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Abstract. Existing image inpainting methods often produce artifacts
when dealing with large holes in real applications. To address this chal-
lenge, we propose an iterative inpainting method with a feedback mech-
anism. Specifically, we introduce a deep generative model which not only
outputs an inpainting result but also a corresponding confidence map.
Using this map as feedback, it progressively fills the hole by trusting only
high-confidence pixels inside the hole at each iteration and focuses on the
remaining pixels in the next iteration. As it reuses partial predictions
from the previous iterations as known pixels, this process gradually im-
proves the result. In addition, we propose a guided upsampling network
to enable generation of high-resolution inpainting results. We achieve
this by extending the Contextual Attention module [39] to borrow high-
resolution feature patches in the input image. Furthermore, to mimic
real object removal scenarios, we collect a large object mask dataset and
synthesize more realistic training data that better simulates user inputs.
Experiments show that our method significantly outperforms existing
methods in both quantitative and qualitative evaluations. More results
and Web APP are available at https://zengxianyu.github.io/iic.

1 Introduction

Image inpainting is a task of reconstructing missing regions in an image. It
is an important problem in computer vision and an essential functionality in
many imaging and graphics applications, e.g. object removal, image restoration,
manipulation, re-targeting, compositing, and image-based rendering [9, 26, 33]

Classical inpainting methods such as [17, 25, 9] typically rely on the principle
of borrowing example patches from known regions or external database images
and pasting them into the holes. These methods are quite effective for easy cases
with small holes or uniform textured background. They can also handle high-
resolution images efficiently. However, due to the lack of high-level structural
understanding and ability to generate novel contents, they often fail to produce
realistic results when the hole is large.

Deep learning has achieved great success on various dense prediction prob-
lems [14, 15, 13, 12, 42, 43, 45, 44, 36]. Recent research effort on inpainting has
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Fig. 1: Results of state-of-the-art methods on real object removal requests [7, 4]
.

shifted towards a data-driven learning-based approach [34, 22, 39, 29, 40]. These
methods train a deep neural network to directly predict the inpainting result
given a corrupted image and hole channel as input. The original images before
corruption are used as the ground truth to train the network. To generate visu-
ally realistic results with sufficient texture details, they often use an adversarial
loss based on GANs [20] in addition to a reconstruction loss. These deep genera-
tive models show significant improvements on filling holes in complex images but
often produce visual artifacts, especially when the hole is large. For large holes,
the reconstruction loss is less effective due to the increased ambiguity, leading
to undesired predictions during testing as shown in Fig. 1.

In this paper, we aim to address the challenge of filling large holes in high
resolution images for real image editing applications, e.g., object removal. We
observe that in the failure cases of existing approaches, despite the artifacts,
there often exist sub-regions with good predictions. If we trust the good part
and treat the remaining region as a new hole and run the model again, then
the hole become progressively smaller and the model can produce better results.
Inspired by this observation, we propose a novel iterative inpainting method with
a feedback mechanism. Our method is based on a deep generative model which
not only outputs an inpainting result but also a corresponding confidence map.

The model is encouraged to generate a confidence map that highlights pixels
where the prediction error is likely small and can help overcome the prediction
ambiguity. Using this confidence map as feedback, our model is trained to pro-
gressively fill the hole by trusting only high-confidence pixels inside the hole at
each iteration and update the remaining pixels in the next iteration. By predict-
ing what portion of the hole was filled successfully in the previous iteration and
using those pixels as “known”, our model can gradually improve the result when
filling large holes. The proposed confidence prediction scheme is general and can
be potentially attached to any deep generative inpainting model.

To generate high-quality inpainting results at high-resolution, we propose a
guided inpainting upsampling network as a post-processing method. We achieve
this by extending the Contextual Attention module [39] to borrow known high-
resolution feature patches in the input image based on the patch similarities com-
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puted on the result for down-sampled input. The motivation is that it is easier to
train a deep network to generate globally coherent structures for down-sampled
inputs as effective receptive fields of neurons are larger; while the surrounding
regions of the high-resolution input can be used to enhance fine-grained texture
details inside the hole. In this way, our method decouples high-level structural
understanding and low-level texture reconstruction, and can produce results that
are both semantically plausible and visually realistic at high resolution.

On the data side, previous methods construct training data by synthesizing
square [34, 22, 39] or irregular holes [29, 40]. However, in real applications for
removing undesirable objects or scene segments, the hole-filling regions are more
likely to be object-shaped. In this work, we collect a large set of object masks
and propose to use the object shapes as holes to mimic real use cases.

In summary, our contributions are three-fold:

– We address the challenge of completing large missing regions in images by
proposing an iterative inpainting method with a confidence feedback loop.

– We propose a guided up-sampling network as a post processing step to enable
generation of high-resolution inpainting results.

– We introduce a new procedure to synthesize training data for building deep
generative models for real object removal applications.

2 Related work

Earlier image inpainting methods rely on existing content to fill the holes.
Diffusion-based methods [8, 10] propagate neighboring appearances to the tar-
get holes, but they often generate significant artifacts when the holes are large
or texture variation is severe. Patch-based methods [17, 25, 9] search for most
similar patches from valid regions to complete missing regions. Drori et al. [16]
propose to iteratively fill missing regions from high to low confidence with simi-
lar patches. Although they also use a map to determine the region to fill in each
iteration, the map is predefined based on spatial distances from unknown pixels
to their closest valid pixels. The above methods use real image patches sampled
from the input to fill the holes and can often generate high-quality results. How-
ever, they lack high-level structural understanding and cannot generate entirely
new content that does not exist in the input image. Thus, their results may not
be semantically consistent to regions surrounding the holes.

By learning from a large corpus of data, deep learning based inpainting meth-
ods can understand the semantic structure of the input image and hence can
handle more difficult cases. To produce sharper results, these methods typically
adopt adversarial training inspired by GANs [20]. Pathak et al. [34] made a first
attempt to use a convolutional neural network (CNN) for hole filling. Iizuka et
al. [22] use two discriminators for adversarial training to make the inpainted con-
tent both locally and globally consistent. Yu et al. [39] propose a deep generative
model with contextual attention to explicitly utilize surrounding image features
as references in the latent feature space. Zeng et al. [41] propose to use region
affinity from a high-level feature map to guide the completion of missing regions
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in the previous low-level feature map of a single input. Our upsampling network
is similar in spirit of using coarse scale information to guide the generation of
fine-grained details but different in architecture and functionality; it upsamples a
low-resoluiotn results by filling the fine-grained details from the high-resolution
input. Yang et al. [38] upsamples the results of a similar network with a neural
patch search and vote approach followed by an optimization. Our method uses a
related neural patch-vote approach but avoids the slow optimization. The above
methods use square holes in their training data, which causes a bias to rectangu-
lar holes. To address this, Liu et al. [29] collect estimated occlusion/dis-occlusion
masks between two consecutive frames of videos and use them to generate holes
for training. The resulting masks are highly irregular and do not represent well
holes typical to an image inpainting task. They also propose partial convolution
layers to infer missing pixels conditioned only on valid pixels. Yu et al. [40] in-
troduce free-form masks by simulating random strokes and generalizes partial
convolution to gated convolution that learns to select features for each channel
at each spatial location across all layers. Although these irregular holes lead to
more diverse samples, they do not represent well real inpainting use-cases.

Most recently, a few works have been introduced to study progressive in-
painting models. Zhang et al. [46] adopt a UNet generator with an LSTM in the
bottleneck. It takes a sequence of inputs with large to small holes in the image
center and generates a sequence of corresponding outputs. Guo et al. [21] propose
to gradually fill a hole using consecutive residual blocks. They use partial convo-
lutions in these blocks and update the hole mask according to the invalid pixels
selected by partial convolutions. Oh et al. [32] propose an onion-peel network
that progressively fills the hole from the hole boundary for video hole filling. All
of the above methods fill the holes from the boundary to inner regions in a pre-
defined sequence. Different from them, our proposed method jointly predicts a
confidence map when generating an inpainting result. Using the confidence map
from the previous iteration as feedback, it can automatically detect regions with
bad fill to revise in following iterations. To our best knowledge, it is the first
attempt to model confidence of predictions in inpainting and the first iterative
inpainting method to fill holes with a confidence-driven feedback loop.

3 Approach

Our inpainting method consists of two models: an iterative inpainting model
(Fig. 3 (a)) with confidence feedback and a guided upsampling network ((Fig. 3 (b))
that upsamples a low-resolution result by factor of 2 using the high resolution
(HR) input as guidance. In this section, we first describe how we prepare data
for building and evaluating our model, and then introduce the details of our
iterative inpainting model and guided upsampling network.

3.1 Data generation

Previous approaches to image inpainting typically construct their training and
testing data pairs by corrupting the original images with square-shaped [39, 34,
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Fig. 2: Comparison of input with holes. The first two columns are real object removal
requests on the Web [5, 2]. The second two are from PConv [29] and ContextAtten-
tion [39], respectively. The right two are our samples with object-shaped holes.

22] or highly irregular holes [29, 40], as shown in the first two columns in Fig. 2.
Images with holes are the input and the original images are the corresponding
ground-truth. However, in real-world inpainting use cases such as distracting
region removal, the regions users typically want to remove are objects or scene
segments, which are rarely of square or highly irregular shapes, as shown in the
middle two columns of Fig. 2.

To mimic a more typical image editing scenario, in this work, we synthesize
training samples with realistic holes. We collect 82,020 object masks from densely
annotated segmentation datasets [11, 18, 27, 35, 19, 28] to use as holes. We use a
mix of random strokes [40] and the object masks as holes to create a more diverse
training dataset and overcome a bias towards object shaped holes. The images
for synthesizing training samples are from two sources: the Places2 [47] dataset
and salient object segmentation dataset [37]. We use 1,000 images with salient
objects as testing samples and the other 60,525 are merged with Places2 for
training and validation. For images in Places2, we sample randomly the location
of the holes so they can appear in any region and may overlap with the main
object. For images originating from salient object segmentation datasets, we
subtract from the holes the intersection area with the salient objects. This is to
simulate the case of removing distracting regions occluded by salient objects. As
shown in the last two columns of Fig. 2, such generated samples with holes are
more similar to real cases than those of previous approaches.

3.2 Inpainting model

We adopt a generative approach based on generative adversarial networks (GANs) [20].
Thus our model has a generator and a discriminator. Fig. 3 (a) illustrates an
overall structure of the generator. It is a cascade of a coarse and a fine networks,
similar to [39]. The coarse network takes an incomplete image and the corre-
sponding hole mask as input to produce a coarse completed image. Then, the
coarse result is passed to the fine network to generate a final completed image
and a confidence map. The fine network has one encoder and two decoders: an
image decoder that predicts the inpainting image result, and a confidence de-
coder that returns a corresponding confidence map of the predicted image. To
make confidence prediction aware of the full generation process, we let the con-
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(a) (b)

Fig. 3: The overall structure. (a) Iterative inpainting with confidence feedback. (b)
Guided upsampling.

fidence decoder take as input all the feature layers up to the bottleneck of the
image decoder, as illustrated by the dashed blocks in Fig. 3 (a).

We use a PatchGAN discriminator [23] with spectral normalization as in [40]
for adversarial training. It takes as input either the inpainted image or the
ground-truth image and classifies each patch of the input image as real or fake.
Its output is a score map rather than a single score, where each element corre-
sponds to a local region of the input image covered by its receptive field.

Generative inpainting loss We train our model on the realistic hole dataset
described in Sec. 3.1. We use L1 reconstruction loss on the coarse level. On the
fine level, we use both L1 and a hinge adversarial loss with spectral normaliza-
tion [30] applied on the discriminator. The loss for the discriminator D is:

LD = Ex∼pdata(x)[ReLU(1−D(x))]+Ez∼pz(z)[ReLU(1+D(G(z)◦m+z))], (1)

where x denotes the real (ground truth) image and z represents the incomplete
image of which the pixels inside the hole are set to zero; m represents the hole
mask, in which the pixels having value one belong to the hole; G(·) represents
the image decoder; ◦ denotes element-wise multiplication; the inpainting result
G(z) ◦ m + z is composed by the generated content G(z) inside the hole and
the original content z outside the hole. Let y denote the output of the image
decoder, i.e. y = G(z), then the loss for the inpainting result is:

LG = Ez,x∼p(z,x)[L(y)],whereL(y) = ReLU(1−D(y ◦m+ z)) +‖y − x‖1 . (2)

Confidence prediction loss We make the confidence decoder detect good
regions by using its output map as spatial attention on the predicted image
when calculating the loss. Let c denote the confidence map, i.e., output of the
confidence decoder of which each element is constrained to [0, 1] by a sigmoid
function, we define the following loss for the confidence decoder:

LC = Ez,x∼p(z,x)[L(y ◦ c+x◦ (1− c))+λ(
∥∥(1− c) ◦m

∥∥
1

+
∥∥(1− c) ◦m

∥∥
2
)], (3)
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Fig. 4: Results and confidence maps. Blue masks indicate holes. Brighter pixels in con-
fidence maps are of higher confidence. We use solid blue masks for synthetic samples
and transparent ones for real object removal cases.

where λ is a hyperparameter controlling the size of the confident area. We set it to
0.1 in all evaluations but also provide sensitivity analysis of it in the experiments.

To minimize LC , the map c should highlight confidence regions, i.e. pixels
contributing less to the overall loss. To prove this, we assume that: (1) L(y) can
be written as the summation over local pixel-wise losses, i.e. L(y) =

∑
i∈H l(yi)

where l(yi) ≥ 0 is an unknown local loss function, H is the index set of pixels
inside the holes and yi is a pixel of the generator output y, and (2) l(xi) = 0 for
every ground-truth pixel xi. For simplification, we consider c as binary and let
C to be the index set of non-zero elements of c, then LC can be re-written as:

LC = Ez,x∼p(z,x)[L(y ◦ c+ x ◦ (1− c))− λ‖c‖]

= Ez,x∼p(z,x)[
∑
i∈C

l(yi) +
∑

i∈(H−C)

l(xi)− λ|C|]

= Ez,x∼p(z,x)[
∑
i∈C

l(yi)− λ|C|];

(4)

for a single sample y, the loss is the summation of local loss over C. Therefore,
the minimum is achieved when C covers the set of pixels with the smallest local
loss values. Intuitively, the first term in Equation 3 encourages the confidence
map to have high response where the loss L(y) is small, as LC is expected to be
smaller by choosing low-loss area from the generator output y ◦ c and replacing
high-loss are with ground-truth x ◦ (1 − c); the second term penalizes a trivial
solution of all-zero confidence maps by encouraging the confident region to cover
as much of the missing region as possible.

Fig. 4 shows examples of inpainting results and the corresponding confidence
maps. We can see that the confidence maps tend to highlight good regions of
the result. As one may expect, confident regions are often located close to the
hole boundaries. However, there are also other cases: 1) in easy cases like filling
a hole in the sky, all generated pixels can have high confidence; 2) flat regions
tend to be more confident than highly-textured regions; 3) artifacts have low
confidence.
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Algorithm 1: G(·): generator; C(·): confidence decoder

Input : Incomplete image z1, hole mask m1, the number of iterations T
Output: Completed image yT

1 Set initial confidence map c0 = 0.5m1

2 for t ∈ {1, ..., T} do
3 Get confidence map ct = C(zt) ◦mt

4 Get mask of regions to update ut = Binarize(ct − ct−1 ◦mt)
5 Update mask mt+1 = mt − ut

6 if t = 1 then
7 Initialize completed image y1 = z1 +G(z1) ◦mt

8 else
9 Update competed image yt = G(zt) ◦ ut + yt−1 ◦ (1− ut)

10 end
11 Update incomplete image zt+1 = yt ◦mt+1

12 end

Fig. 5: Inpainting results as iterations increase.

Iterative inpainting We can use the confidence decoder output to identify
confident sub-regions in the inpainting result and run the inpainting model again
and repeat the process. In each iteration, we set the confident pixels as ”valid”
pixels in the new input and set the remaining low-confidence regions as new holes
for the next iteration to process. Overall, holes are shrinking as the iteration goes
so that the network should be more certain about the generated result.

Algorithm 1 describes the iterative inpainting process in details. In the first
iteration, we initialize the completed image by filling the whole missing region
with the generated content and set the pixels of which confidence is below 0.5 as
the missing regions for the second iteration. From the second iteration, a pixel
is replaced by new generated one if its confidence increases over the previous
iteration. When training, we iterate twice. We also fix the number of iterations
during the testing. There is no convergence issue because our algorithm always
keep the current-best complete prediction inside the hole at every iteration. Fig. 5
shows inpainting results in three consecutive iterations. As iteration goes, lines
are connected and distorted area or artifacts are corrected.
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Fig. 6: Effect of guided upsampling network. (a) results obtained by the iterative in-
painting model on original size; (b) running the iterative model on half size and using
guided upsampling network to upsample to the original size.

3.3 Guided upsampling

Our iterative inpainting model is trained on low-resolution (LR) (256× 256) so
it is not ideal to directly apply it to high-resolution (HR) inputs. To solve this
issue, we propose a guided inpainting upsampling network to generate a HR
inpainting result given a LR inpainting result. We propose a new architecture
extending the contextual attention module [39] which can match and use feature
patches from valid surrounding areas to help synthesize the hole pixels.

As illustrated in Fig. 3 (b), the proposed guided upsampling network consists
of two shallow networks, one for learning patch similarity and the other for image
reconstruction. Their feature maps are of different sizes, but we can split them
into an equal number of patches using different patch sizes so that patches of
the similarity network feature map have 1:1 correspondence to patches of the
reconstruction network feature map which allows us to use shared indices to
represent patches. Let H and V to be the index set of patches inside the holes
and the valid patches, respectively. Valid patches are those with at least one
pixel outside the holes, and others are taken as patches inside the hole. The
patch similarity network calculates the cosine similarity sij between a pair of
patch i, j. The reconstruction network is a shallow encoder-decoder network
with skip connections from each layer of the encoder to the mirrored layer of the
decoder. Before converting an HR feature map (of the HR input size) into an HR
inpainting result, each feature patch inside the holes is replaced with a weighted
sum of valid patches. Let φi to be an HR feature patch. The patch replacement
in the HR feature maps can be summarized as φi =

∑
j∈V s

′

ijφj , i ∈ H, where

s
′

ij is the softmax of sij . Then the HR feature maps are transformed to an output
image by two convolution layers (“ToRGB” in Fig. 3 (b)). The loss on the HR
output is a combined L1 and adversarial loss, the same as in Equation 2. As
mentioned earlier, we take the patches with at least one valid pixel as valid
patches. For missing regions reconstructed by these partially valid patches, we
simply take them as holes and run the previously described iterative inpainting
model one more time. By separating high-level similarity learning and low-level
texture reconstruction, the proposed guided upsampling network can generate
inpainting results that are both semantically reasonable and visually realistic, as
shown in Fig. 6. Furthermore, by specifying patches in V, the users can control
over the results, as we show in the supplementary material.
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4 Experiments

4.1 Implementation details

We implement our method using Python and Pytorch. Detailed network archi-
tectures can be found in the supplementary material3. We train the models with
Adam [24] optimizer; the learning rate set to 0.0001. The training batch size is
64. As the Places2 is much larger than the saliency dataset, we sample an equal
number of images from Places2 dataset and saliency dataset to constitute each
batch to prevent the model from ignoring the scarce samples. We use 256× 256
patches for training the iterative inpainting model and train the guided upsam-
pling network to upsample 256 × 256 results to 512 × 512. We randomly take
400 images from the training split of Places2 and the saliency dataset as vali-
dation samples and generate holes on them as described in Sec. 3.1. The model
is trained until the PSNR on this validation set does not increase. The 1,000
testing images are kept unseen during training. When testing, the number of
iterations for iterative inpainting is set to 4.

4.2 Comparison with state-of-the-art methods

We evaluate quantitative scores and visual quality of two variants of our method:
i.e. Ours*: the iterative inpainting model running on original input without
guided upsampling and Ours: the iterative inpainting model running on 2×
downsampled input and then using the guided upsample model to obtain the
results of original size. We compare our methods with four state-of-the-art meth-
ods: Global&Local [22], PatchMatch [9], GConv [40] and EdgeConnect [31].
Comparison with more methods can be found in supplementary material.

Quantitative evaluation We evaluate two variants of our method and state-of-
the-art methods on the test set of 1,000 images with object shaped holes. These
images are of various size, from short side 256 to long side 1024. For random
500 images of them, we exclude salient objects from holes to simulate the case of
distracting objects behind the main objects. For the rest 500 images the holes are
placed randomly. For fair comparisons with previous methods, we also evaluate
on the standard Places2 validation set resized to 256×256 with 128×128 center
square holes as in most previous methods e.g. [22, 39, 41], and irregular holes
as in [40, 37]. We use L1 loss, PSNR, and SSIM as they are most commonly
used metrics in image inpainting. Tab. 1 shows quantitative comparisons of our
method with state-of-the-art methods. Both variants of our method compare
favourably against previous methods. Without guided upsampling and running
on original resolution, Ours* model tends to generate smoother results, which
are favored by these scores at per-pixel basis. To validate superiority of our

3 https://zengxianyu.github.io/iic
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Table 1: Quantitative evaluation and user preference of various methods. P.c.: prefer-
ence count in user study.

Method
Object shaped holes Irregular holes (Places2) Square holes (Places2) User study
L1 Loss PSNR SSIM L1 Loss PSNR SSIM L1 Loss PSNR SSIM P. c.

[9] .0273 25.64 .8780 .0288 22.87 .8549 .0432 19.19 .7922 13
[22] .0292 24.23 .8653 .0385 20.95 .8185 .0386 20.16 .7950 2
[40] .0243 26.07 .8803 .0245 24.31 .8718 .0430 19.08 .7984 8
[31] .0246 26.24 .8871 .0221 24.78 .8701 .0368 20.30 .8017 10

Ours* .0194 28.20 .8985 .0203 25.43 .8828 .0361 20.21 .8130 62
Ours .0205 27.67 .8949 0220 24.70 .8744 .0384 19.69 .8063 80

Fig. 7: Quantitative comparisons when hole size varies.

method on filling large holes, we show scores measured on images with holes of
different sizes in Fig. 7. The X-axis represents the range of hole-to-image area
ratio and Y-axis represents average L1 loss, SSIM and PSNR over all samples of
which the hole-to-image area ratio are in the corresponding range. For example,
the first column is averaged over samples whose hole-to-image ratio is less than
0.1 and the second column is averaged over those greater than 0.1 but less than
0.15. For small holes, all methods perform almost equally well. It is increasingly
more difficult to fill holes when their size grow. So the SSIM, PSNR of all methods
decrease and L1 loss increases as the hole-to-image ratio increases. When it comes
to larger holes, our method performs better.

Visual quality Fig. 8 shows visual comparisons of two variants of our method
and state-of-the-art methods on real object removal tasks [1, 6, 3]. As shown
in the figure, existing deep learning based methods do not work well in real
requests. They often generate artifacts removing a large object. PatchMatch can
generate clear texture, however, since it does not have a semantic understanding
of input images, its results are not semantically reasonable. Both Ours* and
Ours can provide reasonable alternatives for the region to remove. Ours* tends
to generate smoother results. In comparison, by reconstructing LR results using
patches from HR inputs, Ours method is better at keeping fine-grained details.
Its results are similar to PatchMatch in terms of texture but more reasonable in
terms of structure.
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Input EdgeConnect Global&Local PatchMatch GConv Ours* Ours

Fig. 8: Visual comparison on mid-resolution images. Zoom-in to see the details. Images
are compressed due to limited submission file size. More results can be found in the
supplementary material.

Table 2: Effect of each component. IT: iterative inpainting; CF: confidence feedback;
RT: realistic training data as described in 3.1; GU: guided upsampling. PC represents
preference counts in user study. Time is measured in seconds on 512× 512 input.

IT CF RT GU L1 Loss PSNR SSIM PC Time

.0205 27.79 .8903 - .064√

.0204 27.57 .8925 - .301√ √

.0200 28.06 .8952 - .323√ √ √

.0194 28.20 .8985 62 .323√ √ √ √

.0205 27.67 .8949 80 .182

Confidence> 0.5 .0033 36.38 .981 - -
Confidence≤ 0.5 .0165 30.00 .923 - -

To evaluate visual quality of our method, we conduct a user study on 25
real object removal cases collected from object removal requests on the Web. All
images are resized to make the short side equal to 512. Each input image with
a marked region to remove and the results of different methods are shown in
random order to 11 users and we ask them to select a single best result. Each
combination of input and results are shown twice, and a valid vote is counted
only when a user selects the same result twice. Finally we collect 175 valid
votes. The user study results are shown in Tab. 1. Both variants of our method
are preferred more than previous methods. Ours model with guided upsampling
tends to generate results that are less smooth and with more clear texture, which
are often favored by users.
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(a) (b)

Fig. 9: (a) Sensitivity analysis of λ. (b) Effect of increasing test iterations.

4.3 Ablation study

First, to validate the proposed confidence prediction mechanism, we separately
evaluate the results of high-confidence (> 0.5) and low-confidence (≤ 0.5) re-
gions inside the hole. The results are in the bottom two rows of Tab. 2, which
indicates that the prediction in high-confidence regions are significantly better
than low-confidence regions. We show the effect of realistic training data, iter-
ative inpainting, and guided upsample model in the first to the third rows of
Tab. 2. The first row corresponds to our baseline model without confidence de-
coder trained on the Places2 dataset using irregular and square holes. The second
row shows the effect of conducting progressive inpainting (IT) in a predefined
boundary-to-center manner. For this setting, we evenly split each hole into four
parts based on distance transformation and run the baseline model four times
for each input. Each time we fill the part closest to the hole boundaries and
update the hole mask accordingly. The third row shows the iterative inpainting
method with confidence feedback (CF) trained on Places2 using irregular and
square holes. By predicting confidence map, it can automatically correct wrong
inpainted pixels and gradually improve the results, which yields better perfor-
mance than predefined progressive inpainting in terms of quantitative scores.
The sixth row corresponds to Ours* model described in previous sections. The
comparison between the third and the fourth row shows the effect of including
realistic training (RT) samples. All the variants discussed above output results
of the same size as the input. So when evaluating these models, we give them
the original input and do not apply post processing on their results. To analyze
the effect of guide upsampling, we first run the proposed iterative inpainting
method on 2× downsampled input images, and then upsample the results to
the original resolution using guided upsampling. This corresponds to Ours de-
scribed previously, and the effect is shown in the fifth row of Tab. 2. By running
the iterative process on the downsampled input, it significantly cuts down the
overall run-time.

The sensitivity analysis of λ (Eqn. 3) is shown in Fig. 9 (a). The performance
is not very sensitive to λ when it changes in a small range. For example, for
λ ∈ [0.7, 0.13], PSNR is in [28.1, 28.5]. Fig. 9 (b) shows the effect of increasing
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Input Ours* Ours Input Ours* Ours

Fig. 10: Inpainting results on 1024 × 1024 images. Zoom-in to see the details. Images
are compressed due to limited submission file size.

test iterations. More test iterations generally lead to better scores, especially in
the first four iterations. We fix the number of iterations to 4 during testing.

Fig. 10 shows inpainting results of Ours* and Ours on input images of size
1024 × 1024. As the guided upsampling network lifts the LR result to HR by
utilizing features from a HR input, it brings the details from existing contents
to generated contents, resulting in a more visually pleasant HR output. It also
can be reflected from the user study, in which Ours is preferred by users more
frequently. However, reconstructing with existing patches is a constraint on gen-
eration, making it less free and difficult to restore exactly the original content in
the missing region. As a result, Ours has lower quantitative scores than Ours*
as shown in the last row of Tab. 2.

5 Conclusion

We propose a high-resolution image inpainting method for large object removal.
Our model predicts the inpainting result as well as its confidence map, which is
used to revise unsatisfactory regions in an iterative manner. To improve visual
quality for high-res inputs, we first obtain a low-res result and then reconstruct
it using high-res neural patches. Furthermore, we collect a large object masks
dataset and synthesize realistic training samples that simulate realistic user in-
puts. Experiments show that our method outperforms existing methods and
achieves better visual quality.
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