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Abstract. In this paper, we propose a structural deep metric learning
(SDML) method for room layout estimation, which aims to recover the
3D spatial layout of a cluttered indoor scene from a monocular RGB im-
age. Different from existing room layout estimation methods that solve
a regression or per-pixel classification problem, we formulate the room
layout estimation problem from a metric learning perspective where we
explicitly model the structural relations across different images. We pro-
pose to learn a latent embedding space where the Euclidean distance
can characterize the actual structural difference between the layouts of
two rooms. We then minimize the discrepancy between an image and
its ground-truth layout in the learned embedding space. We employ a
metric model and a layout encoder to map the RGB images and the
ground-truth layouts to the embedding space, respectively, and a lay-
out decoder to map the embeddings to the corresponding layouts, where
the whole framework is trained in an end-to-end manner. We perform
experiments on the widely used Hedau and LSUN datasets and achieve
state-of-the-art performance.

Keywords: Deep Metric Learning - Room Layout Estimation - Struc-
tured Prediction

1 Introduction

Room layout estimation has attracted great attention in recent years, since it
serves as a basic step to provide strong priors for a variety of applications such as
indoor navigation [1,30,55], augmented reality [26,27,46], and scene understand-
ing [8,9,13]. The goal of room layout estimation is to find a projection of a 3D
box onto the image which best fits the actual layout of the scene, as described in
Fig. 1. A major challenge of this task is the presence of clutter, where different
kinds of furniture like beds, sofas, and tables may totally or partially occlude
the boundary between two surfaces of the box, making it difficult to recover the
underlying layout of the room.
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Fig. 1. Comparison of the proposed SDML method with existing methods for room
layout estimation which simply regress the locations of keypoints (e.g. point of inter-
section among the left wall, the front wall, and the ceiling). The keypoints are often
occluded by clutter like beds or sofas, making it hard to directly determine the exact
locations of keypoints. Instead, we propose to learn a latent embedding space to explic-
itly model the structural relations across different images and use the globally similar
images as prior to better infer the precise keypoints of the query image.

A main characteristic of room layout estimation is that the output is of a
structured form, as indoor scenes typically satisfy the “Manhattan world as-
sumption” [2]. Conventional methods on room layout estimation represent the
room layout by a set of parameters and solve a structured prediction prob-
lem [16,24,36]. With the success of deep learning, recent works begin to employ
deep convolutional neural networks (CNNs) [15,20,37,41] to extract features from
images. The first category of works obtain a segmentation map for each image
and then perform a search process for the best legitimate layout [3,29,49, 51].
The second category of works define a set of keypoints to describe the room
layout and regress the locations of those keypoints [17,23]. However, all these
previous works fail to consider the structural correlations among different images
and cannot well capture the global features of the layouts. On the other hand,
being able to globally consider the whole indoor scene is important for room
layout estimation due to the occlusion problem caused by clutter. For instance,
as demonstrated by scene A in Fig. 1, it is difficult to directly find the point of
intersection of the floor, the left wall, and the right wall, yet it is simpler to say
it is similar to scene B in terms of their layouts. Using the predicted layout of
scene B as prior, it is easier to determine the keypoints and layout of scene A.

Motivated by the above example, in this work, we formulate the room layout
estimation problem from a metric learning perspective and propose a structural
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deep metric learning (SDML) method which can be trained in an end-to-end
manner. We explicitly model the structural relations across images by learn-
ing a mapping from the image space to a latent embedding space where the
Euclidean distance can reflect the similarity of the underlying layouts of two
images, i.e., a smaller distance between two images with more similar layouts
and vice versa. We further propose a dense structural loss to enforce such a
continuous constraint, which generalizes beyond previous triplet-based loss and
enjoys the advantage of efficient sampling and faster convergence. We propose
a layout antoencoder with a layout encoder to obtain a representation for each
layout in the embedding space and a layout decoder to generate layouts from the
embedding space. We then minimize the difference of the embeddings of an im-
age and its corresponding ground-truth layout as well as the reconstruction cost
between the original layout and the reconstructed layout. In the test phase, we
simply connect the metric model and the layout decoder to obtain an estimated
layout for an image. Extensive experiments on the widely used Hedau [16] and
LSUN [50] datasets demonstrate the effectiveness of the proposed approach.

2 Related Work

Room Layout Estimation: The problem of room layout estimation was first
formally introduced by Hedau et al. [16] and has attracted constant attention
since then. Most conventional methods used structured prediction learning algo-
rithms (e.g., structured SVMs [42]) for room layout estimation [16,24,35,36,43].
For example, Hedau et al. [16] proposed to iteratively localize visible objects
and refit the box with structured SVMs in order to be more robust to clutter.
Lee et al. [24] generated room hypotheses from line segments [25] and elimi-
nated invalid hypotheses by volumetric reasoning before ranking them. Wang et
al. [43] introduced latent variables to implicitly describe clutters and proposed
to parameterize a layout by four factors inferred using structured SVMs.

Recent methods took advantage of deep networks and employed fully con-
volutional networks (FCNs) [28] to extract features, improving the performance
of conventional methods dramatically. Mallya et al. [29] and Ren et al. [32] ex-
tracted per-pixel feature maps using FCNs and then ranked layout proposals
based on them. Dasgupta et al. [3] and Zhao et al. [51] proposed to perform in-
ference through optimization instead of proposal ranking, but they still require a
two-step procedure to obtain the layout. Lee et al. [23] proposed an end-to-end
framework for room layout estimation by simultaneously predicting the room
type of a scene and regressing a set of pre-defined keypoints. However, existing
methods lack a global understanding of the scene which is important to infer
the underlying layout, especially for a cluttered room. Differently, the proposed
SDML method explicitly models the structural relations among images which
provide strong priors for more exact and robust room layout inference.

Metric Learning: Metric learning aims to learn a good distance function to
measure the similarities between images with a common objective of minimizing
intra-class distances and maximizing inter-class distances. Conventional metric
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learning methods [4,11,44] usually learn a Mahalanobis distance as the distance
metric. Recently a variety of deep metric learning methods [7,34,38,39,54] have
been proposed and demonstrated promising results. They usually employ deep
CNNs to compute an embedding for each image and then adopt the Euclidean
distance between embeddings to model their similarities, where the loss function
is carefully designed to enforce a certain relational constraint within a structured
tuple. For example, Schroff et al. [34] proposed to separate the distances between
the positive pair and the negative pair in a triplet by a fixed margin. Sohn [38]
considered an (N+1)-tuple each time and required the metric to recognize one
positive from N — 1 negatives. Kim et al. [19] extended the triplet loss and
required the distance ratio in the continuous label space to be preserved in the
learned embedding space.

A straightforward application of metric learning is image retrieval as we
only need to find the nearest neighbors of the query image under the learned
metric. We can easily extend it to the classification problem by utilizing a K-
nearest neighbor classifier [10]. However, it is still unclear how to use deep metric
learning for classifying with structured output labels. We move a step forward
and propose a SDML method for end-to-end structured room layout estimation.

3 Proposed Approach

In this section, we first present our method for structural layout distance learning
and then describe the design of the layout autoencoder. Lastly, we detail the
proposed SDML approach for relational room layout inference.

3.1 Structural Layout Distance Learning

Room layout estimation aims to obtain a boxy representation of the underlying
layout of an indoor scene. Formally, let X = [x1,X2, -+ ,Xx] be a set of indoor
scene images and Z = [z1,29, - ,2zy]| be their corresponding ground-truth un-
derlying layouts. Our objective is to assign a label (left wall, front wall, right
wall, ceiling, and floor) to each pixel of the image indicating the surface it be-
longs to. For an image x of size [h, w, 3], we estimate its layout on the resolution
of [2, %] following the protocol in previous work [23].

Existing room layout estimation methods fail to consider the structural re-
lations across different images, which are actually of great value to obtain the
estimated room layout, especially for a cluttered scene. Motivated by this, we
propose to explore the correlations among different scenes by learning an em-
bedding space where the Euclidean distance can reflect the actual structural
distance between layouts.

To achieve this, we employ a CNN network to construct the mapping f(x;6;) =
y from the image space to the latent embedding space, where 6y is the parame-

w

ters of the metric network. We first extract a tensor M € R$ X% X2048 from the
last convolutional layer of the CNN. We then use a 1 x 1 convolution to obtain
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a feature map and flatten it to an n-dimension embedding that globally repre-
sents the layout. The learned distance is then defined as the Euclidean distance
between the corresponding embeddings of two images:

D, %55 05) = |[(xi;07) — £(x;07) |2, (1)

where || - ||2 denotes the L2-norm.

We use the pixelwise surface label difference between two layouts as the
layout distance [16], where we first employ the Hungarian algorithm [21] to find
the matching surfaces. We then learn the distance metric to approximate the
layout distance d(z;,z;) with the Euclidean distance D(x;,x;) so that images
with similar room layouts are clustered together. The objective function of the
metric learning problem can be formulated as:

L(Xiaxj) - (D(Xivxj) - d(zivzj))zv (2)

where z; and z; are the underlying room layouts of x; and x;, respectively.

Directly imposing such a constraint lacks flexibility and leads to inferior
performance, and Kim et al. [19] instead minimizes the difference of log distance
ratios in the two spaces based on triplets:

(50x) - Dlxarxy) o
(wnz) % d(zgzy) ) ®)

D
L(xq,%;,%;5) = (log 7

The goal of the structural layout distance learning is to obtain a metric to
accurately represent the structural distance between layouts. Exploiting more
relations imposes tighter constraints on the metric and is expected to perform
better. Kim et al. [19] shows that densely sampling more triplets in one mini-
batch improves the performance. However, there exist O(b®) triplets that can
be sampled from one minibatch where b is the batch size. Naively sampling all
triplets and directly applying (3) will greatly increase the time complexity. To
move a step forward, we propose a dense structural loss which includes not only
all the triplets but also all the quadruplets in the minibatch:

1 D(x;,%;) D(xy,x;)
Laense = — E log =220 I o AT N2 4
dense 9 N (Og d(Zi,Z]‘) 0g d(Zk,Zl) ) ) ( )
{i,5}#{k.1}

where 4, j, k, 1 € B. Note that the summands in (4) contain all the triplets when
1 = k. The proposed loss actually exploits all the triplet-wise relations and can
be seen as a generalization of (3).

Still, directly computing (4) is computationally infeasible. Using Lagrange’s
identity [45], we can rewrite (4) as:

bb—1 D(x;,x; D(x;,x;
Ldense = % Z (10g d((ZZ])))2 - ( Z log (77))27 (5)
i<jEB v o i<jeB

where B denotes a minibatch of indices of training images and b is the batch
size. We can efficiently compute the pairwise squared distance matrix D? by
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(a) Type 4 (c) Type 8

Fig. 2. Examples of the keypoint-based parameterization of room layouts. The LSUN
dataset [50] defines 11 room types with a total of 48 keypoints, where each room type
may contain different numbers of keypoints. We can generate a boxy layout by linking
the keypoints with straight lines based on a predefined rule specific to each room type.

matrix operations D? = y1T + 1Ty — 2YYT, where D;; = D(x;,%;), ¥ =
Hllyill3}ieB]T € RPN Y = [{y;}ie] € R?™, and m is the embedding size.

We see that the proposed dense structural loss (5) takes O(b?) time and
can take full advantage of the minibatch. It explicitly constrains each pair to
have the same ratio of distances with every other pair in one minibatch, which
generalizes (3) and can exploit more information without substantially increasing
the computing overhead.

3.2 Layout Autoencoder

Having obtained the latent embedding space, we can effectively measure the
structural distance between two scenes. We minimize the discrepancies between
the images and ground-truth labels by calculating L2 loss in this space. To
achieve this, we propose to learn a layout autoencoder composed of a layout
encoder g(z; 0,) to map a layout z to the embedding space and a decoder h(y;6},)
to map an embedding y back to the layout space.

We use the keypoint-based parameterization to describe a layout as specified
in the LSUN dataset [50]. See Fig. 2 for a demonstration. They define 11 types
of layouts with a total of 48 keypoints which include most pictures taken with
standard cameras in a cuboid room. Each room type contains a sequence of dif-
ferent keypoints defined in a specific order. Connecting these keypoints following
predefined rules will generate the final layout. The location of each keypoint can
be expressed by a 2D Gaussian distribution heatmap centered at the keypoint,
which is a more effective form as the input and output of CNNs [23]. Therefore,
we can represent all of the 48 keypoints by a 3D tensor K € R & X% X48 called key-
point tensor with each channel as the corresponding keypoint heatmap. A room
layout is then a combination of room type and the keypoint tensor z = {I, K},
where [ € {0,1,---,10}.

The layout encoder g is a two-layer convolutional network followed by a 1 x 1
convolutional layer, which shares the parameters with that in the metric model.
The encoder then flattens it to obtain the layout embedding. The input of the
encoder is a ground-truth keypoint tensor K9, where channels corresponding to
keypoints that do not appear in the ground-truth room type are set to zeros.
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Fig. 3. An illustration of the proposed SDML method for room layout estimation. The
metric model employs a CNN backbone network and a 1 x 1 convolutional layer to
obtain a feature map of the query image and flattens it to obtain the embedding. The
layout encoder first represents a ground-truth layout by the keypoint tensor and then
uses two convolutional layers and one 1 x 1 convolutional layer to obtain the feature
map. The 1x 1 convolutional layer shares parameters with that in the metric model and
we similarly flatten it to obtain the layout embedding. The layout decoder duplicates
the layout embedding and concatenates them with the tensor from the encoder to
aggregate global and local information. We then employ two convolutional layers to
reconstruct the keypoint tensor and use a softmax classifier to select correct heatmaps.

The layout decoder h is composed of two parts: the type classifier h, and
the keypoint estimator hy. The type classifier h, is a fully connected layer which
takes as input an embedding y and outputs an 11-dimension vector h.(y) rep-
resenting the predicted room type possibilities. The keypoint estimator hy, first
duplicates the embedding to obtain a tensor of size R&*¥%d and concatenates
them to the feature maps outputted by the CNN in the layout encoder to aggre-
gate both global and local information. We then use a two-layer convolutional
network to obtain the estimated keypoint tensor hy(y).

We use the reconstruction cost between the original and reconstructed ground-
truth label as the objective to train the layout autoencoder. Similar to Room-
Net [23], we measure the discrepancy of two keypoint tensors by the L2 loss of
only the channels corresponding to keypoints that appear in the original room
type 1(z). We use the softmax loss to train the type classifier to reconstruct the
original room type. The layout reconstruction loss is formulated as:

47
Liayour = Y Lita) (0) e ((2))i = K(@)illF + As Loofemas (he(8(2)), U(2)), (6)
i=0
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where [(z) denotes the type of layout z, I;(,) is an indicator function which equals
1 if the ith keypoint appears in the room type I(z), || - ||r denotes the Frobenius
norm, K(z); denotes the ith feature map of the keypoint tensor of layout z, As
is a pre-defined parameter, and L, f¢mas indicates the softmax loss function.

3.3 Relational Room Layout Inference

Keypoints are often occluded by clutter like beds and sofas, making it difficult
to directly recover the room layout of an indoor scene. We think it is simpler
to estimate the similarities of layouts of different scenes, and utilizing layouts of
other images as prior will help determine the exact layout of the query image.

However, existing methods on room layout estimation fail to correctly model
the relations between layouts and thus implicitly use a biased prior. For example,
RoomNet [23] treats room layout estimation as a regression problem and directly
uses the L2 distance to measure the discrepancy between layouts, which does not
consider the structural nature of room layouts and is not necessarily consistent
with the actually proper metric like the pixel error [16]. In this case, nearest
neighbors may not have the most similar underlying layouts and the correlations
cannot be used as a good prior. The core problem is that such a structural metric
is usually non-differential. We address this by learning an embedding space where
the L2 distance reflects the structural distance. The correlation between images
now is an unbiased prior and the nearest samples in the embedding space can
be correctly decoded to similar layouts.

To achieve this, we first review an image x from a global perspective and
consider its structural relation with other layouts to obtain the corresponding
embedding f(x) in the latent embedding space. Then we employ the layout
decoder h to map the embedding to the final estimated layout h(f(x)). The
overall framework of the proposed SDML is illustrated in Fig. 3.

To constrain the metric model f to map an image to the embedding cor-
responding to its ground-truth layout, we minimize the discrepancy between
the predicted layout and the ground-truth layout using a simple L2 loss in the
embedding space. The structural prediction loss is formulated as:

Latr = |If(x) — g(2)]1*. (7)

We can also regard (7) as a distribution matching loss [18] to minimize the shift
between the distributions of the image embeddings and layout embeddings.
Since we obtain an estimated layout by reconstruction from the embedding
space, the embedding of an image should be as close to the corresponding layout
embedding as possible. A shift from the correct layout embedding will cause an
error to the estimated layout and thus harms the accuracy of layout estimation.
Therefore, we tailor the proposed dense structural loss to further strengthen the
connections between image embeddings and layout embeddings. We propose to
constrain the log distance ratio between images and labels to be equal in the
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embedding space and the layout space:

Linetric = b(b—1) > (log Dxir2g)ys Y log Dxizg)ys (g

i£jeB d(Zi,Zj) i£jeB d(Zi,Zj)

where D(x;,2z;) = [|f(x;) — g(2z;)||2 is the Euclidean distance between the
mapped image f(x;) and the encoded layout g(z;) in the embedding space. Note
that (8) has the same computation complexity as the original dense structural
loss since we can similarly compute an asymmetric distance matrix. Moreover,
the proposed metric loss integrates the constraints on the relations of image
embeddings and layout embeddings and thus is more adaptive to the proposed
SDML method. We only use (8) to update the metric function f in order to make
the training more stable.

The entire framework of the proposed SDML approach is composed of three
parts, a metric model f to map a scene to its embedding, a layout encoder g to
map a layout to its embedding and a layout decoder h to map an embedding to
its corresponding layout. Our SDML method can be trained end-to-end where
we simultaneously learn the three parts f, g, and h. The overall objective of the
proposed approach can be formulated as:

min L = min Lyetric + A1 min gy + A2 min Ligyout 9)
05,04,0n Of 05,09 g9>%h
where A1 and Ay are parameters to balance the contributions of different losses.

Loetric constructs an embedding space where the Euclidean distance can
approximate the actual layout distance. L, minimizes the difference between
the predicted layout and the ground-truth layout by the L2 loss in the embedding
space. Liqyout learns a layout autoencoder to connect corresponding points in
the embedding space and structured layout space.

In the test phase, we can directly estimate the room layout of an image x
by h(f(x)). Having obtained the keypoint tensor, we can find the corresponding
keypoint heatmaps based on the estimated room type and extract the locations
of each keypoint by an argmax operation on the heatmap. We then link the key-
points following the pre-defined protocol to obtain the final boxy representation
of the estimated room layout.

4 Experiments

In this section, we conducted a variety of experiments to evaluate the perfor-
mance of the proposed SDML for room layout estimation. Our experiments
demonstrate the superiority of the proposed dense structural loss on the room
layout retrieval task and analyze the origins of performance improvement through
the ablation study. For room layout estimation, we employ the pixel error (PE)
and the keypoint error (KPE) as performance metrics. The pixel error measures
the average classification error of the predicted surface label of each pixel. The
keypoint error computes the average Euclidean distance between the estimated
keypoint locations and the ground-truth keypoint locations normalized by the
image diagonal length.
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4.1 Datasets

We followed existing methods [3,23,29] and evaluated our method on the widely
used Hedau [16] and Large-scale Scene Understanding Challenge (LSUN) [50]
room layout benchmark datasets. The Hedau dataset [16] consists of 367 images
collected from the Internet using LabelMe [33], including 209 training images, 53
validation images, and 105 test images. The LSUN dataset [50] consists of 5,394
images sampled from the SUN database [47], including 4000 training images,
394 validation images, and 1000 test images.

For all the experiments, we trained our model from scratch on the training
split of the LSUN dataset. In the training phase, we resized each image to a
scale of 320 x 320 and estimated its room layout at a scale of 40 x 40. In the test
phase, we obtained the estimated layouts at the scale of 40 x 40, but rescale it
to the original image scale.

4.2 Implementation Details

We conducted all the experiments using the PyTorch package. We instantiated
the metric function f by a ResNet-50 [15] backbone model with the dilated
network strategy [48] similar to that used by PSPNet [52], which takes as input
an 320 x 320 image and outputs a 40 x 40 x 2048 tensor. The following 1 x 1
convolutional layer further maps it to a feature map of size 40 x 40 x 1, rendering
1600 as the dimension of the embedding space. The layout encoder takes as input
a keypoint tensor of size 40 x 40 x 48 and employs two convolutional layers with
512 1 x 1 kernels and 2048 3 x 3 kernels to obtain a 40 x 40 x 2048 tensor. The
following 1 x 1 convolutional layer shares parameters with that in the metric
model. The layout decoder is composed of two convolutional layers with 512
3 x 3 kernels and 48 1 x 1 kernels. The classifier is a softmax layer with the
input of a 1600-dimension embedding and the output of an 11-dimension vector
indicating the estimated probabilities of the room type. We performed a random
horizontal mirror of images during training for data augmentation. We fixed the
batch size to 15 due to the limited physical memory of the GPU card. We used
the Adam optimizer and set the learning rate to 1074, We set A1, Ay, and A, to
5, 1, and 0.3, respectively, to balance the effect of different losses.

4.3 Results and Analysis

Evaluation of the dense structural loss: We first conducted an experiment
on the task of room layout retrieval to verify the effectiveness of the proposed
dense structural loss. The goal is to retrieve a set of images with similar underly-
ing layouts given a query image. We measure the distance between layouts by the
pixelwise surface label difference. We obtain the retrieved images by searching
for the nearest neighbors in the learned latent embedding space, which requires
the learned metric to accurately reflect the actual layout similarity. We adopted
the mean label distance (smaller is better) and the modified version of the nor-
malized discounted cumulative gain (nDCG) [19,22] (larger is better) as the
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Table 1. Room layout retrieval results (%) on the LSUN dataset compared with other
methods. Red and bold numbers denote the best and second-best results, respectively.

Method Mean label distance nDCG

Number of retrievals 1 2 4 8 16 1 2 4 8 16
Contrastive [14] 31.2 31.6 32.7 33.0 33.4 92.0 93.2 94.7 95.2 96.9
Triplet [34] 27.2 27.4 27.77 28.3 29.5 94.1 94.7 95.6 96.3 97.1
N-pair [38] 29.5 29.9 30.8 31.1 32.1 93.1 93.9 95.7 98.5 97.3
RoomNet [23] 27.9 28.2 29.7 30.9 32.5 93.3 93.8 94.9 96.0 96.5
Log-ratio (Random) [19] 25.2 26.4 27.1 28.7 30.5 95.3 96.0 96.9 97.4 97.8
Log-ratio (Dense) [19] 23.3 24.1 25.3 26.5 27.9 96.1 96.6 97.6 98.3 98.9
Dense structural 20.7 21.5 22.9 24.1 25.3 97.2 97.5 98.6 98.8 99.1

Dense structural (Layout) 20.9 21.6 23.0 24.0 25.1 97.4 97.5 98.5 98.7 99.2

Table 2. Performance of the proposed Table 3. Performance of the proposed
SDML method using different losses on SDML method under different model set-

the LSUN dataset. tings on the LSUN dataset.
Setting PE (%) KPE (%)  Setting PE (%) KPE (%)
SDML without Lmetric 9.93 6.42 RoomNet [23] 10.46 6.95

SDML without Lg¢r 15.36 10.23 RoomNet + Lgense 9.23 6.27

SDML with Lacnse 8.56 5.86 Keypoints regression  9.97 6.60
SDML 6.95 5.29 SDML 6.95 5.29

evaluation metrics. We employed 60 images as queries in the validation split of
the LSUN dataset. We refer readers to previous work [19] for more details.

We compared our dense structural loss with several baseline methods includ-
ing the contrastive loss [14], the triplet loss [34], the N-pair loss [38] and the
state-of-the-art method log-ratio loss with dense sampling [19]. The first three
methods aim to pull closer samples from the same class and push away samples
from different classes. For each sample, we chose its 30 nearest neighbors as pos-
itive samples, and others as negative samples to perform training. We evaluated
all the losses using the same metric model as described in Section 3.1. We also
tested the framework of RoomNet [23] and used the 512-dimension vector in the
room type prediction module as the embedding for room layout retrieval. For
our method, Dense structural denotes using the proposed dense structural loss
(5) and Dense structural (Layout) denotes using the proposed metric loss (8)
with a layout encoder.

Table 1 shows the results of room layout retrieval on the LSUN dataset. We
see that the proposed loss outperforms the other baseline methods by a large
margin. In particular, our method performs better than the state-of-the-art log-
ratio loss with dense sampling. This is because our loss exploits full information
from the batch and imposes more structural constraints on the metric.
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Table 4. Experimental results of the proposed SDML method compared with existing
methods. Red and bold numbers denote the best and second-best results, respectively.

Hedau dataset LSUN dataset

Method Time (s/image)
PE (%) PE (%) KPE (%)
Hedau et al. [16] 21.20 2423 15.48 -
Del Pero et al. [5] 16.30 - - 720
Gupta et al. [12] 16.20 - - -
Zhao et al. [53] 14.50 - - -
Ramalingam et al. [31] 13.34 - - 6
Schwing et al. [35] 12.8 - - 0.15
Del Pero et al. [6] 12.7 - - 900
Mallya et al. [29] 12.83 16.71 11.02 -
DeLay [3] 9.73 10.63  8.20 30
CFILE [32] 8.67 931 795 -
RoomNet [23] 12.19 10.46 6.95 0.052
RoomNet recurrent 3-iter [23] 8.36 9.86 6.30 0.17
LayoutNet [56] 9.69 - - 0.039
Hirzer et al. [17] 7.44 7.79 5.84 0.086
Zhang et al. [49] 7.36 6.58 5.17 150.18
SDML 7.21 6.95 5.29 0.017

Ablation study: We first evaluated the effect of the three losses in (9).
Table 2 shows the performance of the proposed SDML method using different
losses. SDML without Ly,etric indicates training the SDML framework without
explicitly modeling the structural relations across different scenes. The degraded
performance verifies the advantage of considering the correlations among room
layouts. SDML without L, denotes training our framework without the struc-
tural loss, which constrains the metric model and the label encoder to map
an image to the same embedding corresponding to its ground-truth label. It
achieves inferior results since the label decoder might decode an inconsistent
layout embedding leading to mistaken estimation. However, the reduction of the
performance is not too large because L.,etric still has an effect of decreasing the
distribution shift. In addition, replacing the metric loss Ly,etric With the dense
structural loss Lgense also decreases the performance of the proposed SDML
method. This demonstrates L.,e¢ric 18 more adaptive with our method since it
reinforces the connections between image embeddings and layout embeddings.

Moreover, we evaluated the proposed SDML method under different model
settings, as shown in Table 3. We modified RoomNet [23] by further applying
the dense structural loss Lgense to the 512-dimension vector in the room type
classifier in RoomNet. We see that RoomNet + Lgense outperforms the original
RoomNet. This is because the dense structural loss encourages the decoder to
consider the structural relations between images which further constrain it to
encode more global information relative to the underlying layout. We also tested
the performance of our model when removing the layout decoder and simply
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Fig. 4. Qualitative results of our SDML in comparison with RoomNet [23].

regress the positions of keypoints similar to RoomNet. We observe that the
performance is only slightly better than RoomNet. This shows the performance
improvement of our method mainly results from the relation modeling.

Quantitative results: We compared the proposed SDML framework with
existing methods on room layout estimation, where we summarize the results on
the Hedau dataset and LSUN dataset in Table 4. We see that our method is the
fastest with comparable performance with Zhang et al. [49]. In particular, while
Zhang et al. [49] achieves slightly better results on the LSUN dataset than the
proposed framework, we want to emphasize that it is a two-step method which
is orders of magnitude slower than our method. Note that our method was only
trained on the training split of the LSUN dataset without using external data.
Zhao et al. [51] achieved better results (5.29% pixel error and 3.84% keypoint
error on the LSUN dataset), yet they exploited more information by addition-
ally training a model on the SUBRGBD dataset [40] on a 37-class semantic
segmentation task to better describe clutter.

The proposed SDML framework exploits the learned structural relations as
global prior to infer the underlying room layout of a scene, leading to superior
performance. Our method has the advantage of balanced performance and cost
and has the potential to be further applied to other structural prediction tasks.

Qualitative results: Fig. 4 shows the visualization of the room layout esti-
mation results of our method. We provide a comparison with the current state-
of-the-art method RoomNet [23], which directly regresses the locations of key-
points. We observe that our method can more robustly estimate the locations of
the keypoints even when they are occluded by clutter like beds or tables, which
intuitively demonstrates the effectiveness of the proposed approach.

Fig. 5 demonstrates some ambiguous scenes where the predictions of the pro-
posed SDML method and RoomNet both fail to match the ground-truth annota-
tions. Still, we see that our method produces better estimations than RoomNet
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Fig. 5. Some ambiguous cases where SDML and RoomNet [23] both predict incorrectly.

since we explicitly model the structural relations among different scenes and use
them as prior to assist the room layout estimation process.

5 Conclusion

In this paper, we have presented a structural deep metric learning framework
(SDML) for room layout estimation, which formulates the problem from a met-
ric learning perspective. We learn a latent embedding space to explicitly model
the relations across different indoor scenes and utilize a layout autoencoder to
connects the embedding space and the underlying layout in order to perform
relational room layout inference. We have performed experimental evaluations
on two widely used datasets which have verified the effectiveness of our method.
In the future, it is interesting to further extend our method to the general struc-
tural prediction problem and apply SDML to more tasks such as human pose
estimation and hand pose estimation.
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