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Abstract. Bilinear pooling has been used in many computer vision
tasks and recent studies discover that matrix normalization is a vital
step for achieving impressive performance of bilinear pooling. The stan-
dard matrix normalization, however, needs singular value decomposition
(SVD), which is not well suited in the GPU platform, limiting its effi-
ciency in training and inference. To resolve this issue, the Newton-Schulz
(NS) iteration method has been proposed to approximate the matrix
square-root. Although it is GPU-friendly, the NS iteration still takes
several (expensive) iterations of matrix-matrix multiplications. Further-
more, the NS iteration is incompatible with the compact bilinear features
obtained from Tensor Sketch (TS) or Random Maclaurin (RM). To over-
come those known limitations, in this paper we propose a “rank-1 update
normalization” (RUN), which only needs matrix-vector multiplications
and is hence substantially more efficient than the NS iteration using
matrix-matrix multiplications. Moreover, RUN readily supports the nor-
malization on compact bilinear features from TS or RM. Besides, RUN is
simpler than the NS iteration and easier for implementation in practice.
As RUN is a differentiable procedure, we can plug it in a CNN-based an
end-to-end training setting. Extensive experiments on four public bench-
marks demonstrates that, for the full bilinear pooling, RUN achieves
comparable accuracy with a substantial speedup over the NS iteration.
For the compact bilinear pooling, RUN achieves comparable accuracy
with a significant speedup over SVD-based normalization.

1 Introduction

Bilinear pooling has achieved excellent performance in many computer vision
tasks, such as fine-grained recognition [22, 30, 20, 29, 19], generic image recogni-
tion [18], visual question answering [7, 36] and action classification [14, 31, 3, 28].
Recent studies [11, 15, 19, 20, 18] show that, the normalization on singular values
of the bilinear matrix is vital for achieving high recognition performance. To be
specific, DeepO2P [11] adopts the logarithm normalization on the singular values
to approximate the Log-Euclidean metric [1] for exploiting geometry of covari-
ance spaces. MPN-COV [19] explains the advantage of the power normalization
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on singular values from the perspective of robust covariance estimation. In par-
allel, HoK [15], Improved BCNN [20], MHBN [35], Second-order Democratic
Aggregation [21] and Power Normalization [16] demonstrate the importance of
the normalization on singular values in remedying the burstiness phenomenon
and equalizing contributions of singular values into the final image descriptor.

To conduct normalization on the singular values of the bilinear matrix, tra-
ditional methods such as matrix square-root normalization [19] and matrix log-
arithm normalization [11] rely on the singular value decomposition (SVD) to
explicitly obtain the singular values. But SVD is not easily parallelizable and
hence not well suited in the GPU platform, limiting its efficiency. To boost the
efficiency in the GPU platform, improved B-CNN [20] attempts to approximate
the matrix square root via the Newton-Schulz (NS) iteration [10] in the forward
propagation. Since NS iteration only needs matrix-matrix product, it is easily
parallelizable and well suited in the GPU platform in the inference time. But
in the backward propagation of, the improved B-CNN uses Lyapunov equation,
which is still expensive in computation. iSQRT [18] further makes the NS iter-
ation differentiable and thus makes it feasible in the backward propagation. In
each iteration, the NS method calculates several times of matrix-matrix multipli-
cations. We denote the iteration number by K and denote the bilinear matrix by
B ∈ RD×D, and NS method has a computation complexity of O(KD3), which is
expensive. In parallel, power-normalization methods are proposed in [16], which
also rely on a series of matrix-matrix multiplications, taking a O(log(η)D3) com-
putation complexity where η is the level of power normalization. In addition, NS
iteration and power normalization only support normalization on the full bi-
linear matrix, and cannot support the normalization on the compact bilinear
features [8] from Tensor Sketch [25] or Random Maclaurin [12]. This limits their
usefulness in cases when low-dimension features are required.

To further improve the efficiency and overcome the limitation of the NS iter-
ation, we propose a rank-1 update normalization (RUN). The proposed RUN is
an iterative algorithm inspired by a classical numerical algorithm, power method
[2]. In each iteration, it only needs twice matrix-vector multiplications, taking
low computation cost. Meanwhile, it is easily parallelizable and well suited in the
GPU platform. In each iteration, the computation complexity of the proposed
RUN is O(DN). Here, N is the number of local features per image, which is in
a comparable scale with D. In this case, the per-iteration cost of RUN, O(DN),
is much lower than NS’s per-iteration cost O(D3). Moreover, in practice, our
RUN needs less iterations to achieve the optimal recognition accuracy than NS
method, making its efficiency advantage over the NS iteration more significant.
Besides, the proposed RUN is much simpler than NS iteration and thus much
easier for implementation in practice. In addition, the proposed RUN readily
supports the normalization on a compact bilinear features generated from Ten-
sor Sketch or Random Maclaurin. Thus, our RUN is especially useful for the
cases when compact features are necessary. Power method is also used in ob-
taining the largest singular value for spectral normalization [24]. The spectral
normalization is conducted on the weight matrix whereas ours is conducted on
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Table 1. Differences between the proposed RUN and other bilinear pooling methods,
O2P [11], G2DeNet [29], MPN-COV [19], Improved B-CNN [20], iSQRT [18], Power-
Norm [16] and MoNet [9]. Here, K1 is the number of iterations used in Newton-Schulz
(NS) method, andK2 is that in the proposed RUN, η is the level of power normalization,
D is the local feature dimension and N is the number of local features. In practice, N
is in a comparable scale with D, K2 < K1. Thus, the complexity O(K2DN) of ours is
significantly lower than the complexity O(K1D

3) of the NS method. Meanwhile, our
RUN is well suited in the GPU and readily supports compact bilinear pooling (CBP)
based on Tensor Sketch or Random Maclaurin.

Method Algorithm Complexity
GPU

Support
CBP

Support

O2P SVD O(D3) limited No

G2DeNet SVD O(D3) limited No

MPN-COV Eigen Decomp O(D3) limited No

Improved B-CNN Newton-Schulz in FP O(D3) good in FP No

iSQRT Newton-Schulz O(K1D
3) good No

Power Normalization MaxExp O(log(η)D3) good No

MoNet SVD O(D3) limited Yes

RUN (Ours) Power Method O(K2DN) good Yes

the feature. Table 1 compares our RUN with several bilinear pooling methods.
In summary, our contributions in this paper are three-fold:

– We propose “rank-1 update normalization” (RUN), which only needs several
matrix-vector multiplications and is considerably more efficient than existing
GPU-friendly normalization methods based on the NS iteration.

– The proposed RUN readily supports normalization on compact bilinear fea-
tures from Tensor Sketch or Random Maclaurin, which cannot be achieved
by existing matrix normalization methods based on the NS iteration.

– The proposed RUN is a differentiable procedure. We plug it into a neural
network and achieve an end-to-end training. The systematic experiments
conducted on four public benchmarks demonstrate its excellence.

2 Background

We denote the feature map from a convolutional layer by F ∈ RW×H×D, where
W is the width, H is the height and D is the depth. We reshape F into a matrix
F ∈ RWH×D. Bilinear pooling obtains the bilinear matrix by B = F>F ∈ RD×D.
A pioneering work, B-CNN [22], implements the bilinear pooling as a layer of
a convolutional neural network to support an end-to-end training. It achieves
a better performance on fine-grained classification than standard AlexNet. The
following research on bilinear pooling in deep neural network proceeds along two
main directions: 1) improve the effectiveness of bilinear features [17, 29, 38, 20,
19]; 2) reduce the dimension of bilinear features [8, 5, 13]. Our work is related
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with both directions since we propose a fast matrix normalization method to
boost its effectiveness, and make it compatible with compact bilinear pooling to
obtain a compact and normalized bilinear feature. Below we review existing ma-
trix normalization methods and compact bilinear pooling methods, respectively.

2.1 Matrix Normalization

We first review two traditional methods, matrix square-root normalization in
improved B-CNN [20] and matrix logarithm normalization in O2P [11]. They
first conduct singular value decomposition (SVD) on the bilinear matrix B by

B→ UΣU>.

Normalization is conducted on singular values and the normalized feature is

B̂← Ug(Σ)U>,

where g(Σ) is conducted on singular values in an element-wise manner. Matrix
square-root normalization adopts g(Σ) = Σ1/2 and matrix logarithm normal-
ization adopts g(Σ) = log(Σ). However, as mentioned before, SVD is not easily
parallelizable and not well supported in the GPU platform, limiting its effi-
ciency in training and inference. Improved B-CNN [20] utilizes Newton-Schulz
(NS) iteration to approximate the matrix square root in the forward propaga-
tion. iSQRT [18] makes the NS iteration differentiable and makes it support
backward propagation as well. Given a bilinear matrix B, the NS method ini-
tializes Y0 = B and Z0 = I. In each iteration, the NS method updates Zk and
Yk by

Yk =
1

2
Yk−1(3I− Zk−1Yk−1), Zk =

1

2
(3I− Zk−1Yk−1)Zk−1,

where Yk converges to B1/2. Since it involves only matrix-matrix product, it is
easily parallelizable and well supported in the GPU platform. The computation
complexity of each iteration is O(D3), where D is the local feature dimension.
Since D is large, computing Newton-Schulz (NS) iteration is still expensive. In
contrast, our method is based on iterations of matrix-vector multiplications,
which are computationally cheaper than the matrix-matrix multiplications used
in the NS iteration. What’s more, we will show in Section 2.2 that, the NS itera-
tion is not compatible with compact bilinear pooling methods based on Random
Maclaurin and Tensor Sketch, whereas ours readily supports normalization on
compact bilinear pooling features.

2.2 Compact Bilinear Pooling

The dimension of a bilinear feature is D ×D, which is extremely high. On one
hand, it is prone to over-fitting due to huge number of model parameters in the
classifier, and thus requires a large number of training sample. On the other
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hand, it is extremely expensive in memory and computation when training the
classifier. To overcome these drawbacks, CBP [8] is proposed. It treats the outer
product used in bilinear pooling as a polynomial kernel embedding, and seeks to
approximate the explicit kernel feature map. To be specific, by rearranging the
feature map F to F = [f1, · · · , fWH ]>, the bilinear matrix B is obtained by

B = F>F =

WH∑
i=1

fif
>
i =

WH∑
i=1

h(fi),

where h(fi) = fif
>
i ∈ RD×D is the explicit feature map of the second-order

polynomial kernel. CBP seeks for a low-dimensional projection function φ(fi) ∈
Rd with d� D2 such that

〈φ(x), φ(y)〉 ≈ 〈vec(h(x)), vec(h(y))〉,

where vec(·) is the operation to unfold a 2D matrix to a 1D vector. In this
case, the approximated low-dimensional bilinear feature is obtained by B̃ =∑WH

i=1 φ(fi). The advantages of low-dimensional features are two-fold: 1) less
prone to over-fitting, 2) faster in training the classifier.

CBP investigates two types of approximation methods: Random Maclau-
rin [12] and Tensor Sketch [25]. Since the compact bilinear feature B̃ has broken
the matrix structure, the matrix normalization methods conducted on the bilin-
ear feature B, such as Newton-Schulz iteration, is no longer feasible for normaliz-
ing B̃. To tackle this challenge, MoNet [9] conducts SVD directly on the original
local feature F instead of the bilinear matrix B and then conducts compact bi-
linear pooling. Nevertheless, as we mentioned, the SVD is not well supported on
GPU platform, limiting the training and inference efficiency. In contrast, we will
see in the next section that our method only relies on matrix-vector multiplica-
tions, and hence is easily parallelizable and well supported in the GPU platform.
Meanwhile, the proposed RUN supports the normalization on a compact bilinear
feature generated from Tensor Sketch or Random Maclaurin.

3 Rank-1 Update Normalization (RUN)

To overcome the limitations of previous methods, we propose a rank-1 update
normalization (RUN). Below we give the details of the proposed RUN method
and then summarize the method in Algorithm 1.

We first define some notations. Assuming that, through SVD, the bilinear
feature B can be decomposed into B = UΣU>. U = [u1, · · · ,uD] consists of
singular vectors, which are orthogonal to each other. Σ = diag([σ1, · · · , σD]) is
a diagonal matrix where {σd}Dd=1 are singular values and σ1 ≥ σ2 ≥ · · · ≥ σD.
Next we introduce the process of the proposed RUN.

In the first step, we initialize a random vector v0 = [v1, ..., vD] ∼ N (0, I).
That is, {vi}Di=1 are i.i.d. random variables with standard normal distribution.
Then, we perform K iterations of power method as follows:

vk = Bvk−1, for k = 1, . . . ,K. (1)
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After that, the rank-1 matrix is constructed by

RK = BvKv>K/‖vK‖22.

At last, we update the matrix B by subtracting RK :

BK = B− εRK , (2)

where ε ∈ (0, 1] is a small positive constant. The classic convergence property of
power method tells that if σ1 > σ2, vK/‖vK‖2 will converge to u1. Therefore,
BK converges to B− εσ1u1u

>
1 . That is

lim
K→∞

BK = U diag([σ1(1− ε), σ2, . . . , σD])U>, (3)

i.e., the eigenvalues of B∞ remain unchanged except the largest one, which is
decreased by εσ1. More generally, BK is an estimation of a normalized bilinear
matrix. To be specific, it satisfies the following theorem:

Theorem 1. Let BK be obtained via Eq. (1)-(2), where v0 ∼ N (0, I). Then the
expectation of BK is given by

E(BK) = U diag([σ1(1− εα1), · · · , σD(1− εαD))U>, (4)

where 1 ≥ α1 ≥ α2 ≥ · · · ≥ αD.

Due to limitation of the space, the proof of the Theorem 1 is given in the sup-
plementary material. The operation in the right-hand side of Eq. (4) scales each
singular value σi by (1− εαi). As 1 ≥ α1 ≥ α2 ≥ · · · ≥ αD and ε ∈ [0, 1], thus

0 ≤ 1− εα1 ≤ 1− εα2 ≤ · · · ≤ 1− εαD ≤ 1.

That is, it gives a smaller scale factor to a larger singular value, making the
contributions of singular values to the final image feature more balanced and
achieving the same goal as the spectral power normalization used in [20, 15].

Since computing BK only requires 2K times matrix-vector multiplications,
it only takes O(KD2) complexity and is well supported in GPU platform. In
experiments section, we will show when K is small, e.g., K = 2, it has achieved
an excellent performance. Nevertheless, obtaining the above approximated nor-
malized bilinear feature BK requires the original bilinear matrix B obtained
from bilinear pooling. Thus, it is not applicable to the compact bilinear feature
which has broken the structure of square matrix. To make the proposed fast ma-
trix normalization method compatible with compact bilinear pooling, we seek to
directly conduct normalization on the original feature map F ∈ RN×D, where
N = WH is the number of local features and D is the local feature dimension.
It is based on following iterations:

vk = F>Fvk−1, for k = 1, . . . ,K, (5)
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where the entries of v0 are i.i.d. random variables with standard normal distri-
bution. Then we construct the updated feature map FK by

FK = F− ηFvKv>K/‖vK‖22, (6)

where vK is obtained via (5) and η ∈ (0, 1] is a constant. The above procedure is
summarized in Algorithm 1. Since in each iteration, it only needs twice matrix-
vector multiplications, in total, the computational complexity of obtaining FK

is O(KDN). Let uF,i and vF,i be the left and right singular vectors of F corre-
sponding with its ith largest singular value σF,i. If σF,1 6= σF,2, Fvk/‖vk‖2 and
vk/‖vk‖2 will converge to uF,1 and vF,1, respectively. In limit, we have

lim
K→∞

FK = F− ησF,1uF,1v
>
F,1,

whose singular values are the same as that of F, except the largest one, which
is decreased by ησF,1. In fact, similar to Theorem 1, we have

Theorem 2. Let FK be obtained through Algorithm 1. Then the expectation of
FK can be given by

E(FK) = UF Σ̂FV>F , (7)

where UF , VF are the left and right singular vector matrices of F, respectively,
Σ̂F is the diagonal matrix diag[(σF,1(1 − ηβ1), · · · , σF,D(1 − ηβD))] with 0 ≤
1− ηβ1 ≤ 1− ηβ2 ≤ · · · ≤ 1− ηβD ≤ 1.

Its proof is similar to Theorem 1, and thus we omit it. Using the standard bilinear
pooling, the normalized bilinear matrix feature can be obtained by B̄K = F>KFK .
When σF,1 6= σF,2, B̄K satisfies

lim
K→∞

B̄K = VF diag([σ2
F,1(1− η)2, · · · , σ2

F,D])V>F . (8)

Since VF in Eq. (8) is equal to U in Eq. (3), if we set (1 − ε) in Eq. (8) equal
to (1 − η)2 in Eq. (3), BK and B̄K will converge to the same matrix. But the
advantage of updating F as Eq. (6) over updating B as Eq. (2) is that, the
former is compatible with compact bilinear pooling, which cannot be achieved
by the latter. The compact normalized bilinear feature is obtained by

b̄K =

N∑
i=1

φ(FK [i, :]),

where FK [i, :] is the i-th row of FK , φ is implemented by TS or RM, and b̄K ∈
RD is the compact and normalized bilinear feature where D � d2.

The proposed RUN is summarized in Algorithm 1. We implement the pro-
posed RUN as a layer of a CNN. The layer takes the feature map F as input
and outputs the normalized feature map FK . In the forward propagation, FK is
computed by Eq. (6). After obtaining FK , it is feasible to conduct bilinear pool-
ing (BP) or compact bilinear pooling (CBP). Fig. 1 illustrates the architecture of
the proposed network. Note that, despite that one can rely on auto-grad tool in
existing deep learning frameworks to automatically obtain the backward propa-
gation based on the forward propagation, we still derive it in the supplementary
material for readers to better understand the proposed algorithm.
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Algorithm 1 Rank-1 Update Normalization (RUN).

Input: Local features F ∈ RN×D, η,K.
Output: Normalized local features FK .

1: Generate v0 = [v1, ..., vD] ∈ RD, where {vi}Di=1 are i.i.d. random variables with
normal distribution.

2: for k ∈ [1,K] do
3: vk = F>Fvk−1.

4: FK = F− ηFvKv>
K

‖vK‖22
.

5: return FK .

feature map

 feature 
extractor

 BP/CBP
 soft-max
 classifier

        normalized map

RUN

Fig. 1. The architecture of the proposed convolutional neural network. RUN denotes
the proposed rank-1 update normalization, which takes input the feature map of the
last convolutional layer. BP denotes the bilinear pooling and CBP represents compact
bilinear pooling. The obtained BP/CBP feature is fed into the soft-max classifier.

4 Experiments

We first introduce the testing datasets and implementation details. Then we
conduct ablation studies on two scenarios: 1) RUN with the standard bilinear
pooling and 2) RUN with the compact bilinear pooling. After that, the compar-
isons with existing state-of-the-art bilinear pooling methods are conducted.

4.1 Datasets and Evaluation Metrics

Table 2. The number of training/testing samples of four datasets.

Fine-grained Scene Texture
CUB Aircraft MIT DTD

classes 200 100 67 47

training 5, 994 6, 667 4, 014 1, 880

testing 5, 794 3, 333 1, 339 3, 760

As summarized in Table 2, we conduct experiments on three tasks: 1) fine-
grained recognition, 2) scene recognition and 3) texture recognition. On the
fine-grained recognition task, experiments are conducted on CUB [33] and Air-
craft [23] datasets. On the scene recognition task, experiments are conducted
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on MIT [26] dataset. On the texture recognition task, we test our method on
DTD [4] dataset. Since we tackle the recognition task, we evaluate the perfor-
mance of the proposed method through the average classification accuracy.

4.2 Implementation Details

Following [20, 19], we use VGG16 [27] as the backbone network to make a fair
comparison with existing methods. After scaling and cropping, the input size of
an input image is 448×448×3 and the size of the last convolutional feature map
is 28× 28× 512. After we obtain the normalized bilinear feature from our RUN,
we further conduct element-wise signed square-root normalization followed by
`2-normalization as BCNN [22]. Following [9], we adopt a two-phase training
strategy. In the first phase, we update the weights of the last fully-connected
linear layer and keep other layers unchanged. The initial learning rate is set as
0.2 on aircraft dataset and 1 on other datasets, and it decreases to 0.1 of current
learning rate. We set weight decay as 10−8 in the first phase. The first phase
finishes in 50 epochs. In the second phase, we update the weights of all layers
and the initial learning rate is set as 0.02 on CUB dataset and 0.01 on other
datasets, and it decreases to 0.1 of the current learning rate if the validation
error does not drop in continuous 5 epochs. We set weight decay as 10−5 in
the second phase. The second phase finishes in 40 epochs. We use paddlepaddle.
Note that, iSQRT [18] pre-trains the network on ImageNet dataset.

4.3 Ablation Study on RUN with Original Bilinear Pooling

In this section, we test the proposed RUN using original high-dimensional bilin-
ear pooling features. The feature dimension is 512 ∗ 512 = 262K.

Influence of η. η in Eq. (8) controls the strength of suppressing the large
singular values. Recall from Eq. (8) that, B̄K converges to:

VF diag[(1− η)2σ2
F,1, · · · , σ2

F,d]V>F .

From the above equation, we observe that, when η ∈ (2,+∞) ∪ (−∞, 0), the
largest value of the normalized bilinear matrix B̄K is even larger than that of
the original bilinear matrix B. Hence a good value of η should be in the range
[0, 2]. Ideally, we can select the value of η according to the gap between σF,1 and
σF,2. Since singular values change for different samples or different epochs, we
can compute σF,1 and σF,2 online for each sample in each epoch. But computing
σF,1 and σF,2 will double the time cost compared with using a manually set η
which only needs compute σF,1. Thus, we simply use a manually set η.

As shown in Table 3, when η = 0, i.e., without RUN, the accuracies are not as
good as that when η ∈ [0.4, 1.5]. Note that, on Aircraft dataset, the accuracy gap
between the case when η ∈ [0.4, 1.5] and the case when η = 0 is not significant.
This is due to that the value of σF,1/σF,2 on Aircraft dataset (shown in Table 4)
is small. It means that, the singular values are already balanced and thus the
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Table 3. The influence of η on the proposed RUN.

η CUB Aircraft MIT DTD

0.0 84.1 88.9 79.8 65.6

0.1 84.8 89.3 80.6 66.6

0.2 85.3 89.5 81.0 67.8

0.4 86.0 89.6 80.5 68.3

0.6 86.3 89.8 80.8 68.4

0.8 86.2 89.7 80.7 68.4

1.0 86.4 89.8 80.9 68.3

1.2 86.0 89.8 80.9 68.2

1.5 86.2 89.7 80.5 68.3

2.0 83.9 89.0 79.7 65.7

Table 4. The average σF,1/σF,2 on four datasets.

CUB Aircraft MIT DTD

first epoch 2.23 1.53 2.38 5.09

last epoch 3.68 1.69 4.53 7.40

matrix normalization does not play an important role. In contrast, on DTD
dataset, the accuracy gap is considerable, it is also in accordance with the large
value of σF,1/σF,2 on DTD dataset as shown in Table 4.

As Table 4 shows that the average value of σF,1/σF,2 varies significantly on
four datasets, thus we might expect that the optimal η are different on four
dataset. Surprisingly, as shown in Table 3, when η ∈ [0.4, 1.5] the performance
is stable and not sensitive to the change of η. That is, in practice, the choice of
η is quite easy for the user. By default, we set η = 0.6 on all datasets. Another
observation is that, when η = 2.0, its performance is as bad as that when η = 0.0.
The bad performance when η = 2.0 is expected since it leads to the condition
that (1− η)2 = 1. It is equivalent to removing the matrix normalization.

0 1 2 3 4 5
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Fig. 2. The influence of K on the proposed RUN.

Influence of K. K in Eq. (6) represents the number of iterations in our RUN.
The time cost of the proposed RUN is linear with K. Recall from Eq. (8) that,
when K is large, the normalization focuses only on the largest singular value and
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keeps the others unchanged. In contrast, if K is not large, it also normalizes other
large singular values besides the largest one. As shown in Fig. 2, on CUB, MIT
and DTD datasets, our RUN achieves the optimal accuracy within 2 iterations.
In contrast, on Aircraft dataset, it achieves the best accuracy with 5 iterations.
But using 2 iterations, the accuracy on Aircraft dataset is comparable with that
using 5 iterations. By default, we set K = 2 on all datasets.

Table 5. Comparisons with Lyapunov equation [20] and Newton-Schulz (NS) iteration.

Algorithm FLOPs GPU Time
Accuracy

CUB Aircraft MIT DTD

Lyapunov equation 8.83G 1841ms 85.8 88.5 80.6 68.4

NS iteration 4.03G 833ms 85.7 89.6 80.5 68.3

RUN (ours) 3.2M 2.5ms 86.3 89.8 80.8 68.4

Time cost evaluation. We compare the time cost in matrix normalization in
the GPU platform of the proposed method with existing methods based on Lya-
punov equation [20] and Newton-Schulz (NS) iteration. We conduct experiments
based on 4 NVIDIA K40 GPU cards and set the batch size as 32. As shown in
Table 5, the FLOPs of ours is less than 0.1% of the NS iteration. Meanwhile,
considering the GPU time, the factual speed-up ratio of ours over the NS it-
eration is beyond 330. The significant reduction in FLOPs and GPU time is
contributed by two factors. Firstly, in each iteration, we only need two matrix-
vector multiplications whereas NS iteration takes three times of matrix-matrix
multiplications. Secondly, ours takes only 2 iterations for a good performance
whereas NS iteration takes 5 iterations to achieve a good performance suggested
by [18]. Note that, iSQRT [18] reduces the dimension of local convolutional fea-
tures from 512 to 256 through a convolution layer, reducing the computation
cost of the NS iteration. Our RUN can also be faster using the 256-dimension
features, but that is not the focus of this paper.

4.4 Ablation Study on RUN with Compact Bilinear Pooling

Influence of the dimension. We adopt two types of CBP, Tensor Sketch (TS)
and Random Maclaurin (RM). We set η = 0.6 and iteration number K = 2,
and change the dimension after CBP among {1K, 2K, 4K, 8K, 10K}. As shown
in Fig. 3, the accuracies generally increase as the dimension increases. It is ex-
pected since a larger dimension leads to a better approximation for the polyno-
mial kernel. Meanwhile, the accuracies achieved by TS are comparable with that
achieved by RM. By default, we use TS for compact bilinear pooling.

Time cost evaluation. We evaluate the time cost used in matrix normalization
for compact bilinear pooling (CBP). Since the Lyapunov equation and Newton-
Schulz iteration cannot be conducted on the original feature F, it is incompatible
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Fig. 3. The influence of the feature dimension of compact features from RM and TS.

with CBP. Thus, we only compare with Monet-2 [9] which conducts SVD on F.
F ∈ R784×512 is in a larger size than B ∈ R512×512. Meanwhile, B is symmetric
and only needs compute its left singular vectors U as well as the singular val-
ues Σ. But F is asymmetric and thus needs compute its right singular vectors
VF , left singular vectors UF and singular values ΣF . Therefore, the FLOPs of
computing SVD on F shown in Table 6 is larger than the FLOPs of computing
SVD on B shown in Table 5. In contrast, the FLOPs of our RUN used for CBP
is as the same as that used for original BP. As shown in Table 6, achieving com-
parable or even better accuracies, we reduce the FLOPs from 4.21G to 3.2M.
Moreover, we reduce the time cost in the GPU from 13850ms to 2.5ms, i.e., we
achieve a 5540× speedup. Note that, the GPU time cost speedup is larger than
the FLOPs reduction ratio since the proposed RUN better supported than SVD
in the GPU platform. We also test the time cost of SVD using CPU with 16
threads, it takes 7.6s, which is still much slower than our RUN using only 2.5ms.

Table 6. Comparisons between ours and MoNet-2 [9].

Method Algorithm Dimension FLOPs GPU Time
Accuracy

CUB Aircraft

MoNet-2 [9] SVD 10, 000 4.21G 13850ms 85.7 86.7

Ours power method 10, 000 3.2M 2.5ms 85.7 91.0

4.5 Comparison with other pooling methods

Firstly, we compare with two baselines, which replace bilinear pooling by max-
pooling and sum-pooling, respectively. As shown in Table 7, features from max-
pooling and sum-pooling are compact. But accuracies achieved by them are lower
than methods based on bilinear pooling. We further compare with B-CNN [22].
Benefited from bilinear pooling, B-CNN has achieved a good performance but
the obtained bilinear features are high-dimensional. Nevertheless, since there
is no matrix normalization, the performance of B-CNN is not as good as its
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Table 7. Comparisons with other pooling methods. We compare the feature dimension,
the algorithm as well as the time cost for matrix normalization per batch (Normaliza-
tion Algorithm/Time) and the accuricies on four public benchmarks.

Method Dimension
Normalization
Method/Time

CUB Aircraft MIT DTD

Max-pooling 512 - 69.6 78.9 50.4 55.1

Sum-pooling 512 - 71.7 82.1 58.7 58.2

BCNN [22] 262K - 84.0 84.1 − −
Improved BCNN [20] 262K SVD/6.3s 85.8 88.5 − −

BCNN + NS 262K NS/833ms 85.7 89.6 80.5 68.3

iSQRT [18] 32K NS/107ms 87.2 90.0 − −
CBP [8] 8.2K - 84.0 − 76.2 64.5

LRBP [13] 8.2K - 84.2 87.3 − 65.8

MoNet-2 [9] 10K SVD/13.9s 85.7 86.7 − −
MoNet [9] 10K SVD/13.9s 86.4 89.3 − −

KP [5] 12.8K - 86.2 86.9 − −
HBP [34] 24K - 87.1 90.3 − −
GP [32] 4K SVD/15.6s 85.8 89.8 − −

DeepKSPD [6] 262K SVD/6.3s 86.5 91.0 81.0 −
DBTNet-50 [37] 2K − 87.5 91.2 − −

BP + RUN (Ours) 262K RUN/2.5ms 86.3 89.8 80.8 68.4

CBP + RUN (Ours) 10K RUN/2.5ms 85.7 91.0 80.5 67.3

counterparts with matrix normalization. We further compare with CBP [8] and
LRBP [13]. CBP uses Tensor Sketch and Random Maclaurin to reduce the fea-
ture dimension, whereas LRBP adopts the low-rank strategy for a compact fea-
ture. Nevertheless, neither CBP nor LRBP adopts matrix normalization. Thus
their classification accuracies are not as high as compact bilinear methods with
matrix normalization such as MoNet [9], GP [32] and our RUN.

We then compare with Improved BCNN [20] and BCNN + Newton-Schulz
(NS). To make a fair comparison with BCNN + NS, we directly use the NS
layer released by the authors of iSQRT [18], and keep all other settings identical.
As shown in Table 7, they achieve high accuracies but generate high-dimension
features and take high cost in matrix normalization. We further compare with
iSQRT [18]. In iSQRT [18], the authors conduct an additional feature dimen-
sion reduction operation on the local feature, and reduces the feature dimension
from 512 to 256. The dimension reduction on local features decreases the nor-
malization time 833ms from 107ms. Using the 256-dimension local features, the
normalization cost of our RUN can also be reduced, but that is not the focus of
this paper. Meanwhile, as shown in Table 7, on CUB dataset, iSQRT achieves a
higher accuracy than ours and other compared methods. The better performance
might be contributed to that iSQRT is pre-trained on ImageNet dataset. In con-
trast, ours and other methods adopt a vanilla VGG16 pretrained model and adds
the bilinear pooling operation only in the fine-tuning stage. More promising re-
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sults might be achieved if we pre-train VGG16 with our RUN layer on ImageNet
dataset, but that is not the focus of this paper, either.

After that, we compare with MoNet-2 and MoNet [9]. MoNet-2 achieves high
accuracies and generate compact feature, but the time cost in matrix normal-
ization is extremely high. MoNet improves MoNet-2 by fusing the first-order
information, achieving higher accuracies, but is also slow in matrix normaliza-
tion. By fusing higher-order features, KP [5] achieves an excellent performance
on CUB dataset even without normalization. A better performance of the pro-
posed RUN might be achieved by fusing the first-order and higher-order features
likewise MoNet and KP, but it is not the focus of this paper. We also compare
with HBP [34] and GP [32]. HBP ensembles three types of features and achieves
a better performance than ours on CUB dataset. We can also achieve a better
performance by ensembling several features, but that is not the focus on this
paper, either. GP conducts SVD along the feature map and selects the first a
few singular vectors as the image representation. It achieves a comparable per-
formance with the proposed RUN on CUB and Aircraft datasets, using only
4K-dimension features. But it takes twice SVD, which is inefficient on the GPU.

We further compare with two recent work DeepKSPD [6] and DBTNet-50
[37]. By exploiting the Gaussian RBF kernel, DeepKSPD achieves an excellent
performance. Our RUN is orthogonal to the kernel used in DeepKSPD and the
RUN can also be used for normalization the bilinear matrix from DeepKSPD.
DBTNet-50 [37] exploits the bilinear transformation in early layers, which relies
on pretraining on a large-scale dataset. In contrast, we only exploit bilinear
pooling in the late stage of the network, and does not reply on the pre-training.

5 Conclusion

We propose a simple and fast rank-1 update normalization (RUN) to improve
the effectiveness of the bilinear matrix. Since it only takes several iterations of
matrix-vector multiplications, the proposed RUN not only takes cheap compu-
tation and memory complexity in theory but also is well supported in the GPU
platform in practice. More importantly, the proposed RUN supports normal-
ization on compact bilinear features, which cannot be achieved by existing fast
normalization methods based on the NS iteration. In addition, our RUN is much
simpler than NS iteration and considerably easier for implementation. Mean-
while, RUN is differentiable and hence we plug it into a convolutional neural
network, achieving an end-to-end training. Our systematic experiments on four
datasets show that, combined with original bilinear pooling, we achieve compara-
ble or even better accuracies with a substantial speedup over NS iteration on the
GPU. When using compact bilinear pooling, we achieve comparable accuracies
with a significant speedup over the SVD-based method on the GPU.
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