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In this supplementary document, we include additional experimental results
and implementation details to complement the main paper. We will release the
source code and pre-trained model for facilitating future research if accepted.

A State-of-the-art Results with other SSL Techniques

As we build upon a weaker baseline and our method is much simpler, the per-
formance of our method on the CIFAR-10 dataset is slightly worse in some
settings. However, as we claimed in Section 4.2 of the main paper, our proposed
feature-based augmentation method is complementary to conventional image-
based augmentation methods and can be easily integrated to further improve
the performance. In Table 1, we demonstrate that by incorporating (1) distribu-
tion alignment that aligns the marginal class distribution as described in [1, 2],
and (2) Cutout [5], an image-based augmentation method, our method indeed
compares favorably against current state-of-the-art algorithms. Note that our
method is still simpler when compared to state-of-the-art image-based method,
e.g., ReMixMatch [2]. For example, the ReMixMatch method also incorporates
self-supervsied loss, temporal ensembling of model weights, and tailored data
augmentation method (CTAugment [2]), etc.

Table 1: Comparison to other state-of-the-art methods after incorporating some
other modern SSL techniques (distribution alignment and Cutout). We show
the results on the CIFAR-10 dataset with varying amounts of labeled samples.
Numbers represent error rate across three runs.

#Labeled samples

Method 250 1,000 4,000

MixMatch [3] 11.08 ± 0.87 7.75 ± 0.32 6.24 ± 0.06

ReMixMatch [2] 6.27 ± 0.34 5.73 ± 0.16 5.14 ± 0.04

FeatMatch (Ours in the main paper) 7.50 ± 0.64 5.76 ± 0.07 4.91 ± 0.18

FeatMatch (Ours with other SSL techniques) 6.00 ± 0.41 5.21 ± 0.08 4.64 ± 0.11
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B Pseudo-Labeling Accuracy Before and After AugF

In Section 4.4 of the main paper, we analyze other reasons that AugF improves
model performance. We conclude that our proposed AugF module also learns to
refine input feature for a better representation by attending to the prototypes.
This feature refinement process by AugF provides the training objectives of
Lcon-g (Eq. 5) and Lcon-f (Eq. 6) with better pseudo-labels, which may be one
of the reasons why our method can improve over image-based baseline by a larger
margin. In Fig. 1 below, we can see that the accuracy of pseudo-labels from the
features refined by AugF is higher than those without refinement by AugF .

Fig. 1: We monitor the accuracy of pseudo-labeling with feature-base refinement
(red curve) and without feature-based refinement (blue curve) during training.
We found that the pseudo-label from the refined feature (red) has on average
0.5− 1.0% higher accuracy.

C More Analysis on Prototypes

We test the sensitivity of our method for the hyper-parameter pk (number of
prototypes per class) and Ip (the interval at which a new set of prototypes is
extracted). The analysis is conducted on a held-out validation set of the CIFAR-
10 dataset with 250 labels. As shown in Table 2, the final results are stable across
different values of pk. We choose the number of prototypes per class pk = 20 in
our method as it performs slightly better than others and has a slightly lower
variance. In Table 3, we can see that the final results are also stable across
different Ip. Therefore, for simplicity, we extract prototypes every epoch, which
is approximately the same as Ip = 400.

D More Results on the DomainNet Setting

In Section 4.1, we propose a practical setting where the unlabeled data may come
from other domains. We show results with different ru, the ratio of unlabeled
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Table 2: Sensitivity analysis for pk. Numbers represent error rates in three runs.

pk = 1 pk = 5 pk = 10 pk = 20

8.14 ± 0.79 8.15 ± 0.19 8.01 ± 0.90 8.09 ± 0.58

Table 3: Sensitivity analysis for Ip. Numbers represent error rates in three runs.

Ip = 200 Ip = 400 Ip = 600 Ip = 800

8.00 ± 0.81 7.99 ± 0.74 7.99 ± 0.79 8.38 ± 1.21

data coming from the target Real domain or the shifted domains, in Section
4.2. In this section, we show additional results of ru = 0.25 and ru = 0.75 on
both our method and the image-based baseline in Tab. 4. The results show a
similar trend is similar as the Table 3 in the main paper, where the accuracy
goes down as ru goes up. Our method consistently improves over image-based
semi-supervised baseline. Our method achieves comparable result even in the
severe case of ru = 75% against the image-based baseline method with clean
unlabeled data of ru = 0%

Table 4: Comparison between the image-based baseline with our proposed
feature-based augmentation method on DomainNet with various ru, the ratio
of unlabeled data coming from the shifted domains. For instance, ru = 25%
means 25% of the unlabeled data are coming from the shifted domains and 75%
are coming from the domain same as the labeled set. Numbers are error rates
across 3 runs, meaning the lower the better.

Method (5% labeled samples) ru = 0% ru = 25% ru = 50% ru = 75%

(Semi-supervised) Baseline 56.63 ± 0.17 62.44 ± 0.67 % 65.82 ± 0.07 70.50 ± 0.51

FeatMatch (Ours) 40.66 ± 0.60 46.11 ± 1.15 54.01 ± 0.66 58.30 ± 0.93

Supervised baseline (5% labeled samples, lower bound) 77.25 ± 0.52

Supervised baseline (100% labeled samples, upper bound) 31.91 ± 0.15

E Implementation Details

E.1 Training

We train our model with Stochastic Gradient Descent and Nesterov momentum.
As the AugF module heavily relies on the feature representation to compute
attention weights, we pre-train the model without AugF for 4 epochs.
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We adapt the super convergence learning rate scheduler [6] to reduce the total
training iterations. Specifically, in the pre-training stage, the learning rate starts
from 4e-4 and linearly increase to 4e-3 in Ip iterations. After the pre-training
stage, we add the AugF module and ramp up the learning rate linearly from
4e-3 to 4e-2 in Ic iterations, and then ramp down back to 4e-3 in another Ic
iterations. In the meantime, the momentum ramps down from 0.95 to 0.85, and
then ramps up back to 0.95. Finally, in the convergence stage, the learning rate
ramps further down from 4e-3 to 4e-6 in Ie iterations.

We follow the guidelines in [6] to set these parameters without aggressive
parameter tuning, and set Ip = 3k, Ic = 75k, and Ie = 30k. As the DomainNet
setting has more training samples, we increase these values Ip = 4k, Ic = 100k,
and Ie = 40k without tuning. We only tune the peak learning rate to be 4e-4 on
a held-out validation set on CIFAR-10 with 250 labels.

E.2 Hyper-parameters

All the hyper-parameters are tuned on a held-out validation set on CIFAR-
10 with 250 labels. These hyper-parameters are shared across all settings and
experiments without further tuning. Since our method is built upon the image-
based baseline, we fix the hyper-parameters or select a reasonable value without
tuning from the original papers.

Table 5: Hyper-parameters and their meanings.

Hyper-parameter Description Value

pk Number of prototypes per class 20

Ip The interval at which a new set of prototypes are extracted 1 epoch

ah Number of attention heads in AugF 4

λg Loss weight for Lcon-g 0.5

λf Loss weight for Lcon-f 2.0

bl Batch size for labeled data 64

bu Batch size for unlabeled data 128

wd Weight decay 2e-4

E.3 Data Augmentation Operations

We used the same sets of image transformations used in RandAugment [4]. There
are two parameters in RandAugment: (1) N – number of operations applied,
and (2) M – maximal magnitude of the applied augmentation. We use N = 2
as in RandAugment, and set M to its max value without tuning. Note that the
magnitude is randomly sampled from [−M,M ].
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