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Abstract. Neural Architecture Search (NAS) achieved many break-
throughs in recent years. In spite of its remarkable progress, many al-
gorithms are restricted to particular search spaces. They also lack effi-
cient mechanisms to reuse knowledge when confronting multiple tasks.
These challenges preclude their applicability, and motivate our proposal
of CATCH, a novel Context-bAsed meTa reinforcement learning (RL) al-
gorithm for transferrable arChitecture searcH. The combination of meta-
learning and RL allows CATCH to efficiently adapt to new tasks while
being agnostic to search spaces. CATCH utilizes a probabilistic encoder
to encode task properties into latent context variables, which then guide
CATCH’s controller to quickly “catch” top-performing networks. The
contexts also assist a network evaluator in filtering inferior candidates
and speed up learning. Extensive experiments demonstrate CATCH’s
universality and search efficiency over many other widely-recognized al-
gorithms. It is also capable of handling cross-domain architecture search
as competitive networks on ImageNet, COCO, and Cityscapes are iden-
tified. This is the first work to our knowledge that proposes an efficient
transferrable NAS solution while maintaining robustness across various
settings.
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1 Introduction

The emergence of many high-performance neural networks has been one of the
pivotal forces pushing forward the progress of deep learning research and produc-
tion. Recently, many neural networks discovered by Neural Architecture Search
(NAS) methods have surpassed manually designed ones on a variety of domains
including image classification [47, 61], object detection [61], semantic segmen-
tation [5], and recommendation systems [31]. Many potential applications of
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Fig. 1: Upper: drawbacks of current NAS schemes. Lower: the overall framework
of CATCH. Our search agent, CATCHer, consists of three core components: con-
text encoder, RL controller and network evaluator. CATCHer first goes through
the meta-training phase to learn an initial search policy, then it adapts to target
tasks efficiently.

practical interests are calling for solutions that can (1) efficiently handle a myr-
iad of tasks, (2) be widely applicable to different search spaces, and (3) maintain
their levels of competency across various settings. We believe these are important
yet somewhat neglected aspects in the past research, and a transformative NAS
algorithm should be able to respond to these needs to make a real influence.

Many algorithms [33, 37] have been proposed to improve the efficiency of
NAS. However, they lack mechanisms to seek and preserve information that can
be meaningfully reused. Hence, these algorithms can only repeatedly and ineffi-
ciently search from scratch when encountering new tasks. To tackle this problem,
a rising direction of NAS attempts to create efficient transferrable algorithms.
Several works [23, 36] try to search for architectures that perform well across
tasks, but the solutions may not be optimal on the target tasks, especially when
the target task distributions are distant from the training task distributions.
Some recent works [28, 15] use meta-learning [16, 27] for one-shot NAS instead.
With recent critiques [56, 26] pointing out some one-shot solutions’ dependence
on particular search spaces and sensitivity to hyperparameters, many concerns
arise on the practicality of these meta NAS works based on one-shot methods.
To avoid ambiguity, throughout this paper, tasks are defined as problems that
share the same action space, but differ in reward functions. In NAS, the change
of either the dataset or domain (e.g. from classification to detection) alters the
underlying reward function, and thus can be treated as different tasks.

Striking a balance between universality and efficiency is hard. Solving the
universality problem needs a policy to disentangle from specifics of search spaces,
which uproots an important foundation of many efficient algorithms. The aim
to improve efficiency on multiple tasks naturally links us to a transfer/meta
learning paradigm. Meta Reinforcement Learning (RL) [38, 25] offers a solution
to achieving both efficiency and universality, which largely inspired our proposal
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of CATCH, a novel context-guided meta reinforcement learning framework that
is both search space-agnostic and swiftly adaptive to new tasks.

The search agent in our framework, namely CATCHer, acts as the decision-
maker to quickly “catch” top-performing networks on a task. As is shown in
Figure 1, it is first trained on a set of meta-training tasks then deployed to
target tasks for fast adaptation. CATCHer leverages three core components:
context encoder, RL controller, and network evaluator. The context encoder
adopts an amortized variational inference approach [1, 38, 24] to encode task
properties into latent context variables that guide the controller and evaluator.
The RL controller makes sequential decisions to generate candidate networks
in a stochastic manner. The network evaluator predicts the performance of the
candidate networks and decides which nets are valuable for training. All three
components are optimized in an end-to-end manner.

We test the method’s universality and adaptation efficiency on two funda-
mentally different search spaces: cell-based search space [13] and Residual block-
based [19, 57] search space. The former focuses on cell structure design, while the
latter targets macro skeleton search. With NAS-Bench-201 [13], we can compare
CATCH fairly with other algorithms by eliminating performance fluctuations ris-
ing from different search spaces and training settings. Our experiments demon-
strate CATCH’s superiority over various other works, including R-EA [40] and
DARTS [33]. On Residual block-based search space, we use image classification
tasks on sub-datasets of ImageNet [10] as meta-training tasks, and then adapt
the CATCHer to target tasks, such as image classification on full ImageNet,
object detection on COCO [30], and semantic segmentation on Cityscapes [9].
CATCH discovered networks on these tasks with competitive performance and
inference latency. Our results demonstrated CATCH’s robustness across vari-
ous settings, easing previously raised concerns of NAS algorithms’ sensitivity to
search space, random seeds, and tendencies to overfit to only one or two reported
tasks.

Our key contribution is the first attempt to design an efficient and uni-
versal transferrable NAS framework. It swiftly handles various tasks through
fast adaptation, and robustly maintains competitive performance across differ-
ent settings. Our work brings along new perspectives on solving NAS problems,
including using amortized variational inference to generate task characteristics
that inform network designs. It also demonstrates the possibility of creating ef-
ficient sample-based NAS solutions that are comparable with widely-recognized
one-shot methods. With competitive networks identified across classification,
detection, and segmentation domains, it further opens the investigation on the
feasibility of cross-domain architecture search.

2 Related Work

NAS is an algorithmic approach to design neural networks through searching
over candidate architectures. Many harness the power of Reinforcement Learning
(RL) [60], Bayesian Optimization [3, 4], Evolutionary Algorithm [14, 39], and
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Monte Carlo Tree Search [35, 52]. The field gradually gains its tractions with
the emergence of highly-efficient algorithms [33, 37, 39] and architectures [40, 47]
with remarkable performance.

Our method is inspired by PEARL [38], a recent work in context-based meta
reinforcement learning, which captures knowledge about a task with probabilistic
latent contexts. The knowledge is then leveraged for informed policy training.
There are a few key challenges in efficiently applying it to NAS: (1) PEARL
models the latent context embeddings of RL tasks as distributions over Markov
Decision Processes (MDP), but it is less clear how a task in NAS can be mean-
ingfully encoded. (2) RL is notoriously famous for its sample inefficiency, but it
is extremely expensive to obtain reward signals on NAS. We address these chal-
lenges by (1) proposing the use of network-reward pairs to represent a task, (2)
introducing meta-training tasks that can be cheaply evaluated to obtain more
data for learning, and including a network evaluator that acts like Q-learning
agents to speed up learning.

Previous works also explored the possibility of using meta-learning for NAS.
Some [23, 36] aimed to identify a single architecture that simultaneously works
well on all considered tasks. These solutions may not be scalable when con-
fronting a large pool of target tasks. An early work [53] aimed to learn a general
policy across tasks. However, it generates task embeddings from images, which
may fail at datasets with the same images, and is unable to differentiate among
classification, detection, and segmentation tasks on the same dataset. A few re-
cent papers [28, 15] combined gradient-based meta-learning with DARTS, but
the algorithms are only applicable to search spaces compatible with DARTS.
Additionally, none of the above proposals reported their performance on large-
scale tasks like ImageNet full dataset. This leaves questions on these proposals’
generalizability and adaptation efficiency on more challenging datasets, where
scientists expect meta-NAS algorithms should have an edge over typical NAS
methods. CATCH is the first NAS algorithm to our knowledge that deploys
meta-learning while maintaining universality, robustness across different search
spaces, and capability to handle large-scale tasks.

3 CATCH Framework

In NAS, the change of dataset (e.g. CIFAR-10 vs. ImageNet) or domain (e.g.
image classification vs. object detection) essentially indicates the shift of under-
lying reward distribution. The goal of a cross-task transfer algorithm is hence to
quickly identify the best actions under the changed reward dynamics. To handle
this challenge, the CATCH framework consists of two phases: a meta-training
phase and an adaptation phase, as is presented in Algorithm 1. In the meta-
training phase, we train the CATCHer on a pool of meta-training tasks that
can be cheaply evaluated. A key goal of this phase is to present the context en-
coder with sufficiently diversified tasks, and encourage it to consistently encode
meaningful information for different tasks. Meanwhile, both the controller and
the evaluator may gain a good initialization for adaptation. In the adaptation
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Fig. 2: The search procedure of CATCH on a given task. The procedure starts
from initializing the search history by storing a randomly selected network m
and its reward r. The encoder applies amortized variational inference approach
to generate latent context encoding z by encoding network-reward pairs from
the search history. The controller then generates candidate networks for the
evaluator to choose the most promising ones to train and evaluate. Newly se-
lected networks and their rewards will be stored in the search history. The loop
continues after the three components are optimized.

phase, the meta-trained CATCHer then learns to find networks on the target
task efficiently through the guidance of the latent context encoding.

We show the search procedure on any single task in Figure 2, which corre-
sponds to line 3-13 of Algorithm 1.

3.1 Context Encoding

The use of latent context encoding is a crucial part of CATCH. The question
is what information about the task is reliable to construct such latent contexts.
Directly extracting feature maps of images of the dataset is an intuitive solu-
tion. However, for the same dataset, the best network configurations to perform
different tasks like object detection and semantic segmentation may differ a lot.
Hence, simply extracting information directly from images may not be a viable
approach.

We instead believe that the task-specific contextual knowledge can be mined
from the search history (i.e. sets of network-reward pairs). If the same group of
networks have similar relative strengths on two tasks, it might mean these tasks
are “close” to each other. It is also helpful to break the barriers for cross-task
architecture search, since the network-reward pair of information is universal
across tasks.

Before searching on a task, we randomly form a few networks m and evaluate
their performance r to initialize the search history. The retrieved network-reward
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pairs are stored in the search history for its initialization. To start the search,
we sample a number of network-reward pairs {(m, r)i}N1 (denoted by c1:N for
simplicity) from the search history, which will be fed into the encoder to generate
a latent context vector z representing the salient knowledge about the task.

We model the latent context encoding process in a probabilistic manner,
because it allows the context encoder to model a distribution over tasks and
conduct exploration via posterior sampling. Following the amortized variational
inference approach used in [38, 1, 24], we aim to estimate the posterior p(z|c1:N )
with the encoder qφ(z|c1:N ), parametrized by φ. We assume the prior p(z)
is a unit multivariate Gaussian distribution with diagonal covariance matrix
N (0, diag(1)), and hence, the posterior p(z|c) conditioning on c is Gaussian.
Since the network-reward pairs c1:N are independent on a task, we could factor
qφ(z|c1:N ) into the product of Gaussian factors conditioning on each piece of
contexts ci,

qφ(z|c1:N ) ∝
N∏
i=1

N (f µ̃φ (ci), diag(f σ̃φ (ci)), (1)

where fφ is an inference network parametrized by φ, which predicts the mean
µ̃i and the standard deviation σ̃i of qφ(z|ci) as a function of ci to approximate
Gaussian p(z|ci).

During the forward pass, the encoder network fφ outputs µ̃i, σ̃i of the Gaus-
sian posterior qφ(z|ci) conditioning on each context, then we take their product
qφ(z|c1:N ). Each context ci is (m, r)i, where r is normalized among {r}1:N to
reflect the relative advantage of each network. All the network-reward pairs in
the search history are utilized. We then sample z from qφ(z|c1:N ). Further im-
plementation details can be found in the Appendix.

3.2 Network Sampling

The generation of a network can be treated as a decision-making problem, where
each of the RL controller’s actions determines one attribute of the resulting
architecture. The attribute can be an operation type to form a certain edge in a
cell-based search (e.g. skip-connect, convolution operations, etc.), or the shape
of a network in a macro-skeleton search (e.g. width, depth, etc.). Both ways are
explored in our work.

A network, denoted by m, is represented as a list of actions [a1, a2, ..., aL]
taken by the controller in a sequential manner. At each time step l, the con-
troller makes a decision al according to its policy πθc , parametrized by θc.
The controller policy takes z and the previous actions [a1...al−1,0, ...,0] as
inputs, and outputs the probability distribution of choosing a certain action
πθc(a

l|[a1...al−1,0, ...,0], z), where the actions will be sampled accordingly. z is
the latent context vector generated by the encoder, and [a1...al−1,0, ...,0] is a col-
lection of one-hot vectors indicating all the actions taken so far at l-th timestep,
leaving untaken actions [al, ..., aL] as zero vectors. The reward for each action
is the normalized performance score of the network. The controller samples M
networks stochastically as candidates for the network evaluator.
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Algorithm 1 Context-based Meta Architecture Search (CATCH)

Inputs: {Tmeta} (meta-training task pool), {Ttarget} (target task pool), Nmeta (# of
meta epochs), Nsearch (# of search epochs), C (# of contexts to sample), M (#
of models to sample)
Meta-training Phase:

1: for Nmeta meta epochs do
2: Select meta-training task T from {Tmeta}
3: Initialize SearchHistory
4: for n = 1 to Nsearch do
5: {(m, r)i}C1 = SearchHistory.sample contexts(C)
6: z = Encoder.encode({(m, r)i}C1 )
7: {m}M1 ← Controller.sample networks(z, M)
8: m′ ← Evaluator.choose best({mj}M1 , z)
9: r ← train and evaluate(m′, T )

10: SearchHistory.add((m′,z, r))
11: Encoder, Controller, Evaluator optimization
12: end for
13: end for

Adaptation Phase:
14: Select target task T from {Ttarget}
15: Repeat Line 3-13
16: BestModel ← SearchHistory.best model()
17: return BestModel

3.3 Network Scoring and Evaluation

Since the candidate networks are sampled stochastically by the controller, it
is almost inevitable that some inferior models will be generated. We set up
a filtering mechanism, namely network evaluator, which acts like a Q-learning
agent that predicts the actual performance of each network, and selects the top
one for training. The predicted value is not necessarily an accurate prediction
of the training performance, but should be able to provide a ranking among
candidate models roughly similar to their true performance.

The evaluator fθe(m, z) is parameterized by θe. It takes M tuples of network-
context pairs (m, z) as inputs, and outputs the predicted performance of input
architectures. The network with the highest predicted performance score will be
trained to obtain the true reward r. The network-context-reward tuple (m, z, r)
is then stored in the evaluator’s local memory for future gradient updates.

3.4 Optimization of CATCHer

To optimize the controller policy, we maximize the expected reward for the task
it is performed on. The controller is trained using Proximal Policy Optimization
(PPO) [43] with a clipped surrogate objective Lc.

To optimize the evaluator, we deploy Prioritized Experience Replay (PER)
[42], a Deep Q-learning [34] optimization technique. During the update, it prompts
the evaluator to prioritize sampling entries that it makes the most mistakes on,
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Fig. 3: (a)-(c) show the results of 500 trials for CATCH-meta, CATCH-sfs(search
from scratch) and other sample-based algorithms. Each individual trial is sorted
by the final validation accuracy of the searched network.

and thus improves sample efficiency. The loss of the evaluator Le is the Huber
loss [22] between the evaluator’s prediction r̃ and the normalized true perfor-
mance score. Further details of Lc and Le can be found in the Appendix.

To optimize the encoder, we take Lc and Le as part of the objective. The
resulting variational lower bound for each task T is

L = Ez∼qφ(z|cT )[Lc + Le + βDKL(qφ(z|cT )||p(z))], (2)

where DKL serves as an approximation to a variational information bottle-
neck that constrains the mutual information between z and c, as is shown in
[1, 38]. This information bottleneck acts as a regularizer to avoid overfitting to
training tasks. β is the weight of DKL in the objective, and p(z) is a unit Gaus-
sian prior. Since (1) the latent context z serves as input to both controller and
evaluator, and (2) qφ(z|c) and p(z) are Gaussian, with DKL computed using
their mean and variance, gradient of Eq. 2 can be back-propagated end-to-end
to the encoder with the reparameterization trick.

4 Experiments

4.1 Implementation Details

We use Multi-layer Perceptrons (MLP) as the controller policy network to gen-
erate the probability of choosing a certain action. The parameters θc of the
controller is trained on-policy via the PPO algorithm. We mask invalid actions
by zeroing out their probabilities in the controller’s outputs, then softmax the
remaining probabilities and sample actions accordingly.

The evaluator is an MLP to generate the predicted score of a network. In the
meta-training phase, we reset ε in the ε-greedy exploration strategy each time
when the agent initializes a new task. We sample 80% of the entries as a batch
from the replay buffer using PER.
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Fig. 4: Learning curves of one-shot algorithms and CATCH. Each curve is an
average of three runs. We plot the first 100 search epochs for algorithms except
for DARTS, which is trained only for 50 search epochs.

The encoder MLP outputs a 10-dim latent context vector z, and the weight
of the KL-Divergence β in the combined loss is set to be 0.1. More details of the
components’ hyperparameters can be found in the Appendix.

4.2 Benchmark on NAS-Bench-201

As recent work [56] indicated, NAS algorithms are usually compared unfairly
under different settings. To mitigate such problems, we first tested CATCH on
NAS-Bench-201. It is a benchmark dataset that enables fair comparisons among
NAS methods under the same configurations. It supports searching over cell-
based architectures, where a directed acyclic graph represents each cell with 4
nodes and 5 possible connection operations on each edge. It provides the valida-
tion and test accuracies of 15,625 architectures on CIFAR-10, CIFAR-100, and
ImageNet16-120 datasets. ImageNet16-120 is a subdataset for ImageNet, which
downsampled all its images to 16× 16, and contains only the first 120 classes of
ImageNet.

Experiment Settings. In the meta-training phase, each task is formed as a
classification task on an X-class sub-dataset of ImageNet16 (ImageNet down-
sampled to 16 × 16) to maintain consistency with the configurations in NAS-
Bench-201. The number of classes X ∈ [10, 20, 30]. In each meta-epoch, the
agent searches 20 networks whose validation accuracies after 12 training epochs
are used as the reward signals. The hyperparameters used for training the net-
works in both phases are identical to those in NAS-Bench-201. In the following
experiments, CATCH-meta is meta-trained with 25 meta epochs for 10.5 GPU
hours on Tesla V100. We apply the same configurations as those in NAS-Bench-
201.

Comparison with Sample-based Algorithms. We display the search re-
sults of the meta-trained version (CATCH-meta) and the search-from-scratch



10 X. Chen and Y. Duan et al.

Table 1: Comparison of CATCH with one-shot algorithms. The top accuracies
of identified models, standard deviations, search time (hour), total search time
(hour), and the highest validation accuracies among all the networks in NAS-
Bench-201 are reported. The same three random seeds are used to run through
each algorithm. The time budget for search on CIFAR-10, CIFAR-100, and
ImageNet16-120 are 3, 4, and 5 hours respectively.

Algorithm CIFAR-10 CIFAR-100 ImageNet16-120
Total Time

Acc ±std Time Acc±std Time Acc±std Time

DARTS-V1 [33] 88.08±1.89 2.46 68.99±1.93 2.44 23.66±0 4.55 9.45
DARTS-V2 [33] 87.16±0.39 9 65.06±2.95 7.91 26.29±0 22.14 39.05

GDAS [12] 90.32±0.08 6 70.33±0.85 6.23 44.81±0.97 17 29.23
R-NAS [26] 90.45±0.43 2.19 70.39±1.36 2.26 44.12±1.04 5.94 10.39
ENAS [37] 90.2±0.63 4.22 69.99±1.03 4.26 44.92±0.51 5.18 13.66
SETN [11] 90.26±0.75 7.62 68.01±0.21 7.74 41.04±1.64 20.33 35.69

CATCH-meta 91.33±0.07 3 72.57±0.81 4 46.07±0.6 5 22.5

Max Acc. 91.719 73.45 47.19 —

version (CATCH-sfs where the meta-training phase is skipped) of our method,
and compare them with other sample-based algorithms: Random Search (RS)
[2], Regularized Evolution Algorithm (R-EA) [40], and REINFORCE [51]. The
results of other methods are reproduced by running the code and configurations
originally provided by NAS-bench-201. Each experiment is repeated for 500 trials
with different seeds. The algorithms are trained for 50 search epochs in each trial.
Figure 3 presents the search results on CIFAR-10, CIFAR-100, ImageNet16-120,
with the highest validation accuracy on each task.

The reproduced results are consistent with the experiments performed in
NAS-Bench-201. The performance of CATCH-sfs is similar to the other four
methods, but CATCH-meta dominates all other algorithms in the searched net-
work accuracies. On CIFAR-10, CATCH-meta finds the best model in 280/500
trials. On CIFAR-100, over half of them find top-3 performance networks within
50 samples, while other algorithms barely touch the roof. On ImageNet16-120,
CATCH reaches the best network for more than 22% trials. We can see tremen-
dous benefits for using the meta-trained CATCH to reduce time and cost.

Comparison with One-shot Algorithms. One of the central controversies
around meta-NAS algorithms is: given the high searching efficiency of one-shot
methods, can sample-based algorithms outperform them? We therefore compare
the performance of CATCH with many state-of-the-art one-shot NAS solutions.
For fair comparisons, instead of querying the NAS-Bench-201 network database,
we train each child network for 12 epochs and obtain their early-stop validation
accuracies as training feedbacks. The early-stop training setup is the same as the
one in the meta-training phase. The one-shot algorithms involved are first-order
DARTS (DARTS-V1) [33], second-order DARTS (DARTS-V2), GDAS [12], Ran-
dom NAS (R-NAS) [26], ENAS [37], and SETN [11]. We run the algorithms with
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Table 2: Results on ImageNet compared to manually designed and NAS searched
architectures. Latency is measured on one Tesla V100 with one image with shape
(3, 720, 1080).

Network Top-1 Acc (%) Top-5 Acc (%) Latency (ms)

ResNet50 [19] 77.15 93.29 16.4
DenseNet201 [20] 77.42 93.66 31.6
ResNext101 [54] 79.31 94.5 76.7
Inception-V3 [45] 78.8 94.4 16.4

EfficientNet-B1 [47] 77.3 93.5 29.5
EfficientNet-B2 79.2 94.5 47.6
NASNet-A [61] 78.6 94.2 -

BASE [44] 74.3 91.9 -

CATCH-Net-A 79.04 94.43 16.9
CATCH-Net-B 79.46 94.7 33.7

the original code and configurations released from NAS-Bench-201. DARTS-V1
and DARTS-V2 are run for 50 search epochs, and other algorithms are trained
for 250 search epochs.

Figure 4 presents the learning curves of each algorithm in the first 100 search
epochs. For CATCH, at each search epoch, we identify networks with the best
partially trained accuracy found so far, and report their fully trained accuracies.
Both DARTS and ENAS have a relatively strong performance at the beginning,
but the curves drop significantly afterward. SETN resembles Random NAS a lot.
GDAS is among the best one-shot algorithms, but it seems to plateau at local
maximums after a few search epochs. CATCH has the best performance among
all, as it quickly adapts and identifies promising architectures that are beyond
other algorithms’ search capacity.

In Table 1, we report the best fully trained accuracy of networks that each
algorithm identifies over their complete training process. We set the time budget
for CATCH to search on CIFAR-10, CIFAR-100, and ImageNet16-120 as 3, 4,
and 5 hours. It is roughly equivalent to cutting the search on these tasks at
70, 50, and 40 search epochs, respectively. Although DARTS-V1, R-NAS, and
ENAS spend less time in total, they are highly unstable and the performance
of DARTS and ENAS tends to deteriorate over time. CATCH spends 22.5 (10.5
meta + 12 adaptation) hours on all three tasks, and its searched networks surpass
all other algorithms. The presented results have proved that CATCH is swiftly
adaptive, and it is able to identify networks beyond many one-shot algorithms’
reach within a reasonable time.

4.3 Experiments on Residual Block-based Search Space

Having proved that CATCH can adapt to new tasks efficiently with meta-
training, we further inquire whether CATCH has the ability to transfer across
different domains including image classification, objection detection, and seman-
tic segmentation. In this section, we consider a more challenging setting where
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Table 3: Results on COCO compared to manually designed and NAS searched
backbones. Latency results of networks except CATCH are referred from [57].

Method Backbone Input size Latency (ms) mAP

RetinaNet [29] ResNet101-FPN 1333x800 91.7 (V100) 39.1
FSAF [59] ResNet101-FPN 1333x800 92.5 (V100) 40.9

GA-Faster RCNN [48] ResNet50-FPN 1333x800 104.2 (V100) 39.8
Faster-RCNN [41] ResNet101-FPN 1333x800 84.0 (V100) 39.4
Mask-RCNN [18] ResNet101-FPN 1333x800 105.0 (V100) 40.2

DetNAS [8] Searched Backbone 1333x800 - 42.0
SM-NAS: E3 Searched Backbone 800x600 50.7(V100) 42.8
SM-NAS: E5 Searched Backbone 1333x800 108.1(V100) 45.9

Auto-FPN [55] Searched Backbone 1333x800 - 40.5

CATCH CATCH-Net-C 1333x800 123.5 (V100) 43.2

the meta-training phase contain only image classification tasks while tasks in all
the three domains are targeted in the adaptation phase. The architectures are
very different among these domains, so we search for their common component
- the feature extractor (backbone). ResNet is one popular backbone for these
tasks, thus we design the search space following [49, 57].

Constructing a model in the Residual block-based search space requires the
controller to make several decisions: (1) select the network’s base channel from
[48, 56, 64, 72], (2) decide the network’s depth within [15, 20, 25, 30], (3) choose
the number of stages s, which is either 4 or 5, (4) schedule the number of blocks
contained in each stage, and (5) arrange the distribution of blocks holding dif-
ferent channels. Details of the Residual block-based search space can be found
in the Appendix.

Experiment Settings. We use the same meta-training settings as the ones
we used in NAS-Bench-201. For each meta epoch, an ImageNet sub-dataset is
created. To form such sub-datasets, we sample X classes from all classes of
ImageNet, where X ∈ [10, 20, 30]. Then the images are resize to 16×16, 32×32,
or 224× 224. Thus there are 3×

[(
1000
10

)
+
(
1000
20

)
+
(
1000
30

)]
possible sub-datasets.

To achieve the balance between inference latency and network performance,

we adopt the multi-objectve reward function R = P (m) × [LAT (m)
Ttarget

]w in [46],

where P (m) denotes the model ’s performance (e.g. validation accuracy for
classification, mAP for object detection or mIoU for semantic segmentation),
LAT (m) measures the model’s inference latency, and Ttarget is the target la-
tency. w serves as a hyperparameter adjusting the performance-latency tradeoff.
In our experiments, we set w = −0.05. With this reward, we hope to find models
that excel not only in performance but also in inference speed. We meta train
CATCHer for 5 GPU days, and adapt on each target task to search for 10 archi-
tectures. We target ImageNet dataset for image classification, COCO dataset for
object detection and Cityscapes dataset for semantic segmentation. The detailed
settings can be found in the Appendix.
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Table 4: Results on Cityscapes compared to manually designed and NAS
searched backbones. Latency is measured on Tesla V100 with one image with
shape (3, 1024, 1024). SS and MS denote for single scale and multiple scale
testing respectively.

Method Backbone Latency (ms) mIoU (SS) mIoU (MS)

BiSeNet [58] ResNet101 41 - 80.3
DeepLabv3+ [7] Xception-65 85 77.82 79.3

CCNet [21] ResNet50 175 - 78.5
DUC [50] ResNet152 - 76.7 -

DANet [17] ResNet50 - 76.34 -

Auto-DeepLab [32] Searched Backbone - 79.94 -
DPC [6] Xception-71 - 80.1 -

CATCH CATCH-Net-D 27 79.52 81.12

Search Results. Table 2 compares the searched architectures with other widely-
recognized networks on ImageNet. CATCH-Net-A outperforms many listed net-
works. Its accuracy is comparable with EfficientNet-B1 and ResNext-101, yet it
is 2.82X and 4.54X faster. CATCH-Net-B outperforms ResNext-101 while short-
ens the latency by 2.28X. The network comparison on COCO and Cityscapes
is presented in Table 3 and Table 4. Our network again shows faster inference
time and competitive performance. We also transfer CATCH-Net-B found during
the search on ImageNet to COCO and Cityscapes, which yield 42% mAP with
136ms inference time and 80.87% mIoU (MS) with 52ms latency, respectively.
Our results again show that directly transferring top architectures from one task
to another cannot guarantee optimality. It also reveals CATCH’s potentials to
transfer across tasks even when they are distant from the meta-training ones.

5 Ablation Study

The context encoder is the spotlight component of our algorithm. We are espe-
cially curious about: (1) Is the encoder actually helpful for adaptation (compared
with simply plugging in the meta-learned controller and evaluator priors)? (2)
If so, does the improvement come from good estimates of the posterior, or is
it from the stochastic generation of z that encourages exploration and benefits
generalization?

To answer these questions, we designed two extra sets of experiments: (1)
CATCH-zero: We set z = 0, and thereby completely eliminate the encoder’s
effect on both the controller and the evaluator; (2) CATCH-random: We sample
each z from a unit Gaussian prior N (0, diag(1)) during the search as random
inputs. The results are presented in Figure 5 (a)-(c). In both settings, the agents
are still meta-trained for 10.5 hours before they are plugged in for adaptation.

The gaps among the lines in Figure 5 answered our questions. The encoder
not only helps with adaptation (through comparing CATCH-meta and CATCH-
zero), but also provides assistance in a much more meaningful way than using
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Fig. 5: (a)-(c) compare results of 500 trials for CATCH-meta, CATCH-sfs(search
from scratch), CATCH-zero, CATCH-random.

random inputs for exploration, as CATCH-meta outperforms CATCH-random
on both CIFAR-10 and CIFAR-100. Interestingly, we observe less significant
improvement on ImageNet16-120. One hypothesis is since we perform the meta-
training phase on sub-datasets of ImageNet16, the meta-trained controller and
evaluator are already tuned towards policies that fit the search on ImageNet16.
Hence, the transferred policies require less adaptation assistance from the en-
coder. More ablation studies can be found in the Appendix.

6 Conclusion and Discussion

In this work, we propose CATCH, a transferrable NAS approach, by design-
ing an efficient learning framework that leverages the benefits of context-based
meta reinforcement learning. The key contribution of CATCH is to boost NAS
efficiency by extracting and utilizing task-specific latent contexts, while main-
taining universality and robustness in various settings. Experiments and abla-
tion studies show its dominant position in search efficiency and performance
over non-transferrable schemes on NAS-Bench-201. Extensive experiments on
residual block-based search space also demonstrate its capability in handling
cross-task architecture search. As a task-agnostic transferrable NAS framework,
CATCH possesses great potentials in scaling NAS to large datasets and various
domains efficiently.

During our research into transferrable NAS frameworks, we identified many
potentially valuable questions to be explored. Efficient adaptation among do-
mains is challenging, and we demonstrated a first attempt to simplify it by
searching for backbones with a shared search space. A possible future investiga-
tion would be to generalize cross-task architecture search to flexibly include more
decisions, such as searching for detection and segmentation heads. Meanwhile,
our meta-training tasks involve only classification tasks, but it is also possible to
diversify the pool and explore whether it leads to further performance boosts.
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