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Abstract. Meta-learning methods have been extensively studied and
applied in computer vision, especially for few-shot classification tasks.
The key idea of meta-learning for few-shot classification is to mimic
the few-shot situations faced at test time by randomly sampling classes
in meta-training data to construct few-shot tasks for episodic training.
While a rich line of work focuses solely on how to extract meta-knowledge
across tasks, we exploit the complementary problem on how to generate
informative tasks. We argue that the randomly sampled tasks could be
sub-optimal and uninformative (e.g., the task of classifying “dog” from
“laptop” is often trivial) to the meta-learner. In this paper, we propose
an adaptive task sampling method to improve the generalization per-
formance. Unlike instance based sampling, task based sampling is much
more challenging due to the implicit definition of the task in each episode.
Therefore, we accordingly propose a greedy class-pair based sampling
method, which selects difficult tasks according to class-pair potentials.
We evaluate our adaptive task sampling method on two few-shot clas-
sification benchmarks, and it achieves consistent improvements across
different feature backbones, meta-learning algorithms and datasets.

1 Introduction

Deep neural networks have achieved great performance in areas such as image
recognition [17], machine translation [9] and speech synthesis [51] when large
amounts of labelled data are available. In stark contrast, human intelligence
naturally possesses the ability to leverage prior knowledge and quickly learn new
concepts from only a handful of samples. Such fast adaptation is made possible
by some fundamental structures in human brains such as the “shape bias” to
learn the learning procedure [25], which is also known as meta-learning. The fact
that deep neural networks fail in the small data regime formulates a desirable
problem for understanding intelligence. In particular, leveraging meta-learning
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algorithms to solve few-shot learning problems [24, 38] has recently gained much
attention, which aims to close the gap between human and machine intelligence
by training deep neural networks that can generalize well from very few labelled
samples. In this setup, meta-learning is formulated as the extraction of cross-
task knowledge that can facilitate the quick acquisition of task-specific knowledge
from new tasks.

In order to compensate for the scarcity of training data in few-shot classifi-
cation tasks, meta-learning approaches rely on an episodic training paradigm. A
series of few-shot tasks are sampled from meta-training data for the extraction
of transferable knowledge across tasks, which is then applied to new few-shot
classification tasks consisting of unseen classes during the meta-testing phase.
Specifically, optimization-based meta-learning approaches [46,12] aim to find a
global set of model parameters that can be quickly and effectively fine-tuned for
each individual task with just a few gradient descent update steps. Meanwhile,
metric-based meta-learning approaches [47,37] learn a shared distance metric
across tasks.

Despite their noticeable improvements, these meta-learning approaches lever-
age uniform sampling over classes to generate few-shot tasks, which ignores the
intrinsic relationships between classes when forming episodes. We argue that ex-
ploiting class structures to construct more informative tasks is critical in meta-
learning, which improves its ability to adapt to novel classes. For example, in
the midst of the training procedure, a randomly sampled task of classifying dogs
from laptops may have little effect on the model update due to its simpleness.
Furthermore, in the conventional classification problem, prioritizing challenging
training examples [43,42] to improve the generalization performance has been
widely used in various fields, ranging from AdaBoost [14] that selects harder
examples to train subsequent classifiers, to Focal Loss [28] that adds a soft
weighting scheme to emphasize harder examples.

A natural question thus arises: Can we perform adaptive task sampling
and create more difficult tasks for meta-learning? Compared to the traditional
instance-based adaptive sampling scheme, one key challenge in task sampling is
to define the difficulty of a task. A naive solution is to choose the difficult classes
since each task is constructed by multiple classes. However, the difficulty of a
class, and even the semantics of a class, is dependent on each other. For instance,
the characteristics to discriminate “dog” from “laptop” or “car” are relatively
easier to uncover than those for discriminating “dog” from “cat” or “tiger”.
In other words, the difficulty of a task goes beyond the difficulty of individual
classes, and adaptive task sampling should consider the intricate relationships
between different classes.

In this work, we propose a class-pair based adaptive task sampling method
for meta-learning with several appealing qualities. First, it determines the task
selection distribution by computing the difficulty of all class-pairs in it. As a
result, it could capture the complex-structured relationships between classes in
a multi-class few-shot classification problem. Second, since the cost of computing
the task selection distribution for K-way classification problem is (|Cy,.| choose
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K) or O(|Cy,|¥), where |Cy,| is the number of classes in the meta-training data,
we further propose a greedy class-pair based adaptive task sampling method
which only requires O(K) time. Meanwhile, it can be formally established that
the proposed greedy approach in fact samples from a distribution that is iden-
tical to that in the non-greedy version. Lastly, our method could be applied to
any meta-learning algorithms that follow episodic training and works well with
different feature backbones. In summary, our work makes the following contri-
butions. (1) We propose a class-pair based adaptive task sampling approach for
meta-learning methods, to improve the generalization performance on unseen
tasks. (2) We further develop a greedy class-pair based approach that not only
significantly reduces the complexity of task distribution computation, but also
guarantees the generation of an identical distribution as that in the non-greedy
approach. (3) We study the impact of the adaptive task sampling method by
integrating it with various meta-learning approaches and performing comprehen-
sive experiments on the minilmageNet and CIFAR-FS few-shot datasets, which
quantitatively demonstrates the superior performance of our method. (4) We
also conduct an extensive investigation of different sampling strategies, includ-
ing class-based method, easy class-pair based method and uncertain class-pair
based method. The results show that hard class-pair based sampling consistently
leads to more accurate results.

2 Related Work

Meta-learning: The original idea of meta-learning, training a meta-model to
learn a base model, has existed for at least 20 years [48, 35]. Recently, the meta-
learning framework has been used to solve few-shot classification problems. One
typical work is the optimization based method. [38] uses the LSTM-based meta-
learner to replace the SGD optimizer in the base model. MAML [12] and its
variants [27,4] aim to learn a good model initialization so that the model for
new tasks can be learned with a small number of samples and gradient update
steps. Another category of work is the metric based method. It learns a set of
embedding functions such that when represented in this space, images are easy to
be recognized using a non-parametric model like nearest neighbor [50, 44, 37]. All
of these methods follow the uniform sampling scheme to generate tasks at each
episode. Besides, [46] considers a heuristic sampling method, which uses memory
to store all the failure classes from &k continuous tasks, and then constructs a
hard task from them. [49,29] utilize pre-defined class structure information to
construct tasks in both meta-training and meta-testing phases. In this way, the
experiment setting could more closely resemble realistic scenarios. In contrast,
our work, inspired by importance sampling in stochastic optimization, aims to
adaptively update task generating distribution in the meta-training phase, and
this, in turn, improves its ability to adapt to novel classes with few training
data in the meta-testing phase. We also present a theoretical analysis of the
generalization bound to justify our approach.
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Fig. 1: The episodic training paradigm for meta-learning few-shot classification.

Adaptive Sampling: Instance-based sampling is ubiquitous in stochastic op-
timization. Generally, it constantly reevaluates the relative importance of each
instance during training. The most common paradigm is to calculate the impor-
tance of each instance based on the gradient norm [1], bound on the gradient
norm [20], loss [31], approximate loss [21] or prediction probability [7]. One typi-
cal line of research work is to leverage adaptive sampling for fast convergence [55,
2]. Researchers also consider improving the generalization performance rather
than speeding up training [30]. Specifically, [5] considers instances that increase
difficulty. Hard example mining methods also prioritize challenging training ex-
amples [43,28]. Some other researchers prioritize uncertain examples that are
close to the model’s decision boundary [7,45]. In this work, we also evaluate
easy sampling and uncertain sampling at the task level, but experimental results
show that hard sampling performs better. There also exists work for sampling
mini-batches instead of a single instance [11,18]. [52,53] consider sampling di-
verse mini-batches via the repulsive point process. Nonetheless, these methods
are not designed for meta-learning and few-shot learning.

3 Preliminaries

In this section, we review the episodic training paradigm in meta-learning and
the vanilla instance-based adaptive sampling method for SGD.

3.1 Episodic Training

In the meta-learning problem setting, the goal is to learn models that can learn
new tasks from small amounts of data. Formally, we have a large meta-training
dataset Dy, (typically containing a large number of classes) and a meta-test
dataset Dyest, in which their respective category sets Cy = {1,...,|Cy |} and
Crest = {|Csr|+1, ..., |Cypp |+ Ciest } are disjoint. We aim to learn a classification
model on Dy, that can generalize to unseen categories Ces; with one or few
training examples per category.

The success of existing meta-learning approaches relies on the episodic train-
ing paradigm [50], which mimics the few-shot regime faced at test time during
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training on Dy,.. Particularly, meta-learning algorithms learn from a collection
of K-way-M-shot classification tasks sampled from the amply labelled set Dy,
and are evaluated in a similar way on Dy.s:. In each episode of meta-training,
we first sample K classes LX ~ Cy.. Then, we sample M and N labelled im-
ages per class in LX to construct the support set S = {(5,n,Ym)m} and query
set Q = {(¢n,¥Yn)n}, respectively. The episodic training for few-shot learning
is achieved by minimizing, for each episode, the loss of the prediction for each
sample in the query set, given the support set. The model is parameterized by 6
and the loss is the negative loglikelihood of the true class of each query sample:

(o) = ( SEQ)[— 2 gm0 108 P0(Yn|qn, S)], Where pg(ynlgn, S) is the classifica-

tion probability based on the support set. The model then back-propagates the
gradient of the total loss V/¢(6). Different meta-learning approaches differ in
the manner in which this conditioning on the support set is realized. To better
explain how it works, we show its framework in Figure 1.

3.2 Instance-based Adaptive Sampling for SGD

Let D = {(x;,y:);} indicate the training dataset. The probability of selecting
each sample is equal at the initial stage (i.e., po(i|D) = \I'%I) To emphasize
difficult examples while applying SGD, we adaptively update the selection prob-
ability p'*1(i) for instance i at iteration ¢ + 1 according to the current predic-
tion probability p(y;|x;) and the selection probability at previous iteration pt (i),
pt(i) o (ph(i))Te*(1=PWilzi)) wwhere the hyperparameters 7 is a discounting
parameter and « scales the influence of current prediction. This multiplicative
update method has a close relation to maximum loss minimization [42] and Ad-
aBoost [15], which can result in improved generalization performance, especially
when only a few “rare” samples exist. Moreover, when the gradient update is
weighted by the inverse sampling probability, we obtain an unbiased gradient
estimation that improves the convergence by reducing its variance [55, 16].

4 Adaptive Task Sampling for Meta-Learning

In this section, we first propose the class-based adaptive task sampling method
which is a straightforward extension of the instance-based sampling. Then, we
discuss its defect and present the class-pair based sampling method. Finally, we
propose the greedy class-pair based sampling method, which significantly reduces
the computation cost while still generating the identical task distribution as that
in the non-greedy approach.

Class-based Sampling. A major challenge of adaptive task sampling for meta-
learning is the implicit definition of the task, which is randomly generated by
sampling K classes in each episode. Although direct task based sampling is
infeasible, we can adaptively sample classes for each K-way classification task.
With this goal in mind, we propose a class-based sampling (c-sampling)
approach that updates the class selection probability ptCH(c) in each episode.
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Given St and Q! at episode ¢, we could update the class selection probability for
each class in current episode ¢ € L% in the following way,

1 . . az(qn,yn)egt le#ynlp(clan SH+Ile=yn](1—p(clan 5%))

e (c) x (p'(c)"e NEK ) (1)

Note that we average the prediction probability of classifying each query sample

n into incorrect classes in LY. Then we can sample K classes without replace-
ment to construct the category set ]L’};H for the next episode.

Despite its simplicity, such a sampling approach does suffer from an impor-

tant limitation. It implicitly assumes that the difficulty of each class is indepen-
dent. Therefore, it updates the class selection probability in a decoupled way. In
concrete words, suppose we have two different tasks: discerning “corgi”, “Akita”
and “poodle” and discerning “corgi”, “car” and “people”. Obviously, it is quite
hard to tell “corgi” in the first task while it could be easy in the second one.
This would be a challenging aspect for updating the class selection probability
as the class-based sampling is agnostic to the context of the task and could ac-
cidentally assign contradictory scores to the same class. Secondly, even if the
class selection probability is updated correctly, it cannot ensure that difficult
tasks are generated properly. That is, assembling the most difficult classes do
not necessarily lead to a difficult task.
Class-Pair Based Sampling. To address the above issue, we further propose
a class-pair based sampling (cp-sampling) approach that exploits the pair-
wise relationships between classes. This idea is commonly used in the multi-class
classification that constructs binary classifiers to discriminate between each pair
of classes [3], as two-class problems are much easier to solve. Recently, it has also
been considered to extract the pairwise relationships between classes for task-
dependent fast adaptation in few-shot learning [40]. In this work, we formulate
the task selection probability by leveraging the Markov random field [10] over
class pairs. Formally, the probability of choosing a category set ]L'};rl at episode
t + 1 is defined as:

ppLiE o« [ C'Gg),  stijeCy (2)

. t+1
('LJ)E]LK

where C*(i, §) is a potential function over class pair (4, j) at episode ¢. Notice that
the classes in Cy,. form a complete and undirected graph. The category set Ltljl
that have a relatively high probability to be selected are those K-cliques with
large potentials. Similarly, we adaptively update the potential function C**1 (s, j)
according to

C (i §) = (CH(3,5))Te PGS o (3)
where p((i,7)|S*, Q") denotes the average prediction probability that classifies

query samples in class j into its incorrect class ¢ or vice versa. Specifically, we
define it as

p((i,4)IS", Q") =

Z Gn,Yn=7)€EQ? p(C - Z|qn’St) Z qn,yn=1)€Q? p(C - ‘ﬂqn?St)
( ) + ( )
N N '
(4)
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Fig.2: A toy example to illustrate how greedy class-pair based sampling chooses
4-class category set ILZH from 5 classes. The left correlation matrix indicates
the class-pair potentials C* and the right part denotes the state of each step in
sequential sampling. The blue number on the right denotes the chosen class and
the red circle highlights the highest unnormalized class selection probability. ®
denotes the element-wise multiplication.

Greedy Class-Pair Based Sampling. It is important to note that class-pair

based sampling has the disadvantage that (K ) (l(c;{l) multiplication operations

need to be performed for calculating pt+1 (LtH) for different combinations of K-
class in the category set. To significantly reduce the complexity, we now design a
greedy class-pair based sampling (gcp-sampling) method, which samples
not only at the cost O(K) but also from a distribution identical to that in
Eq. (2), due to the independence of the potential function C*(i,5) over class
pairs. In particular, we sequentially sample classes in K — 1 steps based on the
previous results. At episode ¢, we first sample two classes based on class-pair
potential function C*(i, 7). Then we iteratively sample a new class based on the
already sampled classes. Figure 2 gives an example to illustrate the process.
Formally, the task selection probability is defined as

C'(i,5) k=1
t+1 ot »J)s
pGCP(Lk+1) X {p(clLZ+17Ct)a E>1 (5)

where p(c = i|LiT, C*) o HjG]L;C+1 C'(i, 7). It considers the joint probability over
class pairs between the chosen class ¢ and every sampled class j in the category
set ]L',;H. Compared to the distribution in Eq. (2), the greedy sampling approach
in Eq. (5) has a different normalization constant in each step k. However, for the
evaluation of task selection distribution, the unnormalized joint probability over
the class pairs of a specific category set is identical which makes the distribution
in Eq. (5) exactly the same as that in Eq. (2), which we prove in Proposition 1.

Proposition 1 The greedy class-pair based sampling strategy in Eq. (5) is iden-
tical to the class-pair based sampling in Eq. (2).

Proof. We present a proof by induction. It is obvious that pL » (L5T!) = & (L5

since o p(L5T!) oc C*(i, 7). Now let us consider a general case where we have
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Algorithm 1 gcp-sampling: Greedy Class-Pair based Sampling in K-Way-M-
Shot
Require: meta-training data Dy, hyperparameters o, 7,7
1: Randomly initialize meta model parameter 6. Initialize class-pair potentials C' by
ones
cfort=1,...,7T do
Initialize Lf by an empty set. Initialize p(c[L§, C*™') by ﬁ

Sample class pair (4, j) o< C(4,4), add class i and j into L{
for k=2,..., K—1do
Update p(c = i|LL, C*™1) Hj.e% C'= (i, 4)
Sample class ¢ based on p(c|Lf, C*™!), add class ¢ into L},
end for
Construct support set S* and query set Q° by sampling M and N image per
class in category set L%, respectively
10:  Update meta model 8 based on support set and query set
11:  Update class-pair potentials C' according to Eq. (3)
12: end for
13: return O0r

previously sampled k classes with ]LfcJrl and are about to sample the (k + 1)-th
class. Suppose we sample a new class [ to generate L}ill, according to Eq. (5),
we have

Pacp (L) = pldp @i pe =1L ¢ o [ C'Gag) [ C'1.9)
(i,5)CLIH! jeLLt?
I <o) =pdp@ih). (6)

(i,4)CLtY

The pseudocode of the proposed gep-sampling algorithm is given in Algorithm
1. Due to the space limitation, we leave the theoretical analysis of the proposed
gep-sampling method in terms of its generalization ability to the supplementary
material.

5 Experiments

In this section, we evaluate the proposed adaptive task sampling method on two
few-shot classification benchmarks: minilmageNet [50] and CIFAR-FS [6]. We
first introduce the datasets and settings, and then present a comparison to state-
of-the-art methods, followed by a detailed evaluation of the compatibility when
integrating with different meta-learning algorithms and the efficacy of different
sampling strategies. Finally, we demonstrate qualitative results to characterize
the gep-sampling.
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5.1 Datasets and Implementation Details

Datasets. We conduct experiments to evaluate our method on two few-shot
classification benchmarks. Firstly, minilmageNet [50] is widely used for few-
shot learning, which is constructed based on the ImageNet dataset [39] and
thus has high diversity and complexity. This dataset has 100 classes with 600
84 x 84 images per class. These classes are divided into 64, 16 and 20 classes for
meta-training, meta-validation and meta-test, respectively, as suggested earlier
[38, 12, 46]. Secondly, CIFAR-F'S is another recent few-shot image classification
benchmark [6] constructed by randomly sampling from the CIFAR-100 dataset
[23] using the same criteria as the minilmageNet, and has the same number
of classes and samples. The limited resolution of 32 x 32 makes the task still
difficult. We also use the 64 / 16 / 20 divisions for consistency with previous
studies [6, 26].

Evaluation metric. We report the mean accuracy (%) of 1000 randomly gen-
erated episodes as well as the 95% confidence intervals on the meta-test set. In
every episode during meta-test, each class has 15 queries.

Network Architectures. We conduct experiments with 2 different feature ex-
tractor architectures, Conv-4 and ResNet-12. Conv-4 is a shallow embedding
function proposed by [50] and widely used [12, 4,44, 36]. It is composed of 4 con-
volutional blocks, each of which comprises a 64-filter 3 x 3 convolution, batch
normalization (BN) [19], a ReLU nonlinearity and a 2 x 2 max-pooling layer.
We also adopt a deep backbone ResNet-12 [17], which achieves significant im-
provement in recent works [33,34,37]. It consists of 4 residual blocks, each of
which has three 3 x 3 convolutional layers and a 2 x 2 max-pooling layer. The
number of filters starts from 64 and is doubled every next block. There is also
a mean-pooling layer compressing the feature maps to a feature embedding in
the end. In our experiments, we integrate gcp-sampling with PN, MetaOptNet-
RR and MetaOptNet-SVM with ResNet-12 to compare with state of the arts.
We follow the settings of [26] and use SGD with Nesterov momentum of 0.9
and weight decay of 0.0005. Besides, we use Conv-4 to evaluate the compatibil-
ity when integrating with different meta-learning algorithms and the efficacy of
different sampling strategies. We follow the settings of [8] and use Adam [22]
optimizer with an initial learning rate of 0.001.

5.2 Results and Analysis

Comparison with state-of-the-art. Tables 1 and 2 present the 5-way 1-shot
and 5-way 5-shot results on minilmageNet and CIFAR-FS datasets, respectively.
Note that it shows the highest accuracies for which the iterations are chosen
by validation. For our approach, we integrate gcp-sampling with PN, MON-RR
and MON-SVM, which are strong baselines. For all cases, we achieve comparable
performance surpassing prior methods by a meaningful margin. For example, PN
with gep-sampling outperforms the PN with ResNet-12 by around 1.84 and 1.2
percentage points in minilmageNet and 1.89 and 1.0 percentage points in CIFAR-
FS. It is worth noting that the adaptive task sampling method is orthogonal to
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Table 1: Average 5-way, 1-shot and 5-shot classification accuracies (%) on the
minilmageNet dataset. * denotes the results from [26].

Methods Backbone 5-way-1-shot 5-way-5-shot
Matching Network [50] CONV-4 43.44 +£0.77 55.31 £0.73
Relation Network [47] CONV-4 50.44 £ 0.82 65.32 £0.70
PN [44] CONV-4 49.42 +£0.78 68.20 £ 0.66
MAML [12] CONV-4 48.70 +1.84 63.11 £ 0.92
MAML++ [4] CONV-4 52.15+0.26 68.32 +0.44
MAML++, AS (ours) CONV-4 52.34 £0.81 69.21 £+ 0.68
Bilevel Programming [13] ResNet-12 50.54 £0.85 64.53 £ 0.68
MetaGAN [54] ResNet-12 52.71 +0.64 68.63 £ 0.67
SNAIL [33] ResNet-12 55.71 +£0.99 68.88 £ 0.92
adaResNet [34] ResNet-12 56.88 £ 0.62 71.94 +£0.57
TADAM [37] ResNet-12 58.50 = 0.30 76.70 £ 0.30
MTL [46] ResNet-12 61.2+1.8 75.5+0.8
PN* [26] ResNet-12 59.25 + 0.64 75.60 £+ 0.48
PN with gcp-sampling ResNet-12 61.09 £+ 0.66 76.80 = 0.49
MetaOptNet-RR [26] ResNet-12 61.41 £ 0.61 77.88 £ 0.46
MetaOptNet-RR with gcp-sampling  ResNet-12 63.02 + 0.63 78.91 + 0.46
MetaOptNet-SVM [26] ResNet-12 62.64 £ 0.61 78.63 £ 0.46
MetaOptNet-SVM with gcp-sampling ResNet-12 64.01 + 0.61 79.78 +0.47

Table 2: Average 5-way, 1-shot and 5-shot classification accuracies (%) on the

CIFAR-FS dataset. * denotes the results from [26].

Methods Backbone 5-way-1-shot 5-way-5-shot
Relation Network [47] CONV-4 55.0+ 1.0 69.3 £0.8
PN* [44] CONV-4 55.5£0.7 72.0£ 0.6
MAML* [12] CONV-4 589+ 1.9 71.5+1.0
GNN [41] CONV-4 61.9 75.3
R2D2 [26] CONV-4 65.3£0.2 79.4+£0.1
PN™ [26] ResNet-12 72.2+0.7 84.2+0.5
PN with gep-sampling ResNet-12 74.1+0.7 84.5+0.5
MetaOptNet-RR [26] ResNet-12 72.6+£0.7 84.3+0.5
MetaOptNet-RR with gcp-sampling  ResNet-12 74.2 £0.7 85.1+0.4
MetaOptNet-SVM [26] ResNet-12 72.0£0.7 84.2£0.5
MetaOptNet-SVM with gep-sampling ResNet-12 73.9+0.7 85.3+0.5

the meta-learning algorithm. Moreover, even for a deep feature backbone, our
approach is still able to preserve the performance gain.

Compatibility with different meta-learning algorithms. Next, we study
the impact of gcp-sampling when integrating with different types of meta-learning
algorithm. We consider gradient-based meta-learning methods: MAML, Reptile
and MAML++, and metric-based meta-learning methods: PN and MN. The
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Table 3: Average 5-way classification accuracies (%) on minilmageNet and
CIFAR-FS. All methods use shallow feature backbone (Conv-4). T denotes the
local replication results. We run PN without oversampling the number of ways.

minilmageNet CIFAR-FS

Model 1-shot 5-shot 1-shot 5-shot

Matching Network 48.26 = 0.76 62.27 £0.71 53.14 +0.85 68.16 £0.76
Matching Network with gcp-sampling 49.61 +0.77 63.23 £ 0.75 54.72 4+ 0.87 69.28 £ 0.74
PN f 44.15+0.76 63.89£0.71 54.87+0.72 71.64 £ 0.58
PN with gep-sampling 47.13 £0.81 64.75 £ 0.72 56.12 £ 0.81 72.77 £ 0.64
Reptile 46.12 +0.80 63.56 £0.70 55.86 +1.00 71.08 £0.74
Reptile with gep-sampling 47.60 £ 0.80 64.56 +0.69 57.25 £ 0.99 71.69 +0.71
MAML * 48.25+£0.62 64.09£0.70 56.93 £0.99 72.10£0.74
MAML with gcp-sampling 49.65 + 0.85 65.37 +0.70 57.62 £ 0.97 72.51 + 0.72
MAMLA4+ | 50.60 = 0.82 68.24 +0.68 58.87 +£0.97 73.86 +0.76
MAML++ with gep-sampling 52.34 +0.81 69.21 + 0.68 60.14 £+ 0.97 73.98 £ 0.74

Table 4: Average 5-way classification accuracies (%) on minilmageNet and
CIFAR-FS. Using MAML++ on a Conv-4 backbone, we compare different
sampling methods: random, c-sampling with hard class, gcp-sampling with
hard/uncertain/easy class.

minilmageNet CIFAR-FS
Sampling Strategy 5-way-1-shot 5-way-5-shot 5-way-1-shot 5-way-5-shot
random sampling 50.60 + 0.82 68.24 +0.68 58.87 +0.97 73.36 +0.76
c-sampling with hard class 51.43 £0.75 68.74 £0.67 58.61 £0.92 73.98 £0.72
gep-sampling with easy class 50.88 + 0.88 68.22 +0.72 58.73 +1.14 73.41+0.76

gep-sampling with uncertain class 51.73 £+ 0.87 69.01 £ 0.72 59.43 + 1.02 73.84 + 0.82
gep-sampling with hard class 52.34 + 0.81 69.21 + 0.68 60.14 + 0.97 74.58 £ 0.74

results in Table 3 demonstrate that using gep-sampling for meta-learning meth-
ods consistently improves the few-shot classification performance. Moreover, the
performance improvement is more significant for 1-shot classification than 5-shot
classification.

Efficacy of different adaptive task sampling strategies. In literature, there
exist contradicting ideas in adaptive sampling strategies which work well in dif-
ferent scenarios [7]. Preferring easier samples may be effective when solving chal-
lenging problems containing noise or outliers. The opposite hard sample mining
strategy may improve the performance since it is more likely to be minority
classes. Therefore, we explore different sampling strategies for meta-learning for
few-shot classification. As defined in Eq. (4) for hard class, the probability of
easy class is 1 — p(7,j) and uncertain class is (1 — p(i,5))(p(i, 7)), respectively.
We report the results in Table 4. We observe that gcp-sampling with hard or
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Fig. 3: Impact of hyperparameters « and 7. First row (a-d): we fix the discounting
factor 7 = 0.5 and tune the updating factor «; Second row (e-g): we fix a =1
and tune 7.

uncertain class outperforms that with random sampling, but uncertain sampling
offers a smaller improvement. We also compare gcp-sampling with c-sampling,
in which c-sampling achieves similar performance as random sampling, verifying
the efficacy of using class pairs to represent task difficulty.

Impact of Hyperparameters « and 7. In the proposed gcp-sampling, the
hyperparameter « controls the aggressiveness of the update while the hyperpa-
rameter 7 controls the degree of forgetting past updates. Here we adopt PN with
ResNet-12 backbone and report the effect of @ and 7 on the testing perfor-
mance in Figure 3.

Table 5: Time cost comparison between random sampling and gep-sampling. All
the experiments are conducted with PN on the CIFAR-FS dataset.
random sampling gep-sampling factor

5-way-1-shot, Conv-4 235.4 251.8 1.070
5-way-1-shot, ResNet-12 531.2 554.6 1.044
5-way-5-shot, Conv-4 342.2 367.3 1.073
5-way-10-shot, Conv-4 471.4 491.0 1.042
5-way-15-shot, Conv-4 617.2 634.6 1.028
10-way-1-shot, Conv-4 411.3 451.7 1.098
15-way-1-shot, Conv-4 624.9 723.5 1.158
20-way-1-shot, Conv-4 816.8 992.5 1.215

Time Cost Analysis. Table 5 shows the time cost comparison between random
sampling and gep-sampling. We adopt PN on the CIFAR-FS dataset and report
the average training time for each epoch, which includes task sampling, forward
and backward propagation phases. We find that the time taken by gcp-sampling
is comparable to the time taken by random-sampling. This is because the train-
ing time is dominated by the forward pass and backward pass and the cost of
task generation and class-pair potential update is relatively small. Besides, us-
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ing a deeper backbone significantly increases the time cost but reduces the ratio
between gcp-sampling and random-sampling, since it only affects the forward
pass and backward pass. Finally, increasing the number of ways would increase
the time cost while increasing the number of shots will not. This is because the
complexity of gcp-sampling scales linearly to the number of ways.

Visual analysis of adaptive task sampling. To qualitatively characterize
adaptive task sampling, we visualize the prototype of each class generated by
the training procedure of PN with gcp-sampling and random sampling. We use
the t-SNE [32] method to convert the prototypes into two-dimensional vectors by
preserving the cosine similarity between them. As shown in Figure 4, the classes
sampled by random sampling achieve better clustering results than gep-sampling.
This is because gcp-sampling tends to sample classes with highly overlapping
embeddings, which is much more difficult to learn for meta-learner.

. ° '.?_zq-. chair . «  mushroom
.r‘“r","..- . ".'" . tank : . . «  squirrel
. o et e road 3 3 mouse
. - boy shrew
sunflower "'. caterpillar
(a) random sampling (b) gcp-sampling

Fig.4: Feature embedding of the classes sampled by (a) random sampling and
(b) task adaptive sampling. The dimension reduction is performed based on all
64 training classes of CIFAR-FS, while we show only the 5 selected classes in
each sub-figure for better visualization.

Fig. 5: Correlation matrix w.r.t. class-
pair potentials. Each element indicates
5 the class-pair potential. The higher the
4 correlation weight (i.e., the darker the
5 color), the higher the probability of this
two-class combination being sampled.
The green and red colors denote the
possum classes sampled by random sampling
mushroom o and adaptive sampling, respectively.
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Fig. 6: Sample images from classes by (a) random sampling and (b) gep-sampling.

We also visualize the class-pair potentials constructed by gcp-sampling in
Figure 5. We show 16 classes of CIFAR-FS, where the green and red colors denote
the classes sampled by random sampling and gcp-sampling, respectively. We can
see that the classes sampled by random sampling are often easier to distinguish,
which leads to inefficient training, while the gcp-sampling tends to sample the
classes that, when combined with other classes, display greater difficulty. We also
randomly select some sampled images from each class for observation. As shown
in Figure 6, the classes sampled by random sampling do vary greatly (e.g., with
unique shapes or colors) and are easier to recognize, while the classes sampled
by gep-sampling are visually more confusing (e.g., small animals or insects in
the wild) and much more difficult to distinguish.

6 Conclusion

In this paper, we presented an adaptive task sampling method for meta-learning.
Our results demonstrated that in meta-learning it is essential for the sampling
process to be dependent on tasks, and the proposed method naturally mod-
els and exploits this dependence. We showed that the greedy class-pair based
sampling method, integrated with PN, MetaOptNet-RR or MetaOptNet-SVM,
could achieve competitive results. Furthermore, we demonstrated consistent im-
provement when integrating the proposed sampling method with different meta-
learning methods. Finally, we explore and evaluate different sampling strategies
for gecp-sampling, in which the hard class strategy consistently leads to more
accurate results.

Acknowledgment

This research is supported by the National Research Foundation, Singapore un-
der its AI Singapore Programme (AISG Award No: AISG-RP-2018-001). Any
opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not reflect the views of National Research
Foundation, Singapore.



Adaptive Task Sampling for Meta-Learning 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Alain, G., Lamb, A.; Sankar, C., Courville, A., Bengio, Y.: Variance reduction in
sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481 (2015)

. Allen-Zhu, Z., Qu, Z., Richtérik, P., Yuan, Y.: Even faster accelerated coordi-

nate descent using non-uniform sampling. In: International Conference on Machine
Learning. pp. 1110-1119 (2016)

Aly, M.: Survey on multiclass classification methods. Neural Netw 19, 1-9 (2005)
Antoniou, A., Edwards, H., Storkey, A.: How to train your maml. arXiv preprint
arXiv:1810.09502 (2018)

Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of the 26th annual international conference on machine learning. pp. 41—
48. ACM (2009)

Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A.: Meta-learning with differ-
entiable closed-form solvers. arXiv preprint arXiv:1805.08136 (2018)

Chang, H.S., Learned-Miller, E., McCallum, A.: Active bias: Training more accu-
rate neural networks by emphasizing high variance samples. In: Advances in Neural
Information Processing Systems. pp. 1002-1012 (2017)

Chen, W., Liu, Y., Kira, Z., Wang, Y.F., Huang, J.: A closer look at few-shot
classification. In: 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019 (2019), https://openreview.net/
forum?id=HkxLXnAcFQ

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

Cross, G.R., Jain, A.K.: Markov random field texture models. IEEE Transactions
on Pattern Analysis & Machine Intelligence PAMI-5(1), 25-39 (1983)

Csiba, D., Richtarik, P.: Importance sampling for minibatches. The Journal of
Machine Learning Research 19(1), 962-982 (2018)

Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. pp. 1126-1135. JMLR. org (2017)

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming
for hyperparameter optimization and meta-learning. In: International Conference
on Machine Learning. pp. 1563-1572 (2018)

Freund, Y., Schapire, R.: A short introduction to boosting. Journal-Japanese So-
ciety For Artificial Intelligence 14(771-780), 1612 (1999)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences 55(1),
119-139 (1997)

Gopal, S.: Adaptive sampling for sgd by exploiting side information. In: Interna-
tional Conference on Machine Learning. pp. 364-372 (2016)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

Horvéth, S., Richtarik, P.: Nonconvex variance reduced optimization with arbitrary
sampling. arXiv preprint arXiv:1809.04146 (2018)

Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning.
pp. 448-456 (2015)



16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

C.H. Liu et al.

Katharopoulos, A., Fleuret, F.: Biased importance sampling for deep neural net-
work training. arXiv preprint arXiv:1706.00043 (2017)

Katharopoulos, A., Fleuret, F.: Not all samples are created equal: Deep learning
with importance sampling. arXiv preprint arXiv:1803.00942 (2018)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning
through probabilistic program induction. Science 350(6266), 1332-1338 (2015)
Landau, B., Smith, L.B., Jones, S.S.: The importance of shape in early lexical
learning. Cognitive development 3(3), 299-321 (1988)

Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable
convex optimization. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 1065710665 (2019)

Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835 (2017)

Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp- 29802988 (2017)

Liu, L., Zhou, T., Long, G., Jiang, J., Zhang, C.: Learning to propagate for graph
meta-learning. arXiv preprint arXiv:1909.05024 (2019)

London, B.: A pac-bayesian analysis of randomized learning with application to
stochastic gradient descent. In: Advances in Neural Information Processing Sys-
tems. pp. 2931-2940 (2017)

Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural net-
works. arXiv preprint arXiv:1511.06343 (2015)

Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learn-
ing research 9(Nov), 2579-2605 (2008)

Mishra, N.,; Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive
meta-learner. In: ICLR (2017)

Munkhdalai, T., Yuan, X., Mehri, S., Trischler, A.: Rapid adaptation with con-
ditionally shifted neurons. In: International Conference on Machine Learning. pp.
3661-3670 (2018)

Naik, D.K., Mammone, R.J.: Meta-neural networks that learn by learning. In:
[Proceedings 1992] IJCNN International Joint Conference on Neural Networks.
vol. 1, pp. 437-442. ITEEE (1992)

Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

Oreshkin, B., Lépez, P.R., Lacoste, A.: Tadam: Task dependent adaptive metric
for improved few-shot learning. In: Advances in Neural Information Processing
Systems. pp. 721-731 (2018)

Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR
(2016)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211-252 (2015)
Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Had-
sell, R.: Meta-learning with latent embedding optimization. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019 (2019), https://openreview.net/forum?id=BJgklhAcK7



41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Adaptive Task Sampling for Meta-Learning 17

Satorras, V.G., Bruna, J.: Few-shot learning with graph neural networks. In: ICLR
(2018)

Shalev-Shwartz, S., Wexler, Y.: Minimizing the maximal loss: How and why. In:
ICML. pp. 793-801 (2016)

Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. pp. 761-769 (2016)

Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems. pp. 4077-4087 (2017)

Song, H., Kim, S., Kim, M., Lee, J.G.: Ada-boundary: Accelerating the dnn train-
ing via adaptive boundary batch selection (2018)

Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learn-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 403-412 (2019)

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning
to compare: Relation network for few-shot learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1199-1208 (2018)
Thrun, S., Pratt, L.: Learning to learn: Introduction and overview. In: Learning
to learn, pp. 3-17. Springer (1998)

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Xu, K., Goroshin, R.,
Gelada, C., Swersky, K., Manzagol, P.A., Larochelle, H.: Meta-dataset: A dataset of
datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096
(2019)

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks
for one shot learning. In: Advances in neural information processing systems. pp.
3630-3638 (2016)

Ze, H., Senior, A., Schuster, M.: Statistical parametric speech synthesis using deep
neural networks. In: 2013 ieee international conference on acoustics, speech and
signal processing. pp. 7962-7966. IEEE (2013)

Zhang, C., Kjellstrom, H., Mandt, S.: Determinantal point processes for mini-batch
diversification. arXiv preprint arXiv:1705.00607 (2017)

Zhang, C., Oztireli, C., Mandt, S., Salvi, G.: Active mini-batch sampling using
repulsive point processes. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 5741-5748 (2019)

Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., Song, Y.: Metagan: An adversar-
ial approach to few-shot learning. In: Advances in Neural Information Processing
Systems. pp. 2365-2374 (2018)

Zhao, P., Zhang, T.: Stochastic optimization with importance sampling for regu-
larized loss minimization. In: international conference on machine learning. pp. 1-9

(2015)



