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Fig. 1: Our approach can detect spoof faces, disentangle the spoof traces, and reconstruct
the live counterparts. It can recognize diverse traces from various spoof types (e.g.,
Moiré pattern in replay, artificial eyebrow and wax in makeup, color distortion in print,
and specular highlights in 3D mask). Zoom in for details.

Abstract. Prior studies show that the key to face anti-spoofing lies in the
subtle image pattern, termed “spoof trace”, e.g., color distortion, 3D mask
edge, Moiré pattern, and many others. Designing a generic anti-spoofing
model to estimate those spoof traces can improve both generalization and
interpretability. Yet, this is a challenging task due to the diversity of spoof
types and the lack of ground truth. This work designs a novel adversarial
learning framework to disentangle the spoof traces from input faces as a
hierarchical combination of patterns. With the disentangled spoof traces,
we unveil the live counterpart from spoof face, and synthesize realistic new
spoof faces after a proper geometric correction. Our method demonstrates
superior spoof detection performance on both seen and unseen spoof
scenarios while providing visually-convincing estimation of spoof traces.
Code is available at https://github.com/yaojieliu/ECCV20-STDN.

1 Introduction

In recent years, the vulnerability of face biometric systems has been widely
recognized and brought increasing attention to the vision community due to
various physical and digital attacks. There are various physical and digital
attacks, such as face morphing [13, 52, 55], face adversarial attacks [14, 20, 44],
face manipulation attacks (e.g., deepfake, face swap) [9, 45], and face spoofing
(i.e., presentation attacks) [5, 19, 40], that can be used to attack the biometric
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systems. Among all these attacks, face spoofing is the only physical attack to
deceive the systems, where attackers present faces from spoof mediums, such
as photograph, screen, mask and makeup, instead of a live human. These spoof
mediums can be easily manufactured by ordinary people, therefore posing a huge
threat to applications such as mobile face unlock, building access control, and
transportation security. Therefore, face biometric systems need to be reinforced
with face anti-spoofing techniques before performing face recognition tasks.

Face anti-spoofing1 has been studied for over a decade, and one of the most
common approaches is based on texture analysis [6, 7, 37]. Researchers notice
that presenting faces from spoof mediums introduces special texture differences,
such as color distortions, unnatural specular highlights, and Moiré patterns.
Those texture differences are inherent within spoof mediums and thus hard to
remove or camouflage. Early works build feature extractor with classifier, such
as LBP+SVM and HOG+SVM [17, 26]. Recent works leverage deep learning
techniques and show great progress [4, 29, 31, 41, 51].

However, there are two limitations in deep learning approaches. First, most
works concern either print/replay or 3D mask alone, while a real-world scenario
may encounter more spoof types at the same time. Second, most approaches for-
mulate face anti-spoofing simply as a classification/regression problem. Although
a few methods [29, 24, 51] attempt to offer insights via fixation, saliency, or noise
analysis, there is little understanding on what the exact differences are between
live and spoof, and what patterns the classifier’s decision is based upon. We regard
the face spoof detection for all spoof types as generic face anti-spoofing, and
term the patterns differentiating spoof with live as spoof trace. Shown in Fig. 1,
this work aims to equip generic face anti-spoofing models with the ability to
explicitly extract the spoof traces from the input faces. We term this process
as spoof trace disentanglement. This is a challenging objective due to spoof
traces diversity and the lack of ground truth. However, we believe that solving
this problem can bring several benefits:

1. Binary classification for face anti-spoofing would harvest any cue that helps
classification, which might include spoof-irrelevant cues such as lighting, and
thus hinder generalization. Spoof trace disentanglement explicitly tackles
the most fundamental cue in spoofing, upon which the classification can be
grounded and witnesses better generalization.

2. With the trend of pursuing explainable AI [1, 3], it is desirable to generate the
patterns that support its decision. Spoof trace serves as a good visual explana-
tion of the model’s decision. Certain properties (e.g., severity, methodology)
of spoof attacks could potentially be revealed based on the traces.

3. Spoof traces are good sources for synthesizing realistic spoof samples. High-
quality synthesis can address the issue of limited training data for the minority
spoof types, such as special 3D masks and makeup.

1 As most face recognition systems are based on a monocular camera, this work only
concerns monocular face anti-spoofing methods, and terms as face anti-spoofing
hereafter for simplicity.
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Fig. 2: Overview of the proposed Spoof Trace Disentanglement Network (STDN).

Shown in Fig. 2, we propose a Spoof Trace Disentanglement Network (STDN)
to tackle this problem. Given only the binary labels of live vs. spoof, STDN
adopts an overall GAN training strategy. The generator takes input faces, detect
the spoof faces, and disentangles the spoof traces as a combination of multiple
elements. With the spoof traces, we can reconstruct the live counterpart from
the spoof and synthesize new spoof from the live. To correct possible geometric
discrepancy during spoof synthesis, we propose a novel 3D warping layer to
deform spoof traces toward the target face. We deploy multiscale discriminators
to improve the fidelity of both the reconstructed live and synthesized spoof.
Moreover, the synthesized spoof are further utilized to train the generator in a
supervised fashion, thanks to disentangled spoof traces as ground truth for the
synthesized sample. In summary, the main contributions are as follows:

• We for the first time study spoof trace for generic face anti-spoofing;
• We propose a novel model to disentangle spoof traces hierarchically;
• We utilize the spoof traces to synthesize new data and enhance the training;
• We achieve SOTA performance and provide convincing visualization.

2 Related Work

Face Anti-Spoofing has been studied for more than a decade and its develop-
ment can be roughly divided into three stages. In early years, researchers leverage
the spontaneous motion, such as eye blinking, to detect simple print photograph
or static replay attacks [25, 35]. However, simple counter attacks would fail those
methods, such as print with eye holes, and video replaying. Later, researchers
focus on texture differences between live and spoof. Researchers extract hand-
crafted features from faces, e.g., LBP [6, 17, 18, 33], HoG [26, 50], SIFT [37]
and SURF [7], and train a classifier such as SVM and LDA. Recently, deep
learning demonstrates significant improvements over the conventional methods.
[16, 27, 36, 49] train a deep neural network to do binary classification between
live and spoof. [4, 29, 31, 41, 51] propose to learn additional information, such as
face depth map and rPPG signal. With the latest approaches become saturating
on several benchmarks, researchers start to explore more challenging cases, such
as few-shot/zero-shot face anti-spoofing [31, 38, 54], domain adaptation in face
anti-spoofing [41, 42], etc.
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This work aims to disentangling the spoof traces from the input faces. [24, 43,
12] are the first few to estimate the different traces. However, they formulate the
traces as low-intensity noises, which is limited to print/replay attacks with no
convincing visual results. In contrast, we explore and visualize spoof traces for a
wide range of spoof attacks, and evaluate the proposed method on challenging
cases (e.g., zero-shot face anti-spoofing).
Disentanglement Learning is often adopted to better represent complex data
representation. DR-GAN [46, 47] disentangles face into identity and pose vectors
for pose-invariant face recognition and synthesis. [53] disentangles the represen-
tations of appearance, canonical, and pose features for gait recognition. [28]
disentangles the representation of a 3D face into identity, expressions, poses,
albedo, and illuminations. To solve the problem of image synthesis, [15] disen-
tangles an image into appearance and shape with U-Net and Variational Auto
Encoder (VAE). In this work, we intend to disentangle features with different ge-
ometry and scales. We leverage outputs from different layers to represent features
at different scales, and propose a novel warping layer to align the geometry.

3 Spoof Trace Disentanglement Network

3.1 Problem Formulation

Let the domain of live faces be denoted as L ⊂ R
N×N×3 and spoof faces as

S⊂RN×N×3, where N is the image size. We intend to obtain not only the correct
prediction (live vs. spoof) of the input face, but also a convincing estimation of
the spoof traces. Without the guidance of ground truth spoof traces, our key idea
is to find a minimum change that transfers an input face to the live domain:

arg min
Î

‖I− Î‖F s.t. I ∈ (S ∪ L) and Î ∈ L, (1)

where I is the input face from either domain, Î is the target face in the live
domain, and I− Î is defined as the spoof trace. For an input live face Ilive, the
spoof traces should be 0 as it’s already in L. For an input spoof face Ispoof, this
L-2 regularization on spoof traces is also preferred, as there is no paired solution
for the domain transfer and we hope the spoof traces to be bounded. Based on [24,
37], spoof traces can be partitioned into multiple elements based on scales: global
traces, low-level traces, and high-level traces. Global traces, such as color balance
bias and range bias, can be efficiently modeled by a single value. The color biases
here only refer to those created by the interaction between spoof mediums and
the capturing camera, and the model is expected to ignore those spoof-irrelevant
color variations. Low-level traces consist of smooth content patterns, such as
makeup strokes, and specular highlights. High-level traces include sharp patterns
and high-frequency texture, such as mask edges and Moiré pattern. Denoted
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Fig. 3: The proposed STDN architecture. Except the last layer, each conv and transpose
conv is concatenated with a Leaky ReLU layer and a batch normalization layer. /2
denotes a downsampling by 2, and ×2 denotes an upsampling by 2.

as G(·), the spoof trace disentanglement is formulated as a coarse-to-fine spoof
effect build-up:

G(I) = I− Î

= I− ((1− s)I− b− bCcN −T)

= sI + b + bCcN + T,

(2)

where s,b ∈ R
1×1×3 represent color range bias and balance bias, C ∈ R

L×L×3

denotes the smooth content patterns (L<N to enforce the smoothness), b·c
is the resizing operation, and T ∈ R

N×N×3 is the high-level texture patterns.
Compared to the single layer representation [24], this disentangled representation
{s,b,C,T} can largely improve disentanglement quality and suppress unwanted
artifacts due to its coarse-to-fine process.

As shown in Fig. 3, Spoof Trace Disentanglement Network (STDN) consists
of a generator and multiscale discriminators. They are jointly optimized to
disentangle the spoof trace elements {s,b,C,T} from the input faces. In the rest
of this section, we discuss the details of the generator, face reconstruction and
synthesis, the discriminators, and the training steps and losses used in STDN.

3.2 Disentanglement Generator

Spoof trace disentanglement is implemented via the generator. The disentangle-
ment generator adopts an encoder-decoder as the backbone network. The encoder
progressively downsamples the input face I∈R256×256×3 to a latent feature tensor
F∈R32×32×96 via conv layers. The decoder upsamples the feature tensor F with
transpose conv layers back to the input face size. To properly disentangle each
spoof trace element, we leverage the natural upscaling property of the decoder
structure: s,b have the lowest spatial resolution and thus are disentangled in the
very beginning of the decoder; C is extracted in the middle of the decoder with
the size of 64; T is accordingly estimated in the last layer of the decoder. Similar
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to U-Net [39], we apply the short-cut connection between encoder and decoder
to leak the high-frequency details for a high-quality estimation.

Unlike typical GAN scenarios where the generator only takes data from the
source domain, our generator takes data from both source (spoof) and target (live)
domains, and requires high accuracy in distinguishing two domains. Although
the spoof traces should be significantly different between the two domains, they
solely are not perfect hint for classification as the intensity of spoof traces varies
from type to type. For this objective, we additionally introduce an Early Spoof
Regressor (ESR) to enhance discriminativeness of the generator. ESR takes the
bottleneck features F and outputs a 0/1 map M∈R16×16, where 0 means live
and 1 means spoof. Moreover, we purposely make the encoder much heavier than
the decoder, i.e., more channels and deeper layers. This benefits the classification
since ESR can better leverage the features learnt for spoof trace disentanglement.

In the testing phase, we use the average of the output from ESR and the
intensity of spoof traces for classification:

score =
1

2K2
‖M‖1 +

α0

2N2
‖G(I)‖1, (3)

where α0 is the weight for the spoof trace, K=16 is the size of M, and N=256
is the image size.

3.3 Reconstruction and Synthesis

There are two ways to use the spoof traces:

• Reconstruction: obtaining the live face counterpart from the input as
Î = I−G(I);

• Synthesis: obtaining a new spoof face by applying the spoof traces G(Ii)
disentangled from face image Ii to a live face Ij .

To note that, spoof traces contain shape-dependent content associated with
the original spoof face. Directly combining them with a new face with different
shape or pose may result in poor alignment and strong visual implausibility.
Hence, we propose an online 3D warping layer to correct the shape discrepancy.
With ground truth traces, the synthesized spoof enable supervised training for
the generator.
Online 3D Warping Layer The spoof traces for face i can be expressed as:

Gi = G(Ii)[p0], (4)

where p0 = {(0, 0), (0, 1), ..., (255, 255)} ∈ R256×256×2 enumerates pixel locations
in Ii. To warp the spoof trace, a dense offset ∆pi→j ∈ R256×256×2 is required to
indicate the offset value from face i to face j. The warped traces can be denoted
as:

Gi→j = G(Ii)[p0 +∆pi→j ], (5)

∆pi→j can be fractional numbers, and the sampling of fractional pixel locations
is implemented via bilinear interpolation. During data preparation, we use [30]
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Fig. 4: 3D warping pipeline. (a) Given the corresponding dense offset, we warp the
spoof trace and add them to the target live face to create a new spoof. E.g. pixel (x, y)
with offset (3, 5) is warped to pixel(x+ 3, y+ 5) in the new image. (b) To obtain a dense
offsets from the spare offsets of the selected face shape vertices, Delaunay triangulation
interpolation is adopted.

to fit 3DMM model and extract the 2D locations of Q selected vertices for each
face as:

s = {(x0, y0), (x1, y1), ..., (xN , yN )} ∈ RQ×2, (6)

A sparse offset on the corresponding vertices can then be computed between
face i and j as ∆si→j = sj − si. We select Q = 140 vertices to cover the
face region so that they can represent non-rigid deformation, due to pose and
expression. To convert the sparse offset ∆si→j to the dense offset ∆pi→j , we
apply a triangulation interpolation:

∆pi→j = Tri(p0, si, ∆si→j), (7)

where Tri(·) is the bilinear interpolation operation based on Delaunay triangu-
lation. Since the pixel values in the warped face are a linear combination of
pixel values of the triangulation vertices, this whole process is differentiable. This
process is illustrated in Fig. 4. Compared to previous methods [11, 29] that use
offline face swapping or pre-computed dense offset, our warping layer only re-
quires a sparse set of vertex locations, which is differentiable and computationally
efficient.
Creating “harder” samples We can manipulate the spoof traces via tuning
{s,b,C,T}, such as diminishing or amplifying certain element. Diminishing
one or a few elements in {s,b,C,T} would make the faces “less spoofed” as
spoof traces are weakened. Those “less spoofed” data can be regarded as harder
samples and may benefit the generalization. E.g., removing the color distortion
s may force the generator to explore high-level texture patterns. In this work,
we randomly set one element from {s,b,C,T} to be zero when synthesizing a
new spoof face. Compared with other methods, such as brightness and contrast
change [32], reflection and blurriness effect [51], or 3D distortion [21], our approach
can introduce more realistic and effective data samples, as shown in Sec. 4.
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3.4 Multi-scale Discriminators

Motivated by [48], we adopt 3 discriminators D1, D2, and D3 at different
resolutions (i.e., 256, 128, and 64). The faces are resized to corresponding
resolutions and sent to discriminators. D1, working at the highest scale, processes
the fine texture. D2, working at the middle scale, focuses on the content pattern
mostly in C. D3, working at the lowest scale, focuses on global elements as the
higher-frequency details are erased. We adopt the structure of fully convolutional
network, similar to PatchGAN [23], and each discriminator consists of 10 conv with
3 downsampling. It outputs a 2-channel map, where the first channel compares
the reconstructed live with the real live, and the second channel compares the
synthesized spoof with real spoof.

3.5 Training Steps and Loss Functions

We utilize multiple loss functions in three training steps.
ESR loss: M for live should be zero, and for spoof should be one:

LESR =
1

K2
(Ei∼L[‖Mi‖1] + Ei∼S∪Ŝ [‖Mi − 1‖1]), (8)

where Ŝ denotes synthesized spoof faces and K=16 is the size of M.
Adversarial loss: We employ the LSGANs [34] on reconstructed live and
synthesized spoof. For G:

LG =
∑

n=1,2,3

{Ei∼S [(D1
n(Ii−Gi)−1)2] + Ei∼L,j∼S [(D2

n(Ii+Gj→i)− 1)2]}, (9)

and for D:

LD =
∑

n=1,2,3

{Ei∼L[(D1
n(Ii)−1)2]+Ei∼S [(D2

n(Ii)−1)2]

+Ei∼S [(D1
n(Ii−Gi(x)))2] + Ei∼L,j∼S [D2

n(Ii+Gj→i))
2]}.

(10)

where D1
n and D2

n denote the first and second channel of discriminator Dn.
Regularizer loss: In Eq. 1, the task regularizes the intensity of spoof traces
while satisfying certain domain conditions. This regularizer loss is denoted as:

LR = β Ex∼L[‖G(Ii)‖22] + Ei∼S [‖G(Ii)‖22], (11)

where β > 1 is a weight to further compress the traces of live faces to be zero.
Pixel loss: Synthesized spoof data come with ground truth spoof traces. There-
fore we can enable a supervised pixel loss for the generator to disentangle the
exact spoof traces that were added to the live faces:

LP = Ei∼L,j∼S [‖G(dIi +Gj→ie)− dGj→ie‖1], (12)

where d·e is the stop_gradient operation. In this loss, we regard the traces Gj→i

as ground truth, and the stop_gradient operation can prevent changing Gj→i

to minimize the loss.
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Fig. 5: The three training steps of STDN. Each mini-batch includes the same number
of live and spoof samples.

Training steps and total loss: Fig. 5 shows the 3 training steps: generator
step, discriminator step, and extra supervision step. In the generator step, live
faces Ilive and spoof faces Ispoof are fed to the generator to disentangle the spoof

traces. The spoof traces are used to reconstruct the live counterpart Îlive and
synthesize new spoof Îspoof. The generator is updated with respect to adversarial
loss LG, ESR loss LESR, and regularizer loss LR:

L = α1LG + α2LESR + α3LR. (13)

For the discriminator step, Ilive, Ispoof, Îlive, and Îspoof are fed into the discrim-
inators Dn(·), n={1, 2, 3}. The discriminators are supervised with adversarial
loss LD to compete with the generator. For the extra supervision step, Ilive and
Îspoof are fed into the generator with ground truth label and trace to enable pixel
loss LP and ESR loss LESR:

L = α4LESR + α5LP , (14)

α1-α5 are the weights to balance the multitask training. We execute 3 steps in
every iteration, and reduce the learning rate for discriminator step by half.

4 Experiments

We first introduce the setup, and present the experiment results. Next, we quan-
titatively evaluate the spoof traces by performing a spoof medium classification,
and conduct an ablation study on each design. Finally, we provide visualization
on the spoof trace disentanglement and new spoof synthesis.

4.1 Experimental Setup

Databases We conduct experiments on three major databases: Oulu-NPU [8],
SiW [29], and SiW-M [31]. Oulu-NPU and SiW include print/replay attacks,
while SiW-M includes 13 spoof types. We follow all the testing protocols and
compare with SOTA methods. Similar to most prior works, we only use the face
region for training and testing.
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Protocol Method APCER (%) BPCER (%) ACER (%)

1

STASN[51] 1.2 2.5 1.9
Auxiliary [29] 1.6 1.6 1.6
DeSpoof [24] 1.2 1.7 1.5
Ours 0.8 1.3 1.1

2

Auxiliary [29] 2.7 2.7 2.7
GRADIANT [8] 3.1 1.9 2.5
STASN[51] 4.2 0.3 2.2
Ours 2.3 1.6 1.9

3

DeSpoof [24] 4.0± 1.8 3.8± 1.2 3.6± 1.6
Auxiliary [29] 2.7± 1.3 3.1± 1.7 2.9± 1.5
STASN[51] 4.7± 3.9 0.9± 1.2 2.8± 1.6
Ours 1.6± 1.6 4.0± 5.4 2.8± 3.3

4

Auxiliary [29] 9.3± 5.6 10.4± 6.0 9.5± 6.0
STASN[51] 6.7± 10.6 8.3± 8.4 7.5± 4.7
DeSpoof [24] 5.1± 6.3 6.1± 5.1 5.6± 5.7
Ours 2.3± 3.6 5.2± 5.4 3.8± 4.2

(a)

Protocol Method APCER (%) BPCER (%) ACER (%)

1

Auxiliary[29] 3.6 3.6 3.6
STASN[51] − − 1.0
Meta-FAS-DR[54] 0.5 0.5 0.5
Ours 0.0 0.0 0.0

2

Auxiliary[29] 0.6± 0.7 0.6± 0.7 0.6± 0.7
Meta-FAS-DR[54] 0.3± 0.3 0.3± 0.3 0.3± 0.3
STASN[51] − − 0.3± 0.1
Ours 0.0± 0.0 0.0± 0.0 0.0± 0.0

3

STASN[51] − − 12.1± 1.5
Auxiliary[29] 8.3± 3.8 8.3± 3.8 8.3± 3.8
Meta-FAS-DR[54] 8.0± 5.0 7.4± 5.7 7.7± 5.3
Ours 8.3± 3.3 7.5± 3.3 7.9± 3.3

(b)

Metrics(%) Replay Print
3D Mask Makeup Partial Attacks

Overall
Half Silic. Trans. Paper Manne. Ob. Im. Cos. Funny. Papergls. Paper

ACER(%)

Auxiliary[29] 5.1 5.0 5.0 10.2 5.0 9.8 6.3 19.6 5.0 26.5 5.5 5.2 5.0 6.3
Ours 3.2 3.1 3.0 9.0 3.0 3.4 4.7 3.0 3.0 24.5 4.1 3.7 3.0 4.1

EER(%)

Auxiliary[29] 4.7 0.0 1.6 10.5 4.6 10.0 6.4 12.7 0.0 19.6 7.2 7.5 0.0 6.6
Ours 2.1 2.2 0.0 7.2 0.1 3.9 4.8 0.0 0.0 19.6 5.3 5.4 0.0 4.8

TDR@FDR=0.5(%)

Ours 90.1 76.1 80.7 71.5 62.3 74.4 85.0 100.0 100.0 33.8 49.6 30.6 97.7 70.4

(c)

Table 1: Known spoof detection on: (a) OULU-NPU (b) SiW (c) SiW-M Protocol I.

Evaluation metrics Two standard metrics are used in this work for comparison:
EER and APCER/BPCER/ACER[22]. We also report True Detection Rate
(TDR) at a given False Detection Rate (FDR). This metric describes the spoof
detection rate at a strict tolerance to live errors, which is widely used to evaluate
systems in real-world applications [2]. In this work, we report TDR at FDR= 0.5%.
Parameter setting STDN is implemented in Tensorflow with an initial learning
rate of 1e-4. We train in total 150, 000 iterations with a batch size of 8, and
decrease the learning rate by a ratio of 10 every 45, 000 iterations. We initialize
the weights with [0, 0.02] normal distribution. {α1, α2, α3, α4, α5, β} are set to
be {1, 100, 1e-3, 50, 1, 1e4}. α0 is empirically determined from the training or
validation set. We use open source face alignment [10] and 3DMM fitting [30] to
crop the face and provide 140 landmarks.

4.2 Anti-Spoofing for Known Spoof Types

Oulu-NPU [8] is a common benchmark due to its high quality and challenging
testing. Shown in Tab. 1(a), our approach achieves the best performance in all
four protocols. Specifically, we demonstrate significant improvement in protocol
1 and 4, reducing the ACER by 30% and 32% relative to prior works. We notice,
in protocol 3 and 4, the performances of camera 6 are much lower than those
of cameras 1-5: the ACER for camera 6 are 9.5% and 8.6%, while the average
ACER for the other cameras are 1.7% and 3.1%. Compared to other cameras,
camera 6 has stronger sensor noises and STDN recognizes them as unknown
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Methods Replay Print
3D Mask Makeup Partial Attacks

Average
Half Silic. Trans. Paper Manne. Ob. Im. Cos. Fun. Papergls. Paper

APCER(%)

LBP+SVM [8] 19.1 15.4 40.8 20.3 70.3 0.0 4.6 96.9 35.3 11.3 53.3 58.5 0.6 32.8± 29.8
Auxiliary[29] 23.7 7.3 27.7 18.2 97.8 8.3 16.2 100.0 18.0 16.3 91.8 72.2 0.4 38.3± 37.4
DTL [31] 1.0 0.0 0.7 24.5 58.6 0.5 3.8 73.2 13.2 12.4 17.0 17.0 0.2 17.1± 23.3
Ours 1.6 0.0 0.5 7.2 9.7 0.5 0.0 96.1 0.0 21.8 14.4 6.5 0.0 12.2± 26.1

BPCER(%)

LBP+SVM [8] 22.1 21.5 21.9 21.4 20.7 23.1 22.9 21.7 12.5 22.2 18.4 20.0 22.9 21.0± 2.9
Auxiliary[29] 10.1 6.5 10.9 11.6 6.2 7.8 9.3 11.6 9.3 7.1 6.2 8.8 10.3 8.9± 2.0
DTL [31] 18.6 11.9 29.3 12.8 13.4 8.5 23.0 11.5 9.6 16.0 21.5 22.6 16.8 16.6± 6.2
Ours 14.0 14.6 13.6 18.6 18.1 8.1 13.4 10.3 9.2 17.2 27.0 35.5 11.2 16.2± 7.6

ACER(%)

LBP+SVM [8] 20.6 18.4 31.3 21.4 45.5 11.6 13.8 59.3 23.9 16.7 35.9 39.2 11.7 26.9± 14.5
Auxiliary[29] 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6± 18.5
DTL [31] 9.8 6.0 15.0 18.7 36.0 4.5 13.4 48.1 11.4 14.2 19.3 19.8 8.5 16.8± 11.1
Ours 7.8 7.3 7.1 12.9 13.9 4.3 6.7 53.2 4.6 19.5 20.7 21.0 5.6 14.2± 13.2

EER(%)

LBP+SVM [8] 20.8 18.6 36.3 21.4 37.2 7.5 14.1 51.2 19.8 16.1 34.4 33.0 7.9 24.5± 12.9
Auxiliary[29] 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 17.0± 17.7
DTL [31] 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 16.1± 12.2
Ours 7.6 3.8 8.4 13.8 14.5 5.3 4.4 35.4 0.0 19.3 21.0 20.8 1.6 12.0± 10.0

TDR@FDR=0.5(%)

Ours 45.0 40.5 45.7 36.7 11.7 40.9 74.0 0.0 67.5 16.0 13.4 9.4 62.8 35.7± 23.9

Table 2: The evaluation on SiW-M Protocol II: unknown spoof detection. Bold indicates
the best score in each protocol. Red indicates protocols that our method improves over
50% than SOTA.

spoof traces, which leads to an increasing BPCER. Separating sensor noises from
spoof traces can be an important future research.
SiW [29] Compared to Oulu, SiW includes fewer cameras but more spoof
mediums and environment variations, such as pose, illumination, and expression.
The comparisons are shown in Tab. 1(b). We outperform the previous works
on the first two protocols and have a competitive performance on protocol 3.
Protocol 3 requires the model to be trained on one spoof attack (print or replay)
and tested on the other. Shown in Fig. 8, the traces of print and replay are
significantly different, which may prevent the model from generalizing well.
SiW-M [31] contains a large amount of spoof types, including print, replay, 3D
mask, makeup, and partial attacks. To use SiW-M, we randomly split the data into
train/test set with a ratio of 60% and 40%, and the results are shown in Tab. 1(c).
Compared to one of the best anti-spoofing models [29], our method outperforms
on all spoof types as well as the overall performance, which demonstrates the
superiority of our anti-spoofing on known spoof attacks.

4.3 Anti-Spoofing for Unknown Spoof Types

Another important aspect of anti-spoofing model is to generalize to the un-
known/unseen. SiW-M comes with the testing protocol to evaluate the perfor-
mance of unknown attack detection. Shown in Tab. 2, STDN achieves significant
improvement over the previous best model by relatively 24.8% on the overall
EER and 15.5% on the overall ACER. This is especially noteworthy because DTL
was specifically designed for detecting unknown spoof types, while our proposed
approach shines in both known and unknown spoof detection. Specifically, we
reduce the EERs of transparent mask, mannequin head, impersonation makeup
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Label
Predict

Live Print Replay

Live 60(+1) 0(−1) 0
Print 3(+3) 108(+20) 9(−23)
Replay 1(−12) 11(+3) 108(+9)

Label
Predict

Live Print1 Print2 Replay1 Replay2

Live 56(−4) 1(+1) 1(+1) 1(+1) 1(+1)
Print1 0 43(+2) 11(+9) 3(−8) 3(−3)
Print2 0 9(−25) 48(+37) 1(−8) 2(−4)
Replay1 1(−9) 2(−1) 3(+3) 51(+38) 3(−28)
Replay2 1(−7) 2(−5) 2(+2) 3(−3) 52(+13)

Table 3: Confusion matrices of spoof mediums classification based on spoof traces. The
left table is 3-class classification, and the right is 5-class classification. The results are
compared with the previous method [24]. Green represents improvement over [24]. Red
represents performance drop.

(a)                             (b)                             (c)                            (d)

Fig. 6: Live reconstruction comparison:
(a) live, (b) spoof, (c) ESR+D-GAN, (d)
ESR+GAN.

Method APCER (%) BPCER (%) ACER (%)

ESR 0.8 4.3 2.6
ESR+GAN 1.5 2.7 2.1
ESR+D-GAN 0.8 2.4 1.6
ESR+GAN+LP 0.8 8.2 4.5
ESR+D-GAN+LP 0.8 1.3 1.1

Table 4: Quantitative ablation study of
components in our approach.

and partial paper attack relatively by 45.3%, 54.2%, 100.0%, 81.8%, respectively.
Among all, obfuscation makeup is the most challenging one, where we predict
almost all the spoof samples as live. This is due to the fact that such makeup
looks very similar to the live faces, while being dissimilar to any other spoof types.
Once we obtain a few samples, our model can quickly recognize the spoof traces
on the eyebrow and cheek, and successfully detect the attack (0% in Tab. 1(c)).
However, with the TDR= 35.7% at FDR= 0.5%, the proposed method is still
far from applicable in practices when dealing with unknown spoof types, which
warrant future research.

4.4 Spoof Traces Classification

To quantitatively evaluate the spoof trace, we perform a spoof medium classi-
fication on the disentangled spoof traces. After convergence, we fix STDN and
apply a simple CNN to classify the spoof mediums given the estimated spoof
traces. We follow the same setting in [24] on Oulu-NPU Protocol 1. Shown in
Tab. 3, our 3-class model and 5-class model can achieve classification accuracy of
92.0% and 83.3% respectively. Compared to [24], we improve 10% on the 3-class
model and 29% on the 5-class model. In addition, we train the same CNN on the
original images for spoof medium classification, and the classification accuracy
is 86.3% (3-class) and 80.6% (5-class). This demonstrates that STDN distills
significant information to distinguish different spoof mediums.

4.5 Ablation Study

In this section, we show the importance of each design on Oulu Protocol 1. Our
baseline is the encoder with ESR (denoted as ESR), which is a conventional
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Input 𝐱 {𝐬, 𝐛} 𝐂 𝐓 G(𝐱) ො𝐱 Input 𝐱 {𝐬, 𝐛} 𝐂 𝐓 G(𝐱) ො𝐱

(a)
s [0.0, 0.0, 0.0]

b [0, 0, 0]
(h)

s [0.1, 0.2, 0.2]

b [6, 3, 2]

(b)
s [0.1, 0.2, 0.3]

b [11, 9, 6]
(i)

s [0.1, 0.1, 0.1]

b [2, 3, 4]

(c)
s [0.5, 0.5, 0.5]

b [4, 2, 5]
(j)

s [0.0, 0.0, 0.0]

b [1, 2, 3]

(d)
s [0.1, 0.1, 0.1]

b [-1, 0, 0]
(k)

s [0.1, 0.0, 0.0]

b [3, 3, 3]

(e)
s [0.0, 0.0, 0.0]

b [-2, -2, -0]
(l)

s [0.1, 0.1, 0.1]

b [2, 2, 2]

(f)
s [0.0, 0.0, 0.0]

b [2, 2, 0]
(m)

s [0.1, 0.0, 0.1]

b [3, 2, 2]

(g)
s [0.1, 0.0, 0.1]

b [1, 1, 1]
(n)

s [0.0, 0.1, 0.1]

b [2, 3, 3]

Fig. 7: Examples of spoof trace disentanglement on SiW-M. The (a)-(n) items are live,
print, replay, half mask, silicone mask, paper mask, transparent mask, obfuscation
makeup, impersonation makeup, cosmetic makeup, paper glasses, partial paper, funny
eye glasses, and mannequin head. The first column is the input face, the 2nd-4th
columns are the spoof trace elements {s,b,C,T}, the 5th column is the overall spoof
traces, and the last column is the reconstructed live.

regression model. To validate the effectiveness of GAN, we report the results of
ESR+GAN. In this case, the generator outputs a single-layer spoof trace with the
input size, instead of the proposed four elements. To demonstrate the effectiveness
of disentangled 4-element spoof trace, we change the single layer to the proposed
{s,b,C,T}, denoted as ESR+D-GAN. In addition, we evaluate the effect of
synthesized data via enabling training step 3, denoted as ESR+GAN+LP and
ESR+D-GAN+LP (i.e., our final approach).

Shown in Tab. 4, the baseline achieves a decent performance of ACER 2.6%.
Using a generative model can improve the ACER from 2.6% to 2.1%, while a
proper disentanglement can improve to 1.6%. Shown in Fig. 6, ESR+D-GAN
produces higher-quality spoof traces than ESR+GAN. If feeding bad-quality
spoof samples in the training step 3, it would increase the error rate from 2.1% to
4.5%. But if feeding the good-quality spoof samples, it can achieve a significant
improvement from 1.6% to 1.1%.

4.6 Visualization

As shown in Fig. 7, we successfully disentangle various spoof traces. E.g., strong
color distortion shows up in print/replay attacks (Fig. 7b-c). Moiré patterns in
the replay attack are well detected (Fig. 7c). For makeup attacks (Fig. 7h-j), the
fake eyebrows, lipstick, artificial wax, and cheek shade are clearly detected. The
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(a)

(b)

(c)

(d)

Fig. 8: Examples of the spoof data synthesis. (a) The source spoof samples Ii. (b) The
disentangled spoof traces G(Ii). (c) The target live faces Ij . (d) The synthesized spoof
Ij + Gi→j .

folds and edges in paper-crafted mask (Fig. 7f) are well detected. Although our
method cannot provide a convincing estimation for a few spoof types (e.g., funny
eye glasses in Fig. 7m), the model effectively focuses on the correct region and
disentangles parts of the traces.

Additionally, we show some examples of spoof synthesis using the disentangled
spoof traces in Fig. 8. The spoof traces can be precisely transferred to a new
face without changing the identity of the target face. Thanks to the proposed
3D warping layer, the geometric discrepancy between the source spoof trace and
the target face is corrected during the synthesis. These two figures demonstrate
that our approach disentangles visually convincing spoof traces that help face
anti-spoofing.

5 Conclusions

This work proposes a network (STDN) to tackle a challenging problem of disen-
tangling spoof traces from faces. With the spoof traces, we reconstruct the live
faces as well as synthesize new spoofs. To correct the geometric discrepancy in
synthesis, we propose a 3D warping layer to deform the traces. The disentangle-
ment not only improves the SOTA of both known and unknown anti-spoofing,
but also provides visual evidence to support the model’s decision.
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26. Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In:
BTAS. IEEE (2013)

27. Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-
spoofing approach using partial convolutional neural network. In: Sixth International
Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE
(2016)

28. Liu, F., Zeng, D., Zhao, Q., Liu, X.: Disentangling features in 3D face shapes for
joint face reconstruction and recognition. In: CVPR. IEEE (2018)

29. Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: Binary
or auxiliary supervision. In: CVPR. IEEE (2018)

30. Liu, Y., Jourabloo, A., Ren, W., Liu, X.: Dense face alignment. In: ICCV Workshops.
IEEE (2017)

31. Liu, Y., Stehouwer, J., Jourabloo, A., Liu, X.: Deep tree learning for zero-shot face
anti-spoofing. In: CVPR. IEEE (2019)

32. Liu, Y., Stehouwer, J., Jourabloo, A., Liu, X.: Presentation attack detection for
face in mobile phones. Selfie Biometrics (2019)
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