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Abstract. We tackle the problem of exploiting Radar for perception in
the context of self-driving as Radar provides complementary informa-
tion to other sensors such as LiDAR or cameras in the form of Doppler
velocity. The main challenges of using Radar are the noise and measure-
ment ambiguities which have been a struggle for existing simple input
or output fusion methods. To better address this, we propose a new so-
lution that exploits both LiDAR and Radar sensors for perception. Our
approach, dubbed RadarNet, features a voxel-based early fusion and an
attention-based late fusion, which learn from data to exploit both geo-
metric and dynamic information of Radar data. RadarNet achieves state-
of-the-art results on two large-scale real-world datasets in the tasks of
object detection and velocity estimation. We further show that exploiting
Radar improves the perception capabilities of detecting faraway objects
and understanding the motion of dynamic objects.
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1 Introduction

Self-driving vehicles (SDVs) have to perceive the world around them in order
to interact with the environment in a safe manner. Perception systems typically
detect the objects of interest and track them over time in order to estimate their
motion. Despite many decades of research, perception systems have not achieved
the level of reliability required to deploy self-driving vehicles at scale without
safety drivers.

Recent 3D perception systems typically exploit cameras [36, 5, 42], LiDAR [45,
34, 17], or their combination [32, 20, 6] to achieve high-quality 3D object detec-
tion. While cameras capture rich appearance features, LiDAR provides direct
and accurate 3D measurements. The sparsity of LiDAR measurements (e.g., at
long range) and the sensor’s sensitivity to weather (e.g., fog, rain and snow) re-
main open challenges. In addition to detecting and recognizing objects, estimat-
ing their velocities is also of vital importance. In some safety critical situations,
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for example a child running out of occlusion in front of the SDV, the SDV needs
to estimate velocities from a single measurement cycle in order to avoid collision.
This estimation is often inaccurate (or even impossible) when using LiDAR or
cameras alone as they provide static information only. While for pedestrians we
may infer the motion from its pose with large uncertainty, for rigid objects like
vehicles we can not make reasonable predictions from their appearance alone.

An appealing solution is to use sensors that are robust to various weather
conditions and can provide velocity estimations from a single measurement. This
is the case of Radar, which uses the Doppler effect to compute the radial ve-
locities of objects relative to the SDV. Radar brings its own challenges, as the
data is very sparse (typically much more so than LiDAR), the measurements are
ambiguous in terms of position and velocity, the readings lack tangential infor-
mation and often contain false positives. As a result, previous methods either
focus on the ADAS by fusing Radar with cameras [4, 30, 29, 8], where the per-
formance requirements are relatively low; or fuse Radar data at the perception
output level (e.g., tracks) [7, 10, 9], thus failing to fully exploit the complemen-
tary information of the sensors.

In this paper, we take a step forward in this direction and design a novel
neural network architecture, dubbed RadarNet, which can exploit both LiDAR
and Radar to provide accurate detections and velocity estimates for the actors
in the scene. Towards this goal, we propose a multi-level fusion scheme that can
fully exploit both geometric and dynamic information of Radar data. In partic-
ular, we first fuse Radar data with LiDAR point clouds via a novel voxel-based
early fusion approach to leverage the Radar’s long sensing range. Furthermore,
after we get object detections, we fuse Radar data again via an attention-based
late fusion approach to leverage the Radar’s velocity readings. The proposed
attention module captures the uncertainties in both detections and Radar mea-
surements and plays an important role in transforming the 1D radial velocities
from Radar to accurate 2D object velocity estimates.

We demonstrate the effectiveness of RadarNet on two large-scale driving
datasets, where it surpasses the previous state-of-the-art in both 3D object de-
tection and velocity estimation. We further show that exploiting Radar brings
significant improvements in perceiving dynamic objects, improving both motion
estimation and long range detection.

2 Related Work

Exploiting LiDAR for Perception: As a high-quality 3D sensor, LiDAR
has been widely used for 3D object detection in self-driving. Previous methods
mainly differ in two aspects: the detection architecture and the input represen-
tation. While single-stage detectors [47, 45, 17] have the advantages of simplicity
and fast inference, two-stage methods [6, 15, 34] are often superior in producing
precisely localized bounding boxes. Different representations of LiDAR point
clouds have been proposed: 3D voxel grids [18], range view (RV) projections [19,
27, 6], bird’s eye view (BEV) projections [47, 45, 44], and point sets [34, 32, 35]
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Fig. 1. LiDAR and Radar sensor data: We show LiDAR data in white, dynamic
Radar returns (with radial velocity) in red, static Radar returns in yellow, and object
labels in blue.

are amongst the most popular. While 3D voxel grids are slow and wasteful to
process due to the size of the volume which is mainly sparse, range view pro-
jections are dense representations by nature. However, RV images suffer from
the large variance in object size and shape due to the projection. BEV pro-
jections achieve a better trade-off between accuracy and speed. Voxel features
represented with either simple statistics [45, 6] or learned representations [17]
have been proposed. In this paper, we use a single-stage detector with BEV
representation for its simplicity, effectiveness and efficiency.

Exploiting Radar for Perception: Radar has long been used in ADAS for
adaptive cruise control and collision avoidance due to its cost and robustness
to severe weather conditions. Recently, Radar has been exploited in many other
applications, spanning across free space estimation [38, 25], object detection [4,
29, 8], object classification [13, 43, 31] and segmentation [38, 33, 25]. However,
most of these methods treat Radar as another 3D sensor, ignoring its high-
fidelity velocity information. In contrast, we exploit both Radar’s geometric and
dynamic information thanks to a novel specialized fusion mechanism for each
type of information.

Sensor Fusion with Radar: In many self-driving perception systems, Radar
data has been fused at the perception output level in the form of object tracks [7,
10, 9]. Kalman Filter [39] or IMM [2] trackers are popular approaches to digest
Radar data, and the resulting tracks are then fused with object tracks from other
sensors. However, sensor fusion is not exploited during the process of generating
those object tracks. Recent works also look at fusion between Radar and cameras
within the perception system. Different Radar representations are proposed to
facilitate fusion: spectrogram images [22], sparse locations in image space [29],
pseudo-image by projecting to image space [30, 4], BEV representation [28] and
object detections [16]. However, these methods do not have high accuracy in
terms of 3D perception. Instead, here we choose to fuse Radar with LiDAR and
design a multi-level fusion mechanism that outperforms the state-of-the-art in
self-driving.
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Sensor Detection Range Azimuth Velocity
Modality Range Accuracy Resolution Accuracy

LiDAR 100 m 2 cm 0.1◦ ∼ 0.4◦ -

Radar 250 m
10 cm near range 3.2◦ ∼ 12.3◦ near range

0.1 km/h
40 cm far range 1.6◦ far range

Table 1. Hardware comparison between LiDAR and Radar sensors.

3 Review of LiDAR and Radar Sensors

We first provide a review of LiDAR and Radar sensors and introduce our nota-
tion. We hope this short review can help readers better understand the intuitions
behind our model designs, which will be described in the next section.

LiDAR (light detection and ranging) sensors can be divided into three main
types: spinning LiDAR, solid state LiDAR, and flash LiDAR. In this paper we
focus on the most common type: spinning LiDAR. This type of LiDAR emits
and receives laser light pulses in 360◦ and exploits the time of flight (ToF) to
calculate the distance to the obstacles. As a result, LiDAR data is generated as a
continuous stream of point clouds. We denote each LiDAR point as a vector P =
(x, y, z, t), encoding the 3D position and the capture timestamp. In practice we
often divide the LiDAR data into consecutive 360◦ sweeps for frame-wise point
cloud processing. LiDAR is the preferred sensor for most self-driving vehicles
due to its accurate 3D measurements. The main drawbacks are its sensitivity to
dirt (which leads to poor performance in fog, rain and snow), cold (that causes
exhaust plumes) as well as the lack of reflectivity of certain materials (such
as windows and certain paints). Furthermore, its density decreases with range,
making long range detection challenging.

Radar (radio detection and ranging) sensors work similarly as LiDAR, but
transmit electromagnetic waves to sense the environment. The Radar outputs
can be organized in three different levels: raw data in the form of time-frequency
spectrograms, clusters from applying DBSCAN [12] or CFAR [37] on raw data,
and tracks from performing object tracking on the clusters. From one represen-
tation to the next, the data sparsity and abstraction increases, while the noise
in the data decreases. In this paper we focus on the mid-level data form, Radar
clusters, for its good balance between information richness and noise. In the fol-
lowing we refer to these clusters as Radar targets. We denote each Radar target
as a vector Q = (q, v‖,m, t), where q = (x, y) is the 2D position in BEV, v‖
is a scalar value representing the radial velocity, m is a binary value indicating
whether the target is moving or not, and t is the capture timestamp. The main
advantages of Radar are that it provides instantaneous velocity measurements
and is robust to various weather conditions. However, its drawbacks are also
significant. It has a low resolution and thus it is difficult to detect small objects.
There are ambiguities (a modulo function) in range and velocity due to Radar
aliasing, as well as false positive detections from clutter and multi-path returns.
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Fig. 2. RadarNet: Multi-level LiDAR and Radar fusion is performed for accurate 3D
object detection and velocity estimation.

It is also worth noting that the objects’ real-world velocities (2D vectors in BEV)
are ambiguous given only the radial velocity. Therefore we need to additionally
estimate the tangential velocity or the 2D velocity direction in order to properly
utilize the radial velocity.

We compare LiDAR and Radar data both quantitatively and qualitatively.
We visualize both sensors’ data from the nuScenes dataset [3] in Fig. 1, and
we compare their technical specifications in Table 1. Note that LiDAR outper-
forms Radar in both accuracy and resolution by over an order of magnitude.
The accurate 3D surface measurements makes LiDAR the first choice for high-
precision 3D object detection. Radar can provide complementary information
in two aspects: more observations at long range and instantaneous velocity evi-
dence from the Doppler effect. We thus argue that since these sensors are very
complementary, their combination provides a superior solution for self-driving.

4 Exploiting LiDAR and Radar for Robust Perception

In this section we present our novel approach to 3D perception, involving 3D
object detection and velocity estimation. We refer the reader to Fig. 2 for an
illustration of the overall architecture of our approach. To fully exploit the com-
plementary information of the two sensor modalities and thereby benefit both
object detection and velocity estimation, we propose two sensor fusion mecha-
nisms, namely early fusion and late fusion, that operate at different granularities.
More specifically, while early fusion learns joint representations from both sensor
observations, late fusion refines object velocities via an attention-based associa-
tion and aggregation mechanism between object detections and Radar targets.

4.1 Exploiting Geometric Information via Early Fusion

LiDAR Voxel Representation: We take multiple sweeps of LiDAR point
clouds (those within the past 0.5 seconds) as input so that the model has enough
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information to infer the objects’ motion while still being able to run in real-time.
All point cloud sweeps are transformed to the ego-vehicle’s centric coordinates at
the current frame. Note that this is easy to do as sensors are calibrated and the
vehicle pose is estimated by the localization system. Following FAF [26], we adopt
a bird’s eye view (BEV) representation and concatenate multiple height slices
and sweeps together along the channel dimension. We use a weighted occupancy
value as each voxel’s feature representation. Specifically, for each voxel, if no
point falls in it, the voxel’s value is 0. If one or more points {(xi, yi, zi), i =

1 . . . N} fall into it, the voxel’s value is defined as
∑

i(1−
|xi−a|
dx/2 )(1− |yi−b|

dy/2 )(1−
|zi−c|
dz/2 ), where (a, b, c) is the voxel’s center and (dx, dy,dz) is the voxel’s size.

Radar Voxel Representation: Similar to how we accumulate multiple sweeps
of LiDAR data, we also take multiple cycles of Radar data as input, in the
same coordinate system as LiDAR. We keep only the (x, y) position of Radar
targets and ignore the height position as it is often inaccurate (if it ever exists).
As a result, each cycle of Radar data can be voxelized as one BEV image. We
concatenate multiple cycles along the channel dimension and use a motion-aware
occupancy value as the feature for each voxel. Specifically, for each BEV voxel, if
no Radar target falls into it, the voxel’s value is 0. If at least one moving Radar
target (i.e., m = 1) falls into it, the voxel’s value is 1. If all Radar targets falling
into it are static, the voxel’s value is -1.

Early Fusion: We use the same BEV voxel size for LiDAR and Radar data.
Thus their voxel representations have the same size in BEV space. We perform
early fusion by concatenating them together along the channel dimension.

4.2 Detection Network

We adopt a single-stage anchor-free BEV object detector with additional velocity
estimation in the detection header.

Backbone Network: We adopt the same backbone network architecture as
PnPNet [21]. The backbone network is composed of three initial convolution
layers, three consecutive multi-scale inception blocks [40], and a feature pyramid
network [23]. The three initial convolution layers down-sample the voxel input by
4 and output 64-D feature maps. The inception block consists of three branches,
each with a down-sampling ratio of 1×, 2× and 4× implemented by stride of the
first convolution. The number of convolution layers in each branch is 2, 4 and 6,
and the number of feature channels in each branch is 32, 64 and 96. The feature
pyramid network merges multi-scale feature maps from the inception block into
one, with 256 channels for each layer. The final output of the backbone network
is a 256-D feature map with a 4× down-sampling ratio compared to the voxel
input.
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Fig. 3. Attention-based late fusion of object detection and Radar targets: In
the figure we show an example of fusing Radar with one detection, while in practice
this is applied to all detections in parallel. We first align the radial velocities of Radar
targets with the detection’s motion direction, then predict pairwise association scores
for all detection-Radar pairs. The refined velocity is computed as a weighted sum of
all Radar evidences as well as the original velocity estimate.

Detection Header: We apply a fully-convolutional detection header [24] for
anchor-free dense detection, which consists of a classification branch and a re-
gression branch, each with 4 convolution layers and 128 channels. The detec-
tion is parameterized as D = (c, x, y, w, l, θ,v), which represents the confidence
score, the object’s center position in BEV, its width, length and orientation,
and its 2-D velocity v = (vx, vy) in BEV. The classification branch predicts
the confidence score c, while the regression branch predicts all the other terms
(x − px, y − py, w, l, cos(θ), sin(θ),m, vx, vy), where px and py are the 2D coor-
dinates of every voxel center and m is an additional term that indicates the
probability of moving. During inference, we set the 2-D velocity to (0, 0) if the
predicted probability of moving is smaller than 50%.

4.3 Exploiting Dynamic Information via Late Fusion

While early fusion exploits the position and density information of Radar targets,
late fusion is designed to explicitly exploit the Radar’s radial velocity evidence.
Due to the lack of tangential information, the actual object velocity vector is
ambiguous given the radial velocity alone. To address this issue, we propose
to use the velocity estimation in object detections to align the radial velocity,
which is simply back-projecting the radial velocity to the motion direction of the
detection. We refer the reader to Fig. 3 for an illustration. It is thus apparent
that the radial velocity is more confident when the angle between the radial
direction and motion direction is small, as when it is close to 90◦, a very small
variance in radial velocity will be exaggerated by back-projection.

Given a set of object detections and Radar targets, the key of fully exploiting
Radar data lies in solving the following two tasks: (1) association of each Radar
target with the correct object detection for velocity alignment; (2) aggregation
to combine the velocity estimates from detection and associated Radar targets
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robustly. Both tasks are non-trivial to solve. The association is not a one-to-one
mapping as there are many objects without any associated Radar targets, and
there are also objects with multiple Radar targets. False positives and noisy
positions of Radar targets also make association difficult. For the aggregation
problem, it is hard to estimate the uncertainty of the Radar velocity as it also
depends on the associated detection.

In this paper, we propose an attention-based mechanism that learns from
data to both associate and aggregate. This is illustrated in Fig. 3. Specifically,
given pairwise features defined between each object detection and Radar target,
we first compute pairwise association scores via a learnable matching function.
We then aggregate each detection with all Radar targets according to the nor-
malized association scores to get the refined velocity estimate. Note that late
fusion is performed on dynamic Radar targets only.

Pairwise Detection-Radar Association: Given an object detection denoted
as D = (c, x, y, w, l, θ,v) and a Radar target denoted as Q = (q, v‖,m, t), we
first define their pairwise feature as follows:

f(D,Q) = (fdet(D), fdet-radar(D,Q)) (1)

fdet(D) = (w, l, ‖v‖, vx
‖v‖

,
vy
‖v‖

, cos(γ)) (2)

fdet-radar(D,Q) = (dx,dy,dt, vbp) (3)

vbp = min(50,
v‖

cos(φ)
) (4)

where (·, ·) indicates the concatenation operator, γ is the angle between D’s
motion direction and D’s radial direction, φ is the angle between D’s motion di-
rection and Q’s radial direction, vbp is the back-projected radial velocity (capped
by 50 m/s to avoid very large values), and (dx, dy,dt) are the offsets in BEV
positions and timestamps of D and Q.

We then compute the pairwise association score by feeding the above feature
to a learnable matching function:

si,j = MLPmatch(f(Di, Qj)) (5)

In our case the matching function is parameterized as a Multi-Layer Perceptron
(MLP) with five layers with 32, 64, 64, 64 and 1 channels respectively.

Velocity Aggregation: We compute the association scores for all detections
and Radar target pairs and refine the velocity estimate of each detection Di

by aggregating information from all Radar targets. Towards this goal, we first
normalize the association scores of all Radar targets to sum to 1. We append an
additional score of 1 before normalization to handle cases with no association.

snormi = softmax((1, si,:)) (6)
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We then refine the velocity magnitude by summing all the candidates (the de-
tection itself as well as all Radar targets) weighted by their normalized scores:

v′i = snormi · (‖vi‖, vbpi,: )> (7)

The 2D velocity estimate is then computed as the refined velocity magnitude:

v′ = v′ · ( vx
‖v‖

,
vy
‖v‖

) (8)

where the detection index i is omitted for brevity.

4.4 Learning and Inference

We trained the proposed LiDAR and Radar fusion model with a multi-task loss
defined as a weighted sum of the detection loss, velocity loss on the detection
output, as well as the velocity loss on the late fusion output:

L = (Ldet
cls + α · Ldet

reg) + β · (Lvelo
cls + Lvelo

reg ) + δ · Lvelo attn
reg (9)

where Ldet
cls is the cross-entropy loss on classification score c, Ldet

reg is the smooth

`1 loss summed over the position, size and orientation terms, Lvelo
cls is the cross-

entropy loss on moving probability m, Lvelo
reg is the smooth `1 loss on v, and

Lvelo attn
reg is the smooth `1 loss on v′. α, β and δ are scalars that balance different

tasks. Note that we do not require explicit supervision to learn object and Radar
association, which is an advantage of the attention-based late fusion module
where the association is implicitly learned.

We use the Adam optimizer [14] with batch normalization [11] after every
convolution layer and layer normalization [1] after every fully-connected layer
(except for the final output layer). For detection we use hard negative mining.
Ldet
reg , Lvelo

cls and Lvelo
reg are computed on positive samples only, and Lvelo attn

reg is
computed on true positive detections only. We apply the same post-processing
to generate final detections during training and testing phases, where the top
200 detections per class are kept and NMS is applied thereafter.

5 Experimental Evaluation

5.1 Datasets and Evaluation Metrics

nuScenes: We validate the proposed method on the nuScenes dataset [3]. This
dataset contains sensor data from 1 LiDAR and 5 Radars, with object labels
at 2Hz. Velocity labels are computed as finite difference between consecutive
frames. Since we focus on dynamic objects, we evaluate on two challenging object
classes: cars and motorcycles, as their velocities have high variance. We follow
the official training/validation split with 700/150 logs each. We report the model
performance on object detection and velocity estimation. Average Precision (AP)
is used as the detection metric, which is defined on center distance in BEV
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between the detection and the label. The final AP is averaged over four different
distance thresholds (0.5m, 1m, 2m and 4m). Average Velocity Error (AVE) is
used as the velocity metric, which is computed as the `2 velocity error averaged
over all true positive detections (at 2m threshold). Cars are evaluated within
50m range, while motorcycles are evaluated within 40m range. Labels with 0
LiDAR and Radar points are ignored.

DenseRadar: One advantage of Radar over LiDAR is its longer sensing range.
To showcase this, we further evaluate our model on a self-collected dataset,
called DenseRadar, with vehicle labels within 100m range for 5002 snippets. Ve-
locity labels are estimated by fitting a kinematic bicycle model to the trajectory,
which produces smoother velocities compared with the finite difference proce-
dure employed in nuScenes. We use similar metrics as nuScenes. For detection
we compute AP at 0.7 IoU in BEV. For velocity we report Average Dynamic
Velocity Error (ADVE) on dynamic objects only. We make a training/validation
split with 4666/336 logs each.

5.2 Implementation Details

We train a two-class model on nuScenes with a shared backbone network and
class-specific detection headers. Global data augmentation is used during train-
ing, with random translations from [-1, 1]m in the X and Y axes and [-0.2, 0.2]m
in the Z axis, random scaling from [0.95, 1.05], random rotation from [-45◦, 45◦]
along the Z axis, and random left-right and front-back flipping. We do not apply
augmentation at test time. To alleviate the class imbalance, we duplicate training
frames that contain motorcycles by 5 times. The model is trained for 25 epochs
with a batch size of 32 frames on 8 GPUs. We use an input voxel size of 0.125m
in the X and Y axes, and 0.2m in the Z axis. We use α = 1 and β = δ = 0.1.
Hyper-parameter tuning is conducted on the train-detect/train-track split.

We train a single-class model on DenseRadar. Since the dataset is much
larger, we do not apply data augmentation. We use an input voxel resolution of
0.2m in all three axes due to the extra computation due to the longer detection
range. We use α = 1 and β = δ = 0.5. The model is trained for 1.5 epochs.

5.3 Comparison with the State-of-the-Art

We compare our LiDAR and Radar fusion model with other state-of-the-art per-
ception models on nuScenes and show the evaluation results in Table 2. Specif-
ically, we compare with the camera-based method MonoDIS [36], the LiDAR-
based methods PointPillar [17], PointPillar+ [41], 3DSSD [46], CBGS [48], and
the LiDAR and camera fusion method PointPainting [41]. RadarNet outperforms
all methods significantly in both detection AP and velocity error. Compared
with the second best on cars/motorcycles, our model shows an absolute gain of
2.2%/2.3% in detection AP and a relative reduction of 7%/21% in velocity error.
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Method Input
Cars Motorcycles

AP↑ AP@2m↑ AVE↓ AP↑ AP@2m↑ AVE↓
MonoDIS [36] I 47.8 64.9 - 28.1 37.7 -
PointPillar [17] L 70.5 76.1 0.269 20.0 22.8 0.603
PointPillar+ [41] L 76.7 80.5 0.209 35.0 38.6 0.371
PointPainting [41] L+I 78.8 82.9 0.206 44.4 48.1 0.351
3DSSD [46] L 81.2 85.8 0.188 36.0 39.9 0.356
CBGS [48] L 82.3 85.9 0.230 50.6 52.4 0.339

RadarNet (Ours) L+R 84.5 87.9 0.175 52.9 55.6 0.269
Table 2. Comparison with the state-of-the-art on nuScenes validation set.

5.4 Ablation Study

We conduct an ablation study on the nuScenes and DenseRadar datasets to
validate the effectiveness of our two-level fusion scheme. To better verify the
advantage of the proposed attention-based late fusion, we build a strong baseline
with carefully designed heuristics. Recall that our attention-based late fusion
consists of two steps: association and aggregation. As a counterpart, we build
the baseline fusion method by replacing each step with heuristics. In particular,
for each detection candidate, we first use a set of rules to determine the Radar
targets associated with it. Given a set of associated Radar targets (if any), we
then take the median of their aligned velocities (by back-projecting to the motion
direction of the detection) as the estimate from Radar and average it with the
initial velocity estimate of the detection. If there are no associated Radar targets,
we keep the original detection velocity.

Below we define the set of rules we designed for determining the associated
Radar targets. Given the features in Eq. 2 and Eq. 3, a Radar target is considered
as associated if it meets all of the following conditions:√

(dx)2 + (dy)2 < 3 m (10)

γ < 40◦ (11)

‖v‖ > 1 m/s (12)

vbp < 30 m/s (13)

We define these rules to filter out unreliable Radar targets, and the thresholds
are chosen via cross-validation.

Evaluation on nuScenes: We show ablation results on nuScenes in Table 3.
Note that our LiDAR only model already achieves state-of-the-art performance.
Adding early fusion improves detection of motorcycles by 1.9% absolute AP, as
the LiDAR observations are sparse and therefore Radar data serves as additional
evidence. Early fusion does not affect the velocity performance much as only
density information is exploited at present. When it comes to late fusion, our
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Model LiDAR
Radar Cars Motorcycles

Early Late AP@2m↑ AVE↓ AP@2m↑ AVE↓
LiDAR X - - 87.6 0.203 53.7 0.316

Early X X - +0.3 -2% +1.9 -0%
Heuristic X X heuristic +0.3 -9% +1.9 -4%
RadarNet X X attention +0.3 -14% +1.9 -15%

Table 3. Ablation study on nuScenes validation set.

Model LiDAR
Radar Vehicles AP ↑

ADVE ↓
Early Late 0-40m 40-70m 70-100m

LiDAR X - - 95.4 88.0 77.5 0.285

Early X X - +0.3 +0.5 +0.8 -3%
Heuristic X X heuristic +0.3 +0.5 +0.8 -6%
RadarNet X X attention +0.3 +0.5 +0.8 -19%

Table 4. Ablation study on DenseRadar validation set.

approach achieves over 14% velocity error reduction, significantly outperforming
the heuristic baseline especially in motorcycles, where we typically have few
Radar targets and therefore more noise.

Evaluation on DenseRadar: Ablation results on DenseRadar are depicted
in Table 4. We show detection APs in near range (0-40m), mid range (40-70m)
and long range (70-100m) respectively. Early fusion helps long-distance object
detection, bringing 0.8% absolute gain in the 70-100m range detection AP. When
late fusion is added, larger improvements are achieved than on nuScenes (from
14% to 19%). Two reasons may account for this: (1) DenseRadar uses higher-
end Radar sensors that produce denser returns; (2) we evaluate in longer range
(100m vs. 50m), which is more challenging and therefore there is more room
for improvement. However, the heuristic baseline still gets lower than 10% gain,
showing the advantage of the proposed attention-based mechanism which can
learn from noisy data.

5.5 Fine-Grained Analysis

To better understand in which aspects the velocity estimation performance is
improved by exploiting Radar we conduct fine-grained evaluation on the larger-
scale DenseRadar dataset with respect to different subsets of object labels. In
particular, we create different subsets of labels by varying the object distance
to the ego vehicle, number of observed LiDAR points, angle γ between motion
direction and radial direction, and the velocity magnitude.

We compare three model variants: LiDAR only, our model with heuristic
late fusion and our model in Fig. 4. From the results we see that the heuristic
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Fig. 4. Fine-grained evaluation of velocity estimation on DenseRadar vali-
dation set.

model brings negligible gains when γ > 10◦ or ‖v‖ < 3 m/s. This justifies the
40◦ and 1 m/s thresholds in our heuristics as these are cases where Radar data
contain large uncertainty. In contrast, our attention-based model consistently
and significantly outperforms the heuristic model under all conditions, showing
its effectiveness in capturing sensor uncertainties and exploiting both sensors.

5.6 Qualitative Results

In Fig. 5 we show the learned detection and Radar associations. Results are
shown in sequence for each object to illustrate the temporal change in the asso-
ciation. From the results we observe that: (1) the association is sparse in that
only relevant Radar targets are associated; (2) the association is quite robust to
noisy locations of the Radar targets; (3) the model captures the uncertainty of
Radar targets very well. For example, when the radial direction is near tangen-
tial to the object’s motion direction, the model tends to not associate any Radar
targets as in such cases the Radar evidence is often very unreliable.

6 Conclusion

We have proposed a new method to exploit Radar in combination with LiDAR
for robust perception of dynamic objects in self-driving. To exploit geometric
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times step = 1 times step = 2 times step = 3 times step = 4

Fig. 5. Qualitative Results: Visualization of learned detections and Radar associ-
ations for cars (row 1 & 2) and motorcycles (row 3 & 4) on nuScenes validation set.
Each row corresponds to the same object across time. We draw object detections in
cyan, Radar targets within past 0.5s in white, and associated Radar targets with > 0.1
normalized score in yellow.

information from Radar, we use a voxel-based early fusion approach, which is
shown to improve long-distance object detection due to Radar’s longer sensing
range. To exploit dynamic information, we propose an attention-based late fusion
approach, which addresses the critical problem of associating Radar targets and
objects without ground-truth association labels. By learning to associate and
aggregate information, a significant performance boost in velocity estimation is
observed under various conditions.
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grids. In: IEEE Intelligent Vehicles Symposium (IV) (2017)

26. Luo, W., Yang, B., Urtasun, R.: Fast and furious: Real time end-to-end 3d detec-
tion, tracking and motion forecasting with a single convolutional net. In: CVPR
(2018)

27. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: Laser-
net: An efficient probabilistic 3d object detector for autonomous driving. In: CVPR
(2019)

28. Meyer, M., Kuschk, G.: Deep learning based 3d object detection for automotive
radar and camera. In: 16th European Radar Conference (EuRAD) (2019)

29. Nabati, R., Qi, H.: Rrpn: Radar region proposal network for object detection in
autonomous vehicles. In: ICIP (2019)

30. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-
based radar and camera sensor fusion architecture for object detection. In: Sensor
Data Fusion: Trends, Solutions, Applications (SDF) (2019)

31. Patel, K., Rambach, K., Visentin, T., Rusev, D., Pfeiffer, M., Yang, B.: Deep
learning-based object classification on automotive radar spectra. In: RadarConf
(2019)

32. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: CVPR (2018)

33. Schumann, O., Hahn, M., Dickmann, J., Wöhler, C.: Semantic segmentation on
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43. Wöhler, C., Schumann, O., Hahn, M., Dickmann, J.: Comparison of random forest
and long short-term memory network performances in classification tasks using
radar. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF) (2017)

44. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection.
Sensors (2018)



RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects 17

45. Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3d object detection from point
clouds. In: CVPR (2018)

46. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3dssd: Point-based 3d single stage object detector.
In: CVPR (2020)

47. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: CVPR (2018)

48. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling
for point cloud 3d object detection. arXiv preprint arXiv:1908.09492 (2019)


