range from a single
rigid shape, coarse polygon strips representing detached hair wisps, to a large
number of thin hair fibers that mimic real-world hair behaviors. Due to various
granularity of the geometry, the structural representation is hardly shared with
each other or real hair images. In our experiments, all the hair models we used
are polygon strips based considering this type of hair model is widely adopted
in real-time scenarios for it is efficient to render and flexible to be animated. To
generate sf for a given hair model h and specified camera parameters c, we use
smoothly varying color gradient as texture to render h into a color image that
embeds the structure information of the hair geometry, such that sf = Sf (h, c).
As for xf , we use traditional graphic rendering pipeline to render h with a
uniform appearance color and simple diffuse shading, so that the final synthetic
renderings have a consistent appearance that can be easily disentangled without
any extra condition, and keep all necessary structural information to verify the
effectiveness of the encoding step. Example pairs are shown in Fig.2a.

For the 3D hair used for fake data pairs, we create five models (leftmost
column in Fig.2). The first four models are used for training, and the last one
is used to evaluate the generalization capability of the network, for the network
has never seen it. All these models consist of 10 to 50 polygon strips, which is
sparse enough for real-time applications. We use the same training set from the
real domain to form training pairs. Each image is overlaid by one of the four 3D
hair models according to the head position and pose. Then the image with the
fake hair model is used to generate xf through rendering the hair model with
simple diffuse shading, and sf by exporting color textures that encode surface
tangent of the mesh. We strictly use the same shading parameters, including
lighting and color, to enforce a uniform appearance of hair that can be easily
disentangled by the networks.
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Input&Ref Structure Result Input Ref Structure Result

Fig. 3. Results for the hair models used in this study (2 rows per model). We visualize
examples where the input and the reference image are the same (left), and the input
and the reference are different images (right). In the former case the method copies
appearance from another image.
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4.2 Implementation Details

We apply a two-stage learning strategy. During the first stage, all networks are
trained jointly following Eq.7 for the single-image renderer Rn. After that, we
temporally fine-tune the decoder Gr of the real branch, to achieve temporally-
smooth renderer Rt

n, by introducing the additional temporal condition as de-
tailed in Sec.3.4. To make the networks of both stages consistent, we keep the
same condition input dimensions, including appearance and temporal, but set
the temporal condition to zero during the first stage. During the second stage,
we set it to zero with 50% of chance. The network architecture discussed in
Sec.3 is implemented using PyTorch. We adopt Adam solver with a learning
rate set to 0.0001 for the first stage, and 0.00001 for the fine-tuning stage. The
training resolution of all images is 512× 512, with the mini-batch size set to 4.
For the loss functions, weights λp, λs, and λg are set to 10, 1, and 1, respec-
tively. All experiments are conducted on a workstation with 4 Nvidia Tesla P100
GPUs. During test time, rendering a single frame takes less than 1 second, with
structure encoding less than 200ms and final generation less than 400ms.

4.3 Qualitative Results

We present visual hair rendering results from two settings in Fig.3. The left
three columns in Fig.3 show that the reference image r is the same as xr. By
applying a hair model, we can modify human hair shape but keep the original
hair appearance and orientation. The right four columns show that the reference
image is different from xr, therefore, both structure and appearance of hair from
xr can be changed at the same time to render the hair with a new style. We also
demonstrate our video results in Fig.5 (please click the image to watch video
results online), where we adopt 3D face tracking [2] to guide the rigid position
of the hair model, and physics-based hair simulation method [7] to generate
secondary hair motion. These flexible applications demonstrate that our method
can be easily applied to modify hair and generate novel high-quality hair images.

4.4 Comparison Results

To the best of our knowledge, there is no previous work that tackles the problem
of neural hair rendering; thus, a direct comparison is not feasible. However, in
light of our methods aim to bridge two different domains without ground-truth
image pairs, which is related to unsupervised image translation, we compare our
network with state-of-the-art unpaired image translation studies. It is important
to stress that although our hair rendering translation falls into the range of
image translation problems, there exist fundamental differences compared to the
generic unpaired image translation formulations for the following two reasons.

First and foremost, compared with translation between two domains, such
as painting styles, or seasons/times of the day, which have roughly the same
amount of images for two domains and enough representative training images can
be sampled to provide nearly-uniform domain coverage, our real/fake domains
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Table 1. Quantitative comparison results. We compare our method against com-
monly adopted image-to-image translation frameworks, reporting Fréchet Inception
Distance (FID, lower the better), Intersection over Union (IoU, higher the better) and
pixel accuracy (Accuracy, higher the better). Additionally we report ablation studies
by first removing the structural discriminator (w/o SD) followed by removing both the
structural discriminator and the shared latent space (w/o SL and SD).

Method FID ↓ IoU(%) ↑ Accuracy(%) ↑
Graphic Renderer 98.62 55.77 86.17

CycleGAN [73] 107.11 46.46 84.06

UNIT [39] 116.79 30.89 84.27

DRIT [35] 174.39 30.69 65.80

w/o SL and SD 94.25 80.10 93.89

w/o SD 77.09 86.60 96.35

Ours 57.08 86.74 96.45

have dramatically different sizes–it is easy to collect a huge amount of real human
portrait photos with diverse hairstyles to form the real domain. Unfortunately,
for the fake domain, it is impossible to reach the same variety since it would
require manually designing every possible hair shape and appearance to describe
the distribution of the whole domain of rendered fake hair. Therefore, we focus
on a realistic assumption that only a limited set of such models are available for
training and testing, such that we use four 3D models for training and one for
testing, which is far from being able to produce variety in the fake domain.

Second, as a deterministic process, hair rendering should be conditioned
strictly on both geometric shape and chromatic appearance, which can be hardly
achieved with unconditioned image translation frameworks.

With those differences bearing in mind, we show the comparison between
our method and three unpaired image translation studies, including CycleGAN
[73], DRIT [35], and UNIT [39]. For the training of these methods, we use the
same sets of images, xr and xf , for both real and fake domains, and the default
hyperparameters reported by the original papers. Additionally, we compare with
the images generated by the traditional graphic rendering pipeline. We denote
the method as Graphic Renderer. Finally, we report two ablation studies
to evaluate the soundness of the network and the importance of each step: 1)
we first remove the structural discriminator (termed as w/o SD); 2) we then
additionally remove the shared latent space (termed as w/o SL and SD).

Quantitative comparison. For quantitative evaluation, we adopt FID (Fréchet
Inception Distance) [21] to measure the distribution distance between two do-
mains. Moreover, inspired by the evaluation protocol from existing work [8,64],
we apply a pre-trained hair segmentation model [57] on the generated images to
get the hair mask, and compare it with the ground truth. Intuitively, the seg-
mentation model should predict the hair mask that similar to the ground-truth
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(g)Input Graphically 
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CycleGAN UNIT DRIT

Fig. 4. Visual comparisons. We show selected visual comparisons against commonly
adopted image-to-image translation methods as well as visualize ablation results. Our
method synthesizes more realistic hair images compared to other approaches.

for the realistic synthesized images. To measure the segmentation accuracy, we
use both Intersection-over-Union (IoU) and pixel accuracy (Accuracy).

The quantitative results are reported in Tab.1. Our method significantly out-
performs the state-of-the-art unpaired image translation works and graphic ren-
dering approach by a large margin for all three evaluation metrics. The low FID
score proves our method can generate high-fidelity hair images that contain sim-
ilar hair appearance distribution as images from the real domain. The high IoU
and Accuracy demonstrate the ability of the network to minimize the structure
gap between real and fake domains so that the synthesized images can follow the
manually designed structure. Furthermore, the ablation analysis in Tab.1 shows
both shared encoder layers and the structural discriminator are essential parts
of the network, for the shared encoder layers help the network to find a com-
mon latent space that embeds hair structural knowledge, while the structural
discriminator forces the hair structure features to be domain invariant.

Qualitative comparison. The qualitative comparison of different methods is
shown in Fig.4. It can be easily seen that our generated images have much higher
quality than the synthesized images created by other state-of-the-art unpaired
image translation methods, for they have clearer hair mask, follow hair appear-
ance from reference images, maintain the structure from hair models, and look
like natural hair. Compared with the ablation methods (Fig.4c and d), our full
method (Fig.4b) can follow the appearance from reference images (Fig.4a) by
generating hair with similar orientation.

We also show the importance of temporal conditioning (Sec.3.4) in Fig.5. The
temporal conditioning helps us generate consistent and smooth video results, for
hair appearance and orientation are similar between continuous frames. With-
out temporal conditioning, the hair texture could be different between frames,
as indicated by blue and green boxes, which may result in flickering for the
synthesized video. Please refer to the supplementary video for more examples.
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Fig. 5. Video results and comparisons. Top row: the first image is the appearance
reference image and others are continuous input frames; middle row: generated hair im-
ages with temporal conditioning; bottom row: generated hair images without temporal
conditioning. We show two zoom-in hair regions for each result. By applying temporal
conditioning, our model synthesizes hair images with consistent appearance, while not
using temporal conditioning leads to hair appearance flickering as indicated by blue
and green boxes. Click the image to play the video results and comparisons.

5 Conclusions

We propose a neural-based rendering pipeline for general virtual 3D hair models.
The key idea of our method is that instead of enforcing model-level representa-
tion consistency to enable supervised paired training, we relax the strict require-
ments on the model and adopt an unsupervised image translation framework.
To bridge the gap between real and fake domains, we construct a shared latent
space to encode a common structure feature space for both domains, even if their
inputs are dramatically different. In this way, we can encode a virtual hair model
into such a structure feature, and switch it into the real generator to produce
realistic rendering. The conditional real generator not only allows flexible ap-
pearance conditioning but can also be used to introduce temporal conditioning
to generate smooth sequential results.

Our method has several limitations. First, the current method does not
change the input. A smaller fake hair won’t be able to fully occlude the original
one in the input image. It is possible to do face inpainting to remove the ex-
cessive hair regions to fix this issue. Second, when the lighting/material of the
appearance reference is dramatically different from the input, the result may
look unnatural. Better reference selection would help to make the results bet-
ter. Third, the current method simply blends the generated hair onto the input,
which causes blending artifacts in some results especially when the background
is complicated. A simple solution is to train a supervised boundary refinement
network to achieve better blending quality.

https://mlchai.com/files/neural_hair_rendering_video.mp4
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