
18 T. Salzmann?, B. Ivanovic?, et al.

A Single Integrator Distribution Integration

For a single integrator, we define the state to be the position vector s = p =
[x, y]T , the control to be the velocity vector u = ṗ = [ẋ, ẏ]T , and write the linear
discrete-time dynamics as

p(t+1) = I2! 2p
(t) +�tI2! 2ṗ

(t)
. (6)

At each timestep, and for a specific latent value z, Trajectron++ produces a
Gaussian distribution over control actions N (µu,⌃u). Specifically, it outputs

µu =


µ úx
µ úy

�
⌃u =


�

2
úx ⇢ úx úy� úx� úy

⇢ úx úy� úx� úy �
2
úy

�
, (7)

where µ úx and µ úy are the respective mean velocities in the agent’s longitudinal
and lateral directions, � úx and � úy are the respectivte longitudinal and lateral
velocity standard deviations, and ⇢ úx úy is the correlation between ẋ and ẏ. Since
⌃u is the only source of uncertainty in the prediction model, Equation (6) is a
linear Gaussian system.

A.1 Mean Derivation2

Following the sum of Gaussian random variables [25], the output mean positions

are obtained by Equation (6). Thus, at test time, Trajectron++ produces µ
(t)
úp

which is passed through Equation (6) alongside the current agent position µ
(t)
p

to produce the predicted position mean µ
(t+1)
p .

A.2 Covariance Derivation2

The position covariance is obtained via the covariance of a sum of Gaussian
random variables [25]

⌃(t+1)
p = I2! 2⌃

(t)
p I

T

2! 2 +�tI2! 2⌃
(t)
u �tI

T

2! 2

= ⌃(t)
p + (�t)2⌃(t)

u .

(8)

B Dynamically-Extended Unicycle Distribution
Integration

Usually, unicycle models have velocity and heading rate as control inputs [30,35].
However, vehicles in the real world are controlled by accelerator pedals and
so we instead adopt the dynamically-extended unicycle model which instead
uses acceleration a and heading rate ! as control inputs [29]. The dynamically-
extended unicycle model has the following nonlinear continuous-time dynamics

2

64

ẋ

ẏ

�̇

v̇

3

75 =

2

64

v cos(�)
v sin(�)

!

a

3

75 , (9)

2 These equations are also found in the Kalman Filter prediction step [25].

Trajectron++: Dynamically-Feasible Trajectory Forecasting 19

where p = [x, y]T defines the position, v the speed, and � the heading. As men-
tioned above, the control inputs are u = [!, a]T . To discretize this, we assume
a zero-order hold on the controls between each sampling step (i.e. control ac-
tions are piece-wise constant). This yields the following zero-order hold discrete
equivalent dynamics

2

664

x
(t+1)

y
(t+1)

�
(t+1)

v
(t+1)

3

775 =

2

664

x
(t)

y
(t)

�
(t)

v
(t)

3

775+

2

6664

v
(t) ·D(t)

S
+ a

(t) sin(! (t) + " (t) #t)#t

" (t) + a
(t)

" (t) ·D(t)
C

�v
(t) ·D(t)

C
� a

(t) cos(! (t) + " (t) #t)#t

" (t) + a
(t)

" (t) ·D(t)
S

!
(t)
�t

a
(t)
�t

3

7775
,

where D
(t)
S

=
sin(�(t) + !

(t)
�t)� sin(�(t))

!(t)

D
(t)
C

=
cos(�(t) + !

(t)
�t)� cos(�(t))

!(t)
.

(10)
We will refer to these dynamics in short with s(t+1) = f(s(t)

,u(t)). We adopt a
slightly di↵erent set of dynamics when |!|  ✏ = 10" 3 to avoid singularities in
Equation (10). With a small !, we instead use the following dynamics, obtained
by evaluating the limit as ! ! 0.

2

664

x
(t+1)

y
(t+1)

�
(t+1)

v
(t+1)

3

775 =

2

664

x
(t)

y
(t)

�
(t)

v
(t)

3

775+

2

664

v
(t) cos(�(t))�t+ 0.5a(t) cos(�(t))(�t)2

v
(t) sin(�(t))�t+ 0.5a(t) sin(�(t))(�t)2

0
a

(t)
�t

3

775 . (11)

Thus, the full discrete-time dynamics are

2

664

x
(t+1)

y
(t+1)

�
(t+1)

v
(t+1)

3

775 =

(
Equation (10) if |!| > ✏

Equation (11) otherwise
. (12)

At each timestep, and for a specific latent value z, Trajectron++ produces a
Gaussian distribution over control actions N (µu,⌃u). Specifically, it outputs

µu =


µ"
µa

�
⌃u =


�

2
" ⇢"a �" �a

⇢"a �" �a �
2
a

�
, (13)

where µ" is the mean rate of change of the agent’s heading, µa is the mean
acceleration in the agent’s heading direction, �" is the standard deviation of the
heading rate of change, �a is the acceleration standard deviation, and ⇢"a is the
correlation between ! and a. The controls µu and uncertainties ⌃u are then
integrated through the dynamics to obtain the following mean and covariance
integration equations [46].

20 T. Salzmann?, B. Ivanovic?, et al.

B.1 Mean Derivation3

The output mean positions are obtained by applying the mean control actions
to Equation (12) [46].

B.2 Covariance Derivation3

Since ⌃u is the only source of uncertainty in the prediction model, Equation (12)
can be made a linear Gaussian system by linearizing about a specific state and
control. For instance, the Jacobians F and G of the system dynamics in Equa-
tion (10) are

F(t) =
@f

@µ
(t)
s

=

2

6664

1 0 v
(t)
D

(t)
C

� a
(t)

D
(t)
S

" (t) + a
(t) cos(! (t) + " (t) #t)#t

" (t) D
(t)
S

0 1 v
(t)
D

(t)
S

+
a

(t)
D

(t)
C

" (t) + a
(t) sin(! (t) + " (t) #t)#t

" (t) �D
(t)
C

0 0 1 0
0 0 0 1

3

7775

G(t) =
@f

@µ
(t)
u

=

2

6664

G
(t)
11

D
(t)
C

" (t) + sin(! (t) + " (t) #t)#t

" (t)

G
(t)
21

D
(t)
S

" (t) � cos(! (t) + " (t) #t)#t

" (t)

�t 0
0 �t

3

7775
,

where G
(t)
11 =

v cos(�+ !�t)�t

!
� vDS

!
� 2a sin(�+ !�t)�t

!2 � 2aDC

!2

+
a cos(�+ !�t)(�t)2

!

G
(t)
21 =

v sin(�+ !�t)�t

!
+

vDC

!
+

2a cos(�+ !�t)�t

!2 � 2aDS

!2

+
a sin(�+ !�t)(�t)2

!
.

(14)
Then, applying the equations for the covariance of a sum of Gaussian random
variables [46] yields

⌃(t+1)
p,$,v

= F(t)⌃(t)
p,$,v

F(t)T
+G(t)⌃(t)

u G(t)T
. (15)

C Average and Final Displacement Error Evaluation

While ADE and FDE are important metrics for deterministic, single-trajectory
methods, any deeper probabilistic information available from generative meth-
ods is destroyed when taking the mean over the dataset. Instead, in the main
body of the paper we focus on evaluation methods which maintain such informa-
tion. However, we can somewhat directly compare deterministic and generative
methods using ADE and FDE by directly plotting the full error distributions for
any generative methods, as in [20]. This provides an idea as to how close and

3 These equations are also found in the Extended Kalman Filter prediction step [46].

Trajectron++: Dynamically-Feasible Trajectory Forecasting 21

Fig. 5. Left : ADE results of all methods per dataset, as well as their average perfor-
mance. Boxplots are shown for all generative models since they produce distributions
of trajectories. 2000 trajectories were sampled per model at each prediction timestep,
with each samples ADE included in the boxplots. Our approach with dynamics integra-
tion is compared here, specifically its zmode output configuration. X markers indicate
the mean ADE. Mean ADE from deterministic baselines are visualized as horizontal
lines. Right : The same analysis for FDE.

concentrated the predictions are around the ground truth. Figure 5 shows both
generative and deterministic methods’ ADE and FDE performance. In both
metrics, our method’s error distribution is lower and more concentrated than
other generative approaches, even outperforming state-of-the-art deterministic
methods.

D Additional Training Information

D.1 Choosing !, " in Equation (5)

As shown in [17], the � parameter weighting the KL penalty term is important
to disentangle the latent space and encourage multimodality. A good value for
this hyperparameter varies with the the size of input y, condition x, and latent
space z. Therefore, we adjust � depending on the size of the encoder’s output
ex. For example, we increase the value of � when encoding map information in
the condition. Additionally, � is annealed following an increasing sigmoid [4].
Thus, a low � factor is used during early training iterations so that the model
learns to encode as much information in z as possible. As training continues, �
is gradually increased to shift the role of information encoding from q! (z | x,y)
to p$(z | x). For ↵, we found that a constant value of 1.0 works well.

D.2 Separate Map Encoder Learning Rate

When used, we train the map encoding CNN with a smaller learning rate com-
pared to the rest of the model, to prevent large gradients in early training itera-
tions. We use leaky ReLU activation functions with ↵ = 0.2 to prevent saturation
during early training iterations (when the CNN does not provide useful encod-
ings to the rest of the model). We found that regular ReLU, sigmoid, and tanh
activation functions saturate during early training and fail to recover.

22 T. Salzmann?, B. Ivanovic?, et al.

Fig. 6. Mean time for Trajectron++ to generate future trajectory distributions on a
laptop with a 2.7 GHz Intel Core i5 (Broadwell) CPU and 8 GB of RAM. None of the
runtimes exceed 1.2s (with most at or below 1s), enabling the model to run 3�5⇥ per
prediction horizon for all tested datasets.

E Online Runtime

Figure 6 illustrates how Trajectron++’s runtime scales with respect to prob-
lem size. In particular, a heatmap is used as there are two major factors that
a↵ect the model’s runtime: number of agents and amount of interactions. For
points with insu�cient data, e.g., the rare case of 50 agents in a scene with only
3 interactions, we impute values using an optimization-based scheme [15]. To
achieve this real-time performance, we leverage the stateful representation that
spatiotemporal graphs provide. Specifically, Trajectron++ is updated online with
new information without fully executing a forward pass. This is possible due to
our method’s use of LSTMs, as only the last LSTM cells in the encoder need
to be fed the newly-observed data. The rest of the model can then be executed
using the updated encoder representation.

