Supplementary material for "LIRA: Lifelong Image Restoration from Unknown Blended Distortion"

Jianzhao Liu*[0000-0002-5811-0881], Jianxin Lin*, Xin Li[0000-0002-6352-6523], Wei Zhou[0000-0003-3641-1429], Sen Liu[0000-0003-3778-8973], and Zhibo Chen[†][0000-0002-8525-5066]

CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, $% \left({{{\rm{CAS}}} \right)_{\rm{T}}} \right)$

University of Science and Technology of China, Hefei 230027, China {jianzhao,linjx,lixin666,weichou}@mail.ustc.edu.cn elsen@iat.ustc.edu.cn, chenzhibo@ustc.edu.cn

1 Overview

In this supplementary material, we provide additional results to complement the paper: (1) We provide the network parameters and configuration of our base network, our expanded network, the generator and the discriminator in Section 2. (2) We show comparisons with the state-of-the-art algorithms in terms of complexity in Section 3.1. (3) We show qualitative results of pseudo-samples generated by the generator in Section 3.2.

2 Network Architectures

Our incremental network consists of the base network and the expanded network. We also employ a generator that generates pseudo samples to consolidate the knowledge of the old task. Table 1 and Table 2 list the detailed configuration and parameters of our base network and our expanded network respectively. Table 3 shows the architecture of the generator and Table 4 shows the architecture of the discriminator.

Table 1: Detailed architecture of our base network. It consists of a feature extractor, a feature amalgamator and a decoder. $[\cdot]$ refers to concatenation operation. The feature amalgamator consists of 3 experts, a set of gate layers, an attention layer, an aggregation layer and two Bidirectional Sequential Gateing Units (Bi-SGUs). In the decoder, we use PixelShuffle [1] module as the upsampling layer to upsample the feature maps by $2\times$. The final reconstructed image is the summation of the output of the *Decoder1* (out_up1-2) and the input image.

^{*}The first two authors contributed equally to this work.

[†]Corresponding author.

					In-	Out-		
				Kernel	nut	nut	Str-	Output
Base netw	vork	Input	Output	size	cha-	cha-	ide	size
				0120	nnels	nnels	lao	5120
	conv1-1	image1 (RGB)	global feature1-1	3×3	3	32	1	64×64
Feature	conv1-2	global feature1-1	global feature1-2	3×3	$\frac{32}{32}$	32	2	32×32
extractor1	conv1-3	global feature1-2	global feature1-3	3×3	32	32	2	16×16
	expert1	global feature1-2	expert1 res1	0 / 0	32	32	-	32×32
	SK-DuBB1	global feature 1-3	expert1 out1	-	32^{-}	32^{-32}	ŀ	16×16
Evport1	expert1	expert1 res1	expert1_cat1		32	32		$\frac{10 \times 10}{32 \times 32}$
Experti	SK-DuBB2	expert1 out1	expert1 out2	-	$\frac{52}{32}$	32^{-32}	ŀ	16×16
	Dir DurtD2	cxperti_outi	experti_0ut2		02	02		10 × 10
	 evnert1	evpert1 res5	 evnert1 res6	•••	 39	32		 39 × 39
	SK-DuBB6	expert1 out5	expert1 out6	-	$\frac{52}{32}$	32^{-32}	F	16×16
	evnert?	global feature1-2	expert1_outo		32	32		$\frac{10 \times 10}{32 \times 32}$
	SK-DuBB1	global_feature1-2,	expert2_out1	-	$\frac{52}{32}$	32,	ŀ	16×16
Export2	ovport?	ovport2 ros1	expert2_out1		32	32		10×10 30×30
Expert2	SK DuBB2	expert2_res1,	expert2_res2,	-	32, 32	$\frac{52}{32}$	ŀ	16×16
	DurtD2	expert2_out1	expert2_out2		52	52		10×10
	 ovport?	 ovport2 ros5	 ovport? roch	•••	 29	22		$\frac{1}{20} \times \frac{20}{20}$
	SK DuBB6	expert2_res5,	expert2_reso,	-	32, 20	32,	F	16×16
	SK-Dundo	expert2_out5	expert2_outo		0∠ 20	22		10×10 20×20
	SK DuDD1	global_leature1-2,	experts_rest,	-	ວ∠, ວາ	$\frac{32}{22}$	F	$32 \times 32,$ 16×16
Evport?	orport?	giobal_leature1-5	expert3_out1		32 39	32		10×10 20×20
Experto	CK Duppo	experts_resi,	expert3_res2,	-	ວ∠, ໑໑	52, 20	ŀ	16×16
	SK-DUKD2	experts_out1	expert5_out2		32	32		10×10
	···	···	····		 20	 20		 20 v 20
	experts_	experts_ress,	experts_reso,	-	ა∠, აე	ು∠, 20	F	$32 \times 32,$
Attention	SK-DUKBO	experts_outs	experto_outo		32	32		10×10
Attention layer1		global_feature1-3	weightsA/weightsB	-	32	1	-	3×3
3×Gate la	aver	[image1, global_feature1-2,	expert1_gate_res2/					
(Expert1)	<i>ij</i> 01	expert1_res2/	expert1_gate_res4/	3×3	67	32	1	32×32
(2.1.p 01 01)		expert1_res4/	expert1_gate_res6					
		expert1_res6]						
		[image1,						
3×Cato la	wor	global_feature1-3,	expert1_gate_out2/					
(Expert1)		$expert1_out2/$	expert1_gate_out4/	3×3	67	32	1	16×16
		$expert1_out4/$	expert1_gate_out6					
		expert1_out6]						
		[image1,						
2 Cata la	vor	global_feature1-2,	expert2_gate_res2/					
(Erranto)	iyer	expert2_res2/	expert2_gate_res4/	3×3	67	32	1	32×32
(Expert2)		expert2_res4/	expert2_gate_res6					
		expert2_res6]						

LIRA 3

3×Gate la (Expert2)	ıyer	[image1, global_feature1-3, expert2_out2/ expert2_out4/ expert2_out6]	expert2_gate_out2/ expert2_gate_out4/ expert2_gate_out6	3×3	67	32	1	16×16
3×Gate la (Expert3)	yer	[image1, global_feature1-2, expert3_res2/ expert3_res4/ expert3_res6]	expert3_gate_res2/ expert3_gate_res4/ expert3_gate_res6	3×3	67	32	1	32×32
3×Gate la (Expert3)	ıyer	[image1, global_feature1-3, expert3_out2/ expert3_out4/ expert3out6]	expert3_gate_out2/ expert3_gate_out4/ expert3_gate_out6	3×3	67	32	1	16×16
Aggregati	on layer1	weightsA, weightsB, expertn_gate_resi, expertn_gate_outi, expertn_resi, expertn_outi (n=1,2,3;i=2,4,6)	aggregated1_res2, aggregated1_res4, aggregated1_res6, aggregated1_out2, aggregated1_out4, aggregated1_out6	-	_	32, 32, 32, 32, 32, 32, 32, 32	-	$\begin{array}{l} 32 \times 32, \\ 32 \times 32, \\ 32 \times 32, \\ 16 \times 16, \\ 16 \times 16, \\ 16 \times 16, \\ 16 \times 16 \end{array}$
Bi-SGU1-	1	aggregated1_res2, aggregated1_res4, aggregated1_res6,	res1	3×3	32, 32, 32	32	1	32×32
Bi-SGU1-	2	aggregated1_out2, aggregated1_out4, aggregated1_out6	$\operatorname{out1}$	3×3	32, 32, 32	32	1	16×16
conv1-4		res1	res1	3×3	32	32	2	16×16
conv1-5	1	[res1,out1]	out_final1	3×3	64	32	1	16×16
Decoder1	Upsampling layer1-1	out_final1	out_upl-1	3×3	32	32	1/2	32×32
	Upsampling laver1-2	out_upl-1	out_up1-2	3×3	32	32	1/2	64×64

Table 2: **Detailed architecture of our expanded network.** We keep the intact architecture of the base network and all parts except Bi-SGUs in the amalgamator of the base network are treated as a whole and named as an old expert. The final reconstructed image is the summation of the output of the *Decoder2* (out_up2-2) and the input image.

Expanded	d network	Input	Output	Kernel size	In- put cha- nnels	Out- put cha- nnels	Str- ide	Output size
Feature extrator2	conv2-1	image2 (RGB)	global_feature2-1	3×3	3	32	1	64×64
	conv2-2	global_feature2-1	global_feature2-2	3×3	32	32	2	32×32
	conv2-3	global_feature2-2	global_feature2-3	3×3	32	32	2	16×16

			old aggregated res2		1	29		20×20
			old_aggregated_res2,			52, 20		$32 \land 32,$
			old_aggregated_res4,		20	52, 20		$\mathfrak{I}_{2} \times \mathfrak{I}_{2},$
Old expe	ert	global_feature2-2,	old_aggregated_reso,	-	32,	32,	F	32×32 ,
^		global_feature2-3	old_aggregated_out2,		32	32,		$16 \times 16,$
			old_aggregated_out4,			32,		$16 \times 16,$
			old_aggregated_out6			32		16×16
	$expert4_{-}$	global_feature2-2,	expert4_res1,		32,	32,		$32 \times 32,$
	SK-DuRB1	global_feature2-3	expert4_out1	-	32	32	F	16×16
Expert4	expert4_	expert4_res1,	expert4_res2,		32,	32,		32×32 ,
	SK-DuRB2	expert4_out1	expert4_out2	-	32	32	F	16×16
	expert4	expert4 res5.	expert4 res6.		32.	32.		$32 \times 32.$
	SK-DuBB6	expert4 out5	expert4 out6	-	32°	32	╞	16×16
Attention	pix-Duitbo	chol fosturo? ?	woightsC/woightsD		32	1		$\frac{10 \times 10}{2 \times 2}$
Attentio	1 layer2	giobal_leature2-5	weightsC/weightsD	-	52	1	-	3 ^ 3
		limage2,						
3×Gate 1	laver	global_feature2-2,	oldexpert_gate_res2/		-			
(old expe	ert)	old_aggregated_res2/	oldexpert_gate_res4/	3×3	67	32	1	32×32
(old_aggregated_res4/	oldexpert_gate_res6					
		old_aggregated_res6]						
		[image2,						
2 Cata	larran	global_feature2-3,	oldexpert_gate_out2/					
3×Gate	layer	old_aggregated_out2/	oldexpert_gate_out4/	3×3	67	32	1	16×16
(old expe	ert)	old_aggregated_out4/	oldexpert_gate_out6					
		old aggregated out6]						
		[image2						
3×Gate layer (Expert4)		global feature2-2	evpert/ gate res2/					
		giobal_leature2-2,	expert4_gate_res2/	2 ~ 2	67	20	1	29 ~ 29
		expert4_res2/	expert4_gate_res4/	3×3	07	32	1	32 × 32
		expert4_res4/	expert4_gate_reso					
		expert4_resb]						
		[image2,						
3×Gate]	aver	global_feature2-3,	expert4_gate_out2/					
(Expert4	.)	expert4_out2/	expert4_gate_out4/	3×3	67	32	1	16×16
LINDOLOI)	expert4_out4/	expert4_gate_out6					
		expert4_out6]						
		weightsC,						
		weightsD,						
Aggregation layer2		oldexpert_gate_resi,						
		oldexpert_gate_outi.	aggregated2_res2,			32,		$32 \times 32,$
		expert4 gate resi	aggregated2_res4,			32,		$32 \times 32,$
		expert4 gate outi	aggregated2_res6,	L	L	32,	L	$32 \times 32,$
		oldevnert resi	aggregated2_out2,			32,		16×16 ,
		oldovnort outi	$aggregated2_out4,$			32,		$16 \times 16,$
		ouexpert_outi,	$aggregated2_out6$			32		16×16
		expert4_resi,						
		expert4_outi						
L		(1=2,4,6)						
		aggregated2_res2,			32,			
Bi-SGU2	-1	aggregated2_res4,	res2	3×3	32,	32	1	32×32
		$aggregated2_{res6}$			32			

4

Bi-SGU2-	-2	aggregated2_out2, aggregated2_out4, aggregated2_out6	out2	3×3	32, 32, 32, 32	32	1	16×16
conv2-4		res2	res2	3×3	32	32	2	16×16
conv2-5		[res2,out2]	out_final2	3×3	64	32	1	16×16
Decoder2	Upsampling layer2-1	out_final2	out_up2-1	3×3	32	32	1/2	32×32
	Upsampling layer2-2	out_up2-1	out_up2-2	3×3	32	32	1/2	64×64

Table 3. Detailed architecture of the generator. We use the transposed convolution to upsample the feature maps by $2\times$.

Louron	Kernel	Input	Output	Strido	Output
Layer	size	channels	$\operatorname{channels}$	Stride	size
conv1	7 imes 7	3	64	1	64×64
conv2	3×3	64	128	2	32×32
conv3	3×3	128	256	2	16×16
9×ResBlock	3×3	256	256	1	16×16
upsampling1	3×3	256	128	1/2	32×32
upsampling2	3×3	128	64	1/2	64×64
conv4	7 imes 7	64	3	1	64×64

Table 4. Detailed architecture of the discriminator. The input is a 64×64 RGB image. The output is a single scalar.

Lorron	Kernel	Input	Output	Strido	Output	
Layer	size	channels	channels	Surrae	size	
conv1	4×4	3	64	2	32×32	
conv2	4×4	64	128	2	16×16	
conv3	4×4	128	256	2	8×8	
conv4	4×4	256	512	1	8×8	
conv5	4×4	512	1	1	8×8	
Average	8 ~ 8	1	1	8 ~ 8	$1 \vee 1$	
pooling	0 ^ 0	1	1	0 ~ 0	1 ^ 1	

3 Additional Experimental Results

3.1 Comparisons in terms of complexity

The complexity of RL-Restore [3], OWAN [2], our base network and our expanded network can be found in Table 5. We compute the complexity of these methods on a 63×63 image. It can be seen that the complexity of our base network is lower than that of OWAN. In addition, the complexity of the expanded network increases by just 33.4% over that of the base network. In contrast, if we train two individual networks for two tasks respectively, the overall complexity of the networks is twice as that of the base network.

Table 5. Comparisons with DnCNN, RL-Restore and OWAN in terms of complexity.

Methods	RL-Restore [3]	OWAN [2]	Our base network	Our expanded network
FLOPs(G)	0.474	1.439	1.259	1.679

3.2 Qualitative results of pseudo samples

For training our incremental network, pseudo samples generated by the generator are paired with the corresponding responses of our trained base network, serving as supervision of the old task. We show examples of real and pseudo samples with corresponding restored samples generated by our trained base model in Fig. 1. We can see that the generator can resemble the data distribution of the real samples to some extent, playing the role of memory replay to consolidate the knowledge of the old task.

LIRA 7

Fig. 1. Qualitative results of real and pseudo samples with corresponding restored samples generated by our trained base model.

References

- Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient subpixel convolutional neural network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)
- Suganuma, M., Liu, X., Okatani, T.: Attention-based adaptive selection of operations for image restoration in the presence of unknown combined distortions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9039–9048 (2019)
- Yu, K., Dong, C., Lin, L., Change Loy, C.: Crafting a toolchain for image restoration by deep reinforcement learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2443–2452 (2018)