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Abstract. As the basic building block of Convolutional Neural Net-
works (CNNs), the convolutional layer is designed to extract local pat-
terns and lacks the ability to model global context in its nature. Many ef-
forts have been recently devoted to complementing CNNs with the global
modeling ability, especially by a family of works on global feature in-
teraction. In these works, the global context information is incorporated
into local features before they are fed into convolutional layers. However,
research on neuroscience reveals that the neurons’ ability of modifying
their functions dynamically according to context is essential for the per-
ceptual tasks, which has been overlooked in most of CNNs. Motivated
by this, we propose one novel Context-Gated Convolution (CGC) to ex-
plicitly modify the weights of convolutional layers adaptively under the
guidance of global context. As such, being aware of the global context,
the modulated convolution kernel of our proposed CGC can better ex-
tract representative local patterns and compose discriminative features.
Moreover, our proposed CGC is lightweight and applicable with modern
CNN architectures, and consistently improves the performance of CNNs
according to extensive experiments on image classification, action recog-
nition, and machine translation. Our code of this paper is available at
https://github.com/XudongLinthu/context-gated-convolution.

Keywords: Convolutional Neural Network, Context-Gated Convolution,
Global Context Information

1 Introduction

Convolutional Neural Networks (CNNs) have achieved remarkable successes on
various tasks, e.g., image classification [21,26], object detection [16,44], image
translation [58], action recognition [5], sentence/text classification [56,30], ma-
chine translation [14], etc. However, the sliding window mechanism of convo-
lution makes it only capable of capturing local patterns, limiting its ability of
utilizing global context. Taking the 2D convolution on the image as one example,
as Fig. 1(a) shows, the traditional convolution only operates on the local image
patch and thereby composes local features.
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Fig. 1: (a) Traditional convolution only composes local information. (b) Global
feature interaction methods modify input feature maps by incorporating global
information. (c) Our proposed CGC, in a fundamentally different manner, mod-
ulates convolution kernels under the guidance of global context. ~ denotes con-
volution.

According to the recent research on neuroscience [32,15], neurons’ awareness
of global context is important for us to better interpret visual scenes, stably
perceive objects, and effectively process complex perceptual tasks. Many meth-
ods [48,49,51,39,25,8,4,3,33] have been recently proposed to introduce global
context modeling modules into CNN architectures. As Fig. 1(b) shows, these
methods, which are named as global feature interaction methods in this paper,
modulate intermediate feature maps by incorporating the global context into the
local feature representation.

However, as stated in [15], “rather than having a fixed functional role, neurons
should be thought of as adaptive processors, changing their function according to
the behavioural context”. Therefore, the context information should be utilized
to explicitly modulate the convolution kernels for “changing the structure of cor-
relations over neuronal ensembles” [15]. However, to the best of our knowledge,
such a modulating mechanism has not been exploited in CNNs yet, even though
it is one efficient and intuitive way. Motivated by this, we will model convolu-
tional layers as “adaptive processors” and explore how to leverage global context
to guide the composition of local features in convolution operations.

In this paper, we propose Context-Gated Convolution (CGC), as shown in
Fig. 1(c), a new perspective of complementing CNNs with the awareness of
the global context. Specifically, our proposed CGC learns a series of mappings
to generate gates from the global context feature representations to modulate
convolution kernels accordingly. With the modulated kernels, the traditional
convolution is performed on input feature maps, which enables convolutional
layers to dynamically capture representative local patterns and compose local
features of interest under the guidance of global context. Our contributions lie
in three-fold.

– To the best of our knowledge, we make the first attempt of introducing
the context-awareness to convolutional layers by modulating their weights
according to the global context.

– We propose a novel lightweight Context-Gated Convolution (CGC) to effec-
tively generate gates for convolution kernels to modify the weights with the
guidance of global context. Our CGC consists of a Context Encoding Module
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that encodes context information into latent representations, a Channel In-
teracting Module that projects them into the space of output dimension, and
a Gate Decoding Module that decodes the latent representations to produce
the gate.

– Our proposed CGC can better capture local patterns and compose discrim-
inative features, and consistently improve the generalization of traditional
convolution with a negligible complexity increment on various tasks includ-
ing image classification, action recognition, and machine translation.

2 Related Works

There have been many efforts in augmenting CNNs with context information.
They can be roughly categorized into three types: first, adding backward con-
nections in CNNs [47,55,54] to model the top-down influence [15] like humans’
visual processing system; second, modifying intermediate feature representations
in CNNs according to the attention mechanism [48,51,52,8,4]; third, dynamically
generating the parameters of convolutional layers according to local or global in-
formation [28,12,53,59,29,35,9].

For the first category of works, it is still unclear how the feedback mechanism
can be effectively and efficiently modeled in CNNs. For example, Yang et al. [54]
proposed an Alternately Updated Clique to introduce feedback mechanisms into
CNNs. However, compared to traditional CNNs, the complex updating strategy
increases the difficulty for training them as well as the latency at the inference
time. The second category of works is the global feature interaction methods.
They [48,49,51,39,25,52,8,4,3] were proposed recently to modify local features
according to global context information, usually by a global correspondence, i.e.,
the self-attention mechanism. There are also works on reducing the complexity of
the self-attention mechanism [40,10]. However, this family of works only considers
changing the input feature maps.

The third type of works is more related to our work. Zhu et al. [59] pro-
posed to adaptively set the offset of each element in a convolution kernel and
the gate value for each element in the input local feature patch. However, the
mechanism only changes the input to the convolutional layer. The weight tensor
of the convolutional layer is not considered. Wu et al. [53] proposed to dynam-
ically generate the weights of convolution kernels. However, it is specialized for
Lightweight Convolution [53] and only takes local segments as inputs. Another
family of works on dynamic filters [28,29,35] also belongs to this type. They
generate weights of convolution kernels using features extracted from input im-
ages by another CNN feature extractor. The expensive feature extraction process
makes it more suitable for generating a few filters, e.g., in the case of low-level
image processing. It is impractical to generate weights for all the layers in a deep
CNN model in this manner.
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Fig. 2: Our proposed CGC consists of three components, namely the Context En-
coding Module, the Channel Interacting Module, and the Gate Decoding Mod-
ule. The Context Encoding Module encodes global context information into a
latent representation C; the Channel Interacting Module transforms C to O with
output dimension o; the Gate Decoding Module produces G(1) and G(2) from C
and O to construct the gate G. ~ and � denote convolution and element-wise
multiplication operations, respectively. ⊕ is shown in Eq. (1). The dimension
transformed in each linear layer is underlined.

3 Context-Gated Convolution

3.1 Preliminaries

Without loss of generality, we consider one sample of 2D case. The input to
a convolutional layer is a feature map X ∈ Rc×h×w, where c is the number of
channels, and h,w are respectively the height and width of the feature map. In
each convolution operation, a local patch of size c × k1 × k2 is collected by the
sliding window to multiply with the kernel W ∈ Ro×c×k1×k2 of this convolutional
layer, where o is the number of output channels, and k1, k2 are respectively
the height and width of the kernel. Therefore, only local information within
each patch is extracted in one convolution operation. Although in the training
process, the convolution kernels are learned from all the patches of all the images
in the training set, the kernels are not adaptive to the current context during
the inference time.

3.2 Module Design

In order to handle the aforementioned drawback of traditional convolution, we
propose to incorporate the global context information during the convolution
process. Different from the existing approaches that modify the input features
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according to the context, e.g., a global correspondence of feature representations,
we attempt to directly modulate the convolution kernel under the guidance of
the global context information.

One simple and straightforward way of modulating the convolution kernel W
with global context information is to directly generate a gate G ∈ Ro×c×k1×k2

of the same size as W according to the global context. Assuming that we gener-
ate the gate from a context vector v ∈ Rl using a linear layer without the bias
term, the number of parameters is l× o× c× k1 × k2, which is extremely catas-
trophic when we modulate the convolution kernel of every convolutional layer.
For modern CNNs, o and c can be easily greater than 100 or even 1,000, which
makes o× c the dominant term in the complexity. Inspired by previous works on
convolution kernel decomposition [24,11], we propose to decompose the gate G

into two tensors G(1) ∈ Rc×k1×k2 and G(2) ∈ Ro×k1×k2 , so that the complexity
of o× c can thereby significantly be broken down.

However, directly generating these two tensors is still impractical. Supposing
that we generate them with two linear layers, the number of parameters is l ×
(o+ c)× k1 × k2, which is of the same scale as the number of parameters of the
convolution kernel itself. The bottleneck now is jointly modeling channel-wise
and spatial interactions, namely l and (o+ c)× k1 × k2, considering that v ∈ Rl

is encoded from the input feature map X ∈ Rc×h×w. Inspired by depth-wise
separable convolutions [24,11], we propose to model the spatial interaction and
the channel-wise interaction separately to further reduce the complexity.

In this paper, we propose one novel Context-Gated Convolution (CGC) to in-
corporate the global context information during the convolution process. Specif-
ically, our proposed CGC consists of three modules: the Context Encoding Mod-
ule, the Channel Interacting Module, and the Gate Decoding Module. As shown
in Fig. 2, the Context Encoding Module encodes global context information in
each channel into a latent representation C via spatial interaction; the Chan-
nel Interacting Module projects the latent representation to the space of output
dimension o via channel-wise interaction; the Gate Decoding Module produces
G(1) and G(2) from the latent representation C and the projected representation
O to construct the gate G via spatial interaction. The detailed information is
described in the following.

Context Encoding Module. To extract contextual information, we first
use a pooling layer to reduce the spatial resolution to h′ ×w′ and then feed the
resized feature map to the Context Encoding Module. It encodes information
from all the spatial positions for each channel, and extracts a latent representa-
tion of the global context. We use a linear layer with weight E ∈ Rh′×w′×d to
project the resized feature map in each channel to a latent vector of size d. In-
spired by the bottleneck structure from [21,25,51,48], we set d = k1×k2

2 to extract
informative context, when not specified. The weight E is shared across different
channels. A normalization layer and an activation function come after the linear
layer. There are c channels, so the output of the Context Encoding Module is
C ∈ Rc×d. Since the output is fed into two different modules, we accordingly
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apply two individual Normalization layers so that different information can be
conveyed if needed.

Channel Interacting Module. It projects the feature representations C ∈
Rc×d to the space of output dimension o. Inspired by [19], we use a grouped linear
layer I ∈ R

c
g×

o
g , where g is the number of groups. The weight I is shared among

different dimensions of d and different groups. A normalization layer and an
activation function come after the linear layer. The final output of the Channel
Interacting Module is O ∈ Ro×d.

Gate Decoding Module. It takes both C and O as inputs, and decodes
the latent representations to the spatial size of convolution kernels. We use two
linear layers whose weights Dc ∈ Rd×k1×k2 and Do ∈ Rd×k1×k2 are respectively
shared across different channels in C and O. Then each element in the gate G
is produced by:

Gh,i,j,k = σ(G
(1)
i,j,k + G

(2)
h,j,k) = σ((CDc)i,j,k + (ODo)h,j,k), (1)

where σ(·) denotes the sigmoid function. Now we have G with the same size of
the convolution kernel W, which is generated from the global context by our
lightweight modules. Then we can modulate the weight of a convolutional layer
by element-wise multiplication to incorporate rich context information:

Ŵ = W � G. (2)

With the modulated kernel, a traditional convolution process is performed on the
input feature maps, where the context information can help the kernel capture
more representative patterns and also compose features of interest.

Complexity. The computational complexity of our three modules is O(c×
d× h′×w′+ c× o/g+ c× d× k1× k2 + o× d× k1× k2 + o× c× k1× k2), where
h′, w′ can be set independent of h,w. It is negligible compared to convolution’s
O(o× c× k1 × k2 × h×w). Except the linear time of pooling, the complexity of
these three modules is independent of the input’s spatial size. The total number
of parameters is O(d × h′ × w′ + c × o/g2 + d × k1 × k2), which is negligible
compared to traditional convolution’s O(o × c × k1 × k2). Therefore, we can
easily replace the traditional convolution with our proposed CGC with a very
limited computation and parameter increment, and enable convolutional layers
to be adaptive to global context.

3.3 Discussions

We are aware of the previous works on dynamically modifying the convolu-
tion operation [12,53,28,29,35,59]. As discussed before, [59] essentially changes
the input to the convolutional layer but not the weight tensor of the convolu-
tional layer. Dynamic Convolution [53] is specialized for the Lightweight convo-
lution [53] and only adaptive to local inputs. The family of work on dynamic
filters [28,29,35] generates weights of convolution kernels using features extracted
from input images by another CNN feature extractor. It is too expensive to gen-
erate weights for all the layers in a deep CNN model in this manner. In contrast,
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our CGC takes feature maps of a convolutional layer as input and makes it
possible to dynamically modulate the weight of each convolutional layer, which
systematically improves CNNs’ global context modeling ability.

Both global feature interaction methods[48,49,51,39,25,8,4,3] modifying fea-
ture maps and our proposed CGC modulating kernels can incorporate the global
context information into CNN architectures, which can boost the performance
of CNNs. However, 1) with our CGC, the complexity of modulating kernels does
not depend on input size, but global feature interaction methods, e.g., Non-local,
may suffer from a quadratic computational complexity w.r.t. the input size; 2)
our CGC can be easily trained from scratch and improve the training stability
of CNNs according to our experiments (Sections 4.2 and 4.3); 3) by modulat-
ing kernels, our CGC can dynamically create kernels with specialized functions
according to context (Section 4.2) and thus enable CNNs to accordingly cap-
ture discriminative information as adaptive processors, which cannot be realized
by modifying feature maps. Moreover, our CGC is also somewhat complemen-
tary to global feature interaction methods (Sections 4.2 and 4.3) and we can
further improve CNN’s performance by applying both CGC and global feature
interaction methods.

4 Experiments

In this section, we demonstrate the effectiveness of our proposed CGC in incor-
porating 1D, 2D, and 3D context information in 1D, 2D, and (2+1)D convolu-
tions. We conduct extensive experiments on image classification, action recogni-
tion, and machine translation, and observe that our CGC consistently improves
the performance of modern CNNs with a negligible parameter increment on six
benchmark datasets: ImageNet [45], CIFAR-10 [31], ObjectNet [2], Something-
Something (v1) [18], Kinetics [5], and IWSLT’14 De-En [6].

4.1 Implementation Details

All of the experiments are based on PyTorch [41]. All the linear layers are with-
out bias terms. We follow common practice to use Batch Normalization [27] for
computer vision tasks, and Layer Normalization [1] for natural language process-
ing tasks, respectively. We use ReLU [36] as the activation function for all the
experiments in this paper. We use average pooling with h′ = k1 and w′ = k2,
when not specified. Note that we only replace the convolution kernels with a
spatial size larger than 1. For those point-wise convolutions, we take them as
linear layers and do not modulate them. To reduce the size of I, we fix c/g = 16
when not specified. We initialize all these layers as what [20] did for computer
vision tasks and as what [17] did for natural language processing tasks, when
not specified.
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Table 1: Image classification results on ImageNet and CIFAR-10. Param indi-
cates the number of parameters in the model. ∆MFLOPs is the increment of
the number of multiplication-addition operations compared to ResNet-50 (R50,
4 GFLOPs) for ImageNet models and ResNet-110 (R110, 256 MFLOPs) for
CIFAR-10 models. Bold indicates the best result.

Dataset Training Setting Model Param ∆MFLOPs Top-1(%) Top-5(%)

ImageNet

-
R50 + GloRe [8] 30.5M 1200 78.4 -
DCNv2-R50 [59] 27.4M 200 78.2 94.0
GC-R50 [4] 28.08M 100 77.70 93.66

Default

SE-R50 [25] 28.09M 8 77.18 93.67
BAM-R50 [39] 25.92M 83 76.90 93.40
GC-R50 [4] 28.11M 8 73.90 91.70
DCNv2-R50 [59] 27.4M 200 77.21 93.69
SK-R50 [33] 37.25M 1837 77.15 93.54
R50 [21] 25.56M - 76.16 92.91
R50 + CGC(Ours) 25.59M 6 77.48 93.81
CBAM-R50 [52] 28.09M 15 77.34 93.69
CBAM-R50 + CGC(Ours) 28.12M 21 77.68 93.68

Advanced

DCNv2-R50 [59] 27.4M 200 78.89 94.60
SE-R50 [25] 28.09M 8 78.79 94.52
R0 [21] 25.56M - 78.13 94.06
R50 + CGC(Ours) 25.59M 6 79.54 94.78
CBAM-R50 [52] 28.09M 15 78.86 94.58
CBAM-R50 + CGC(Ours) 28.12M 21 79.74 94.83

CIFAR-10
R110 [22] 1.73M - 93.96 99.73
R110 + CGC(Ours) 1.80M 2 94.86 99.82

4.2 Image Classification

Experimental Setting. Following previous works [21] on ImageNet [45], we
train models on the ImageNet 2012 training set, which contains about 1.28 mil-
lion images from 1,000 categories, and report the results on its validation set,
which contains 50,000 images. We replace all the convolutions that are not 1× 1
in ResNet-50 [21] with our CGC and train the network from scratch. Note that
for the first convolutional layer, we use I ∈ R3×64 for the Channel Interact-
ing Module. We conduct experiments in two settings: Default and Advanced.
For the Default setting, we follow common practice [21] and apply minimum
training tricks. For the Advanced setting, we borrow training tricks from [23] to
validate that our CGC can still improve the performance, even under a strong
baseline. CIFAR-10 contains 50K training images and 10K testing images in 10
classes. We follow common practice [22] to train and evaluate the models. We
take ResNet-110 [22] (with plain blocks) as the baseline model. All the compared
methods are trained based on the same training protocol. The details are pro-
vided in the supplementary material. For evaluation, we report Top-1 and Top-5
accuracies of a single crop with the size 224× 224 for ImageNet and 32× 32 for
CIFAR-10, respectively.

ObjectNet [2] is a new challenging evaluation dataset for image classification.
There are 113 classes out of 313 ObjectNet classes, which overlap with ImageNet
classes. We follow [2] to evaluate models trained on ImageNet on the overlapped
classes.

Performance Results. As Table 1 shows, our CGC significantly improves
the performances of baseline models on both ImageNet and CIFAR-10. On Im-
ageNet, our CGC improves the Top-1 accuracy of ResNet-50 under the Ad-
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Fig. 3: The training curves of ResNet-50 and ResNet-50 + CGC (ours) on Ima-
geNet under the default training setting.

Table 2: Image classification results on ObjectNet. Bold indicates the best result.

Model Top-1(%) Top-5(%)
R50 [21] 29.35 48.42
SE-R50 [25] 29.48 45.55
DCNv2-R50 [59] 29.74 48.83
CBAM-R50 [52] 29.56 48.68
R50 + CGC(Ours) 31.53 50.16

vanced setting by 1.41% with only 0.03M more parameters and 6M more FLOPs,
which verifies our CGC’s effectiveness of incorporating global context and its ef-
ficiency. We observe that our CGC outperforms DCN-v2 [59], SK-Net [33] and
CBAM [52], which indicates the superiority of modulating kernels. We also ob-
serve that our CGC can also improve the performance of CBAM-ResNet-50 [52]
consistently under both settings, which indicates that our proposed CGC is ap-
plicable with state-of-the-art global feature interaction methods. CBAM-ResNet-
50 + CGC even reaches 79.74% Top-1 accuracy, which outperforms the other
compared methods by a large margin.

We also find that GC-ResNet-50 is hard to train from scratch unless using
the fine-tuning protocol reported by [4], which indicates that modifying features
may be misleading in the early training process. Although our CGC introduces
a few new parameters, our model converges faster and more stably compared
to vanilla ResNet-50, as shown in Fig. 3. We conjecture that this is because the
adaptiveness to global context improves the model’s generalization ability and
the gating mechanism reduces the norm of gradients back-propagated to the
convolution kernels, which leads to a smaller Lipschitz constant and thus better
training stability [46,42].

To further validate the generalization ability of our CGC, we use Object-
Net to evaluate models with good performances on ImageNet. ObjectNet [2] is
recently proposed to push image recognition models beyond their current limit
of generalization. The dataset contains images “in many rotations, on differ-
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Fig. 4: Visualization of the feature maps produced by ResNet-50 and CGC-
ResNet-50 from the ImageNet validation set images. (Best viewed on a monitor
when zoomed in.)

ent backgrounds, from multiple viewpoints”, which makes it hard for models
trained on ImageNet to correctly classify these images. As Table 2 shows, our
CGC significantly improves the generalization ability of the ResNet-50 baseline.
The improvement (2.18%) is even larger than that on ImageNet validation set.

Visualization. To understand how CGC helps the model capture more in-
formative features under the guidance of context information, we visualize the
feature maps of ResNet-50 and our CGC-ResNet-50 by Grad-CAM++ [7]. As
Fig. 4 shows, overall, the feature maps (After the CGC) produced by our CGC-
ResNet-50 cover more informative regions, e.g., more instances or more parts of
the ground-truth object, than vanilla ResNet-50.

Specifically, we visualize the feature maps before the last CGC in the model,
the context information used by CGC, and the resulting feature maps after the
CGC. As is clearly shown in Fig. 4, the proposed CGC extracts the context infor-
mation from representative regions of the target object and successfully refines
the feature maps with comprehensive understanding of the whole image and the
target object. For example, in Gold Fish 1, the heads of the fishes are partially
visible. Vanilla ResNet-50 mistakes this image as Sea Slug, because it only pays
attention to the tails of the fishes, which are similar to sea slugs. However, our
CGC utilizes the context of the whole image and guides the convolution with
information from the entire fishes, which helps the model classify this image
correctly.
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Analysis of the Gate. To further validate that our CGC uses context
information of the target objects to guide the convolution process, we calculate
the average modulated kernel (in the last CGC of the model) for images of
each class in the validation set. Then we calculate inter-class L − 2 distance
between every two average modulated kernels, i.e., class centers, and the intra-
class L−2 distance (mean distance to the class center) for each class. As is shown
in the supplementary material, we visualize the difference matrix between inter-
class distances and intra-class distances. In more than 93.99% of the cases, the
inter-class distance is larger than the corresponding intra-class distance, which
indicates that there are clear clusters of these modulated kernels and the clusters
are aligned very well with the classes.

This observation strongly supports that our CGC successfully extracts class-
specific context information and effectively modulates the convolution kernel
to extract representative features. Meanwhile, the intra-class variance of the
modulated kernels indicates that our CGC dynamically modulates convolution
kernels according to different input contexts.

Ablation Study. In order to demonstrate the effectiveness of our module
design, ablation studies are conducted on CIFAR-10, as illustrated in Table 3a.
Specifically, we ablate many variants of our CGC and find that our default setting
is a good trade-off between parameter increment and performance gain. The
experiments on the combination of G(1) and G(2) show that our decomposition
approach in Eq. (1) is a better way to construct the gate. For channel interacting,
we find that using a full linear model with g = 1 achieves better performance
with more parameters, as is expected. We try removing the bottleneck structure
and set d = k1 × k2, and the performance drops, which validates the necessity
of the bottleneck structure.

Shared Norm indicates using the same Normalization layer for the following
two branches. For Two Es, we learn another E to encode C only for the Channel
Interacting Module. We also try sharing D for generating G(1) and G(2), using
larger resized feature maps and using max pooling instead of average pooling. All
the results support our default setting. We also test different numbers of layers
to replace traditional convolutions with our CGC. The result indicates that the
more, the better. We select 3 variants with a similar number of parameters and
performance on CIFAR-10 and further perform ablation studies for them on
ImageNet. As Table 3b shows, we observe the same performance rankings of
these variants on ImageNet as those on CIFAR-10.

4.3 Action Recognition

Baseline Methods. For the action recognition task, we adopt three baselines
to evaluate the effectiveness of our CGC: TSN [50], P3D-A [43] (details are in
the supplementary material), and TSM [34]. Because our CGC’s effectiveness of
introducing 2D spatial context to CNNs has been verified on image classification,
in this part, we focus on its ability of incorporating 1D temporal context and
3D spatiotemporal context. For the 1D case, we apply our CGC to temporal
convolutions in every P3D-A block. For the 3D case, we apply our CGC to
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Table 3: Ablation studies on CIFAR-10 and ImageNet. Param denotes the num-
ber of parameters in the model. ∆MFLOPs is the increment of the number
of multiplication-addition operations compared to ResNet-110 (256 MFLOPs).
Bold indicates our default setting. Top-1 Accuracy (%) (average of 3 runs) is
reported.

(a) CIFAR-10

Model Param ∆MFLOPs Top-1 (%)

ResNet-110 [22] 1.73M - 93.96
ResNet-110 + CGC 1.80M 1.681 94.86

only G(1) 1.75M 1.447 94.53

only G(2) 1.78M 1.472 94.41

G(1) ∗ G(2) 1.80M 1.681 94.59

g = 1 1.96M 1.681 94.97
d = k1 × k2 1.81M 1.741 94.61

Shared Norm 1.79M 1.681 94.72
Two Es 1.80M 1.871 94.53
Shared D 1.79M 1.681 94.78

h′ = 2k1, w
′ = 2k2 1.81M 1.681 94.80

MaxPool 1.80M 1.681 94.44

(res1,2,3) 1.80M 1.678 94.55
(res2,3) 1.78M 1.052 94.43
(res3) 1.76M 0.622 94.26

(b) ImageNet

Model Top-1 (%)

ResNet-50 [21] 76.16
ResNet-50 + CGC 77.48

Shared Norm 77.21
Shared D 77.28

h′ = 2k1, w
′ = 2k2 77.34

spatial convolutions in P3D-A or 2D convolutions in TSN or TSM; the pooling
layer produces c × k × k × k cubes, the Context Encoding Module encodes
k × k × k feature maps into a vector of length k3/2, and the Gate Decoding
Module generates o × c × t × k × k gates. Note that for the first convolutional
layer, we use I ∈ R3×64 for the Channel Interacting Module.

Experimental Setting. The Something-Something (v1) dataset has a train-
ing split of 86,017 videos and a validation split of 11,522 videos, with 174 cate-
gories. We follow [42] to train on the training set and report evaluation results
on the validation set. We follow [34] to process videos and augment data. Since
we only use ImageNet for pretraining, we adapt the code base of TSM but the
training setting from [42]. We train TSN- and TSM-based models for 45 epochs
(50 for P3D-A), starting from a learning rate of 0.025 (0.01 for P3D-A) and
decreasing it by 0.1 at 26 and 36 epochs (30, 40, 45 for P3D-A). The Kinetics [5]
dataset has 400 action classes and 240K training samples. We follow [34] to train
and evaluate all the compared models.

For TSN- and TSM-based models, the batch size is 64 for 8-frame models
and 32 for 16-frame models, and the dropout rate is set to 0.5. P3D-A takes 32
continuously sampled frames as input and the batch size is 64, and the dropout
ratio is 0.8. We use the evaluation setting of [34] for TSN- and TSM-based models
and the evaluation settings of [51] for P3D-A. All the models are trained with
8-GPU machines.

Performance Comparisons. As Table 4 and Table 5 show, our CGC sig-
nificantly improves the performance of baseline CNN models, compared to Non-
local [51]. As aforementioned, Non-local modules modify the input feature maps
of convolutional layers by reassembling local features according to the global
correspondence. We apply Non-local blocks in the most effective way as is re-
ported by [51]. However, we observe that its performance gain is not consistent
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Table 4: Action recognition results on Something-Something (v1). Backbone
indicates the backbone network architecture. Param indicates the number of pa-
rameters in the model. Frame indicates the number of frames used for evaluation.
Bold indicates the best result.

Model Backbone Param Frame Top-1(%) Top-5(%)

TRN [57] BNInception 18.3M 8 34.4 -
TRN [34] ResNet-50 31.8M 8 38.9 68.1
ECO [60] BNInc+Res18 47.5M 8 39.6 -
ECO [60] BNInc+Res18 47.5M 16 41.4 -
ECOEnLite [60] BNInc+Res18 150M 92 46.4 -

TSN [50] ResNet-50 23.86M 8 19.00 44.98
TSN + Non-local [51] ResNet-50 31.22M 8 25.73 55.17
TSN + CGC (Ours) ResNet-50 24.07M 8 32.58 60.06

P3D [43] ResNet-50 25.38M 32 × 30 45.17 74.61
lslsP3D + Non-local [51] ResNet-50 32.73M 32 × 30 45.88 74.94
P3D + CGC 1D (Ours) ResNet-50 25.39M 32 × 30 46.14 75.92
P3D + CGC 3D (Ours) ResNet-50 25.61M 32 × 30 46.35 75.97
P3D + CGC 1D & 3D (Ours) ResNet-50 25.62M 32 × 30 46.73 76.04

TSM [34] ResNet-50 23.86M 8 44.65 73.94
TSM + Non-local [51] ResNet-50 31.22M 8 43.91 72.18
TSM + CGC (Ours) ResNet-50 24.07M 8 46.00 75.11

TSM [34] ResNet-50 23.86M 16 46.61 76.18
TSM + CGC (Ours) ResNet-50 24.09M 16 47.87 77.22

Table 5: Action recognition results on Kinetics. Backbone indicates the backbone
network architecture. Param indicates the number of parameters in the model.
Bold indicates the best result.

Model Backbone Param Top-1(%) Top-5(%)

TSM [34] ResNet-50 23.86M 74.12 91.21
TSM + Non-local [51] ResNet-50 31.22M 75.60 92.15
TSM + CGC (Ours) ResNet-50 24.07M 76.06 92.50
TSM + Non-local + CGC (Ours) ResNet-50 31.43M 76.40 92.50

when training the model from scratch. When applied to TSM on the Something-
Something dataset, it even degrades the performance. Our proposed CGC con-
sistently improves the performances of all the baseline models. We also observe
that on Kinetics, our CGC and Non-local are somewhat complementary to each
other since applying both of them to the baseline achieves the highest perfor-
mance. This is consistent with the observation of the combination of CBAM and
our CGC in Section 4.2.

4.4 Machine Translation

Baseline Methods. The LightConv proposed by [53] achieves better perfor-
mance with a lightweight convolutional model, compared to Transformer [48]. We
take it as the baseline model and augment its Lightweight Convolution with our
CGC. Note that the Lightweight Convolution is a grouped convolution L ∈ RH×k

with weight sharing, so we remove the Channel Interacting Module since we
do not need it to project latent representations. We resize the input sequence
S ∈ Rc×L to RH×3k with average pooling. For those sequences shorter than 3k,
we pad them with zeros. Since the decoder decodes translated words one by one
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Table 6: Machine translation results on IWSLT’14 De-En. Param indicates the
number of parameters in the model. Bold indicates the best result.

Model Param BLEU-4
Deng et al. [13] - 33.08
Transformer [48] 39.47M 34.41
LightConv [53] 38.14M 34.84
LightConv + Dynamic Encoder [53] 38.44M 35.03
LightConv + CGC Encoder (Ours) 38.15M 35.21

at the inference time, it is unclear how to define global context for it. Therefore,
we only replace the convolutions in the encoder.

Experimental Setting. We follow [53] to train all the compared models
with 160K sentence pairs and 10K joint BPE vocabulary. We use the training
protocol of DynamicConv [53] provided in [37]. The widely-used BLEU-4 [38]
is reported for evaluation of all the models. We find that it is necessary to set
beam width to 6 to reproduce the results of DynamicConv reported in [53], and
we fix it to be 6 for all the models.

Performance Comparisons. As Table 6 shows, replacing Lightweight Con-
volutions in the encoder of LightConv with our CGC significantly outperforms
LightConv and LightConv + Dynamic Encoder by 0.37 and 0.18 BLEU, respec-
tively, yielding the state-of-the-art performance. As was discussed previously,
Dynamic Convolution leverages a linear layer to generate the convolution kernel
according to the input segment, which lacks the awareness of global context.
This flaw may lead to sub-optimal encoding of the source sentence and thus the
unsatisfying decoded sentence. However, our CGC incorporates global context of
the source sentence and helps significantly improve the quality of the translated
sentence. Moreover, our CGC is much more efficient than Dynamic Convolution
because of our module design. Our CGC only needs 0.01M extra parameters,
but Dynamic Convolution needs 30× more.

5 Conclusions

In this paper, motivated by the neuroscience research on neurons as “adaptive
processors”, we proposed a lightweight Context-Gated Convolution (CGC) to
incorporate global context information into CNNs. Different from previous works
which usually modify input feature maps, our proposed CGC directly modulates
convolution kernels under the guidance of global context information. In specific,
we proposed three modules to efficiently generate a gate to modify the kernel.
As such, our CGC is able to extract representative local patterns according to
global context. The extensive experimental results show consistent performance
improvements on various tasks with a negligible computational complexity and
parameter increment. In the future, our proposed CGC can be incorporated into
the searching space of Neural Architecture Search (NAS) to further improve the
performance of NAS models.
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