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A Face Attribute Annotation in Synthetic Images

The face images used in our experiments are synthetic, and therefore there is no
real person behind each image. Thus, there is no intrinsic ground truth for face
attributes such as gender, hair length, and skin tone. Such attributes are instead
established by human annotators. We clarify here what we mean when we talk
about face attributes in the absence of a physical ground truth.

Many attributes have both intrinsic and extrinsic manifestations. For exam-
ple, “emotion” may be studied at three levels [3]: an unconscious physiological
state, conscious self-perception (feelings), and emotional display (e.g. facial ex-
pression) [12]. These quantities are intrinsic to a person’s or an animal’s body
and are not directly accessible to a machine. By contrast, an extrinsic description,
i.e., the report by an onlooker of his/her perception, are more easily accessible,
and this is what the machine is trained to predict.

Since we are using synthetic images, it should be clear that we are not at-
tempting to access the intrinsic state of a person: there is no person, and there
is no intrinsic gender, ethnicity, age or emotion. However, perception of such
attributes is possible. This is the same way that onlookers instinctively classify
the Venus of Milo as “female” and Michelangelo’s David as “male,” despite the
fact that they are idealized marble representations, rather than real people.

Thus, when we refer to the “age” or “gender” or any other attribute that
is computed by a face analysis system from a picture, what we mean is the
algorithm’s prediction of a casual observer’s report of their perception of the
outwards display of that attribute. This is a bit of a mouthful, and that’s why we
use the abbreviated expression of “attribute,” “age” or “gender.” The attributes
we measure from human observers are reports of subjective perceptions. How-
ever, as we find in Sec. 3.3, these measurements are consistent and reproducible
across different observers, and so we consider statistics of such reports as objec-
tive quantities.

In our study, we discretize continuous face attributes. We have used six classes
of age and skin tone, five of hair length, facial expression and gender, etc. (see
Figs. 13 and 15). This choice was made to conform with the literature, e.g.,
the Fitzpatrick scale of skin tone [17], and to accommodate the abilities of non-
expert casual observers, the “common person,” whose perception we rely on in
our experiments. We make no claim to have the perfect discretization scheme;
other discretization choices may be better suited in different contexts.
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Gender deserves a special mention: gender identity is often modeled as multi-
dimensional [15]. However, here we are measuring reports of gender perception
(an extrinsic variable), rather than gender identity (the intrinsic variable), and
our subjects could not reliably report beyond the traditional one-dimensional
M/F dimension. Therefore, following [10] we settled for one dimension, which
we discretized into five steps to accommodate different levels of confidence and
ambiguity.

B Method

Algorithm 1: K-attribute transect generation

Input: Generator G, tuples {(Lk,nk, bk,vk, ck)}Kk=1, where Lk is a transect
dimension, (nk, bk) is a hyperplane, vk is a direction vector, and ck are signed
decision values.

Output: A L1 × · · · × LK transect T i.

zi ∼ p(z)
zi,0 = projection of zi onto intersection of {(nk, bk)}Kk=1

for l1 = 1 · · ·L1 do
...
for lK = 1 · · ·LK do

T i(l1, · · · , lK) = G(zi,0 +
∑K

k=1
ck[lk]
〈vk,nk〉

vk
‖vk‖

)

Algorithm 2: Orthogonalization

Input: Vectors {nj}Na
j=1.

Output: Vectors {ñj}Na
j=1, where ñj ⊥ nk,∀k 6= j

Q,R← QR-factorization of matrix [n1,n2, · · · ,nNa ]
for i = 1 · · ·Na do

ñi = ni

for j = 1 · · ·Na do
if i 6= j then

ñi = ñi − Qj ·〈Qj ,ñi〉
〈Qj ,Qj〉
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Fig. 12. 1D transects with and without orthogonalization. Without orthogo-
nalization (see Sec. 3.1), decreasing hair length results in more masculine-looking faces.
This phenomenon is not as apparent after orthogonalization (Sec. 3.1). We see only
slight orthogonalization differences in the skin color transects, indicating that the skin
color hyperplane was already near-orthogonal to the other attribute hyperplanes.
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C Annotations

Each annotator evaluated each image for one attribute at a time. For each image,
we collected 5 annotations per attribute for a total of 40 annotations per image.
We discretized each attribute using three to six levels.

The number of annotations that are needed by our method is rather formidable.
However, we found that this is not an obstacle in practice. In our experiments,
Dz consists of 5,000 images, and Dtransect consists of 1,000 8-image transects
(see examples in Fig 5). The total number of annotations was thus 13,000 (im-
ages) x 8 (attributes) x 5 (annotations per image and per attribute) = 0.52M
annotations. Amazon Mechanical Turk delivered on average 10-20 annotations
per second, thus annotations took about 10 hours to complete over two separate
sessions. Annotators were paid 1.2c per annotation, earning 10-15 US$ per hour.

Fig. 14 shows the raw annotations for one 1D transect and three attributes.
One may see that there are very few outlier annotations, and that in most cases
annotations fall in one or two neighboring attribute levels.

Fig. 15 (top left) shows a distribution of per-image annotation standard de-
viations, split by attribute. One unit corresponds to the dynamic range of each
attribute. For most attributes, the median annotator standard deviation is near
0.1, i.e. less than the separation between attribute levels. These observations
indicate good agreement between annotators and suggest that annotations are
meaningful and reproducible.

Fig. 15 (top right) presents the distribution of mean annotator fakeness scores
for the synthesized images. Only a small portion of images are deemed “Likely
fake” or “Fake for sure.” Realism of images is particularly important in our
analysis, since image artifacts can unknowingly affect the decisions of gender
classifiers. In our experiments, we remove images with a fakeness score above a
certain threshold (see Sec. D.1).
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Fig. 13. Screenshots of the graphical user interface for seven annotations we col-
lected from Amazon Mechanical Turk annotators using the SageMaker Ground Truth
service [1].
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Fig. 14. Annotation consistency. Hair length (top), gender (middle) and skin tone
(bottom) annotations on a 13-image 1D transect. This transect was annotated in a pilot
experiment to fine tune our GUIs and to evaluate the consistency of the annotators,
and not used in our main experiment. Here nine annotations were obtained for each
attribute and for each image. The annotations are shown as dots below each image.
The x axis increments one unit from one image to the next. A small amount of noise
was added in x and y in order to visualize the individual annotations. The thick gray
curves show the fit of a logistic function to the data. Annotations typically fall within
one or two neighboring attribute levels. There are very few outliers. For a quantitative
overall analysis see Fig.15.
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Fig. 15. Annotation quality and image realism. (Left) Distributions of per-image
standard deviations of human annotations for each of the attributes we considered (one
unit = dynamic range of the attribute). Five annotators were asked to provide a rating
for each attribute of each image. The number of rating options per attribute is indicated
in brackets next to the attribute’s name. The median standard deviations (red lines)
are comparable to the quantization step, indicating good annotator agreement. (Right)
We asked our annotators to rate the realism of the images. The distribution of such
scores is shown. Fewer than 10% of the ratings indicated fake or likely fake, suggesting
that the synthetic images we randomly sampled are fairly realistic. (Bottom) we show
examples of synthesized faces organized by mean human fakeness scores. Images with
high fakeness scores were removed from the experiments (see Sec.D.1).
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Fig. 16. Samples of synthesized faces, organized by mean human annotation
scores. In our analysis, we omitted faces from ranges indicated in red to focus on
clearly perceived females/males, light/dark skin tones, and short/long hair lengths.
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Fig. 17. Scatter plots of error rates using data from Fig. 8 (transects). Each
dot compares the error rates of a pair of groups that differ by one attribute only
(indicated in the label of the x and y axes). The two letters near each dot indicate the
shared attributes (‘M/F’ indicate male and female, ‘D/L’ indicate dark and light skin,
and ‘s/l’ indicate short and long hair). Dots falling along the equal error line indicate
that skin tone has little or no effect on error. In contrast, females and persons with
short hair have higher error rates.

D Experiments and Results

D.1 Dataset Pruning

We remove any transect image with a mean fakeness score greater than or equal
to “Likely fake” (0.75 in the normalized range of [0, 1]). We also removed faces
with attribute values in the normalized subranges of [0.4, 0.6] for skin color and
gender, and [0.3, 0.5] for hair length (see Fig. 16 for examples). After these
pruning steps, we were left with 5713 images.

D.2 Gender Classifier Training

We trained our classifiers for 20 epochs with the binary cross-entropy loss. We set
the learning rate at 1e−4 for the first 10 epochs, and 1e−5 for the final 10 epochs.
To avoid a baseline bias of predicting one gender over another, we enforced the
likelihood of sampling male and female faces during training to be equal.

D.3 Bias Analysis

Fig. 17 presents the same data in Fig. 8 for easier comparison of bias across
intersectional groups.

D.4 Logistic Regression

We discretized attributes into levels, and assigned a binary variable to each level.
We used the same discretization for hair length (short vs. long hair), skin color
(light vs. dark skin) and gender (female vs. male) used in our experiments thus
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far. We used two levels for beard (no/light beard vs. beard) and makeup (no/light
makeup vs makeup), three for facial expression (serious/frown vs. neutral vs.
smile), and the original semantic levels for age described in Fig. 13. In all, this
resulted in 17 input variables to our logistic regression model. We used scikit-
learn’s LogisticRegression function [44], and set the regularization parameter to
1.

D.5 Joint Effects of Attributes

Fig. 17-right shows that error rates vary across different intersectional groups of
skin color and hair length in a way that is not simply a linear combination of
each attribute.

This is also the reason we removed children and teenagers from our analy-
sis, as these individuals tend to have different appearance characteristics from
adults. Fig. 19 illustrates this, by breaking down error rates by age and gen-
der subpopulations for two classifier decision thresholds. The difference in error
rates between the genders is fairly consistent for young adults to middle-aged
individuals, but vary for children/teenagers and seniors. This demonstrates that
age and gender have joint effects on errors.

Fig. 18 shows faces from our synthesized transects on which the ResNet
models were most incorrect. For each gender misclassification direction, we show
faces on which the model predictions were farthest from the average human an-
notator response. ResNet-CelebA tends to heavily misclassify young male chil-
dren/babies as female, in line with the quantitative result in Fig. 19.

ResNet-CelebA

ResNet-FairFace

Males misclassified as female

Females misclassified as male

Males misclassified as female

Females misclassified as male

Fig. 18. Images with largest errors. Synthetic faces on which the classifiers most
deviated from the mean human annotations.
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Fig. 19. Errors by gender and age group on our transect images. The two top
plots were obtained by using a decision threshold equal to 0.5, and show a prevalence
of female errors. The bottom two plots were obtained with a threshold equal to 0.8,
chosen to minimize overall error. There is a non-uniform influence of age on errors. Both
models tend to have lower errors for young to middle-aged adults. The differences in
errors between genders are fairly consistent for adults, but differ for children, teenagers
and seniors, illustrating a combined age-gender bias in the algorithms.


