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S1 Experimental Details

Our code uses TensorFlow and Keras libraries. For the underlying DeepCaps [10]
code, we used the official Keras code uploaded by the authors of the original
paper. All experiments were implemented on one Titan V with a batch size of
64.

We resized the images as 64 for MNIST, SVHN, and CelebA datasets for
experimental convenience. We obtained the reported results within epochs 10–20
for the MNIST dataset, and epochs 20–30 for the SVHN and CelebA datasets.
For λM , λrecon, λG, λDG

, λLGP, and λKL, we set the values to 100, 100, 1, 1,
10, and 0.0001, respectively, for all the three datasets. For λCS, λconcept, and
λCR, we increased the value from 3 to 5 at epoch 10, from 1 to 10 in the first
ten epochs, and from 0 to 1 at epoch 1, respectively, for the three datasets. For
λCG

, we set the value to 1 in the case of CelebA and 1 for the original and
10 for swapping in the case of MNIST and SVHN. For λRS, we set the value
to 1 for CelebA and 0.001 for MNIST and SVHN. In addition, for Lrecon, the
structural similarity index [6] value was clearer than the mean squared error in
the cases of SVHN and CelebA datasets. Lastly, for batches 200-400 just before
the end of the training, we set λconcept as 0 to allow images to have concept
values, regardless of class labels.

We ran the code three times with the same hyperparameter setting to deter-
mine whether the same concepts consistently appear. Several concepts appeared
to be a little unclear; however, we saw consistent concepts in general.

In experiments, we investigate whether our method performs on par with non-
interpretable (ResNet-18) and base (DeepCaps) methods. We confirmed that
iCaps provide a prediction along with proper rationales behind it with no per-
formance degradation. Architecture details are given in Table. S1 and Fig. S1.
The architectures for MNIST, SVHN, and CelebA datasets are the same. One
difference is that for MMIST and SVHN, the capsule dimension of CC remains
at 4 till the final layer. We measured the number of model parameters needed for
each methods as shown in Table. S2. The number of parameters of our frame-
work is 2-3 times more than that of ResNet-18 and DeepCaps. However, we think
that this is not a big increase because our framework can additionally offer an
explanation behind its own prediction.
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Table S1. Architectures of the proposed method except for CC . Stride = 2. H =
height, W = width, and C = channel.

G DG and CG E DCR

Input: Rc+r Input: H x W x C Input: H x W x C Input: H x W x 2C
FC, 4 x 4 x 512 BN, ReLU 5 x 5 conv, 64 LReLU 5 x 5 conv, 64, LReLU 5 x 5 conv, 64, LReLU
5 x 5 deconv, 256 BN, ReLU 5 x 5 conv, 128, LReLU 5 x 5 conv, 128, LReLU 5 x 5 conv, 128, LReLU
5 x 5 deconv, 128 BN, ReLU 5 x 5 conv, 256, LReLU 5 x 5 conv, 256, LReLU 5 x 5 conv, 256, LReLU
5 x 5 deconv, 64 BN, ReLU 5 x 5 conv, 512, LReLU 5 x 5 conv, 512, LReLU 5 x 5 conv, 512, LReLU
5 x 5 deconv, 3 Tanh FC, 1 / FC, Ry FC, 32 / FC, 32 FC, Rc

Table S2. Number of model parameters for the datasets

Architecture # of Parameters

MNIST SVHN CelebA

ResNet-18 11M 11M 11M
DeepCaps 12M 12M 12M

Ours 24M 24M 38M
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Fig. S1. Architecture of CC [10]. For first convcaps layers in every block, the stride is
1. Otherwise, the stride is 2.
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S2 Ablation Studies

We additionally confirmed a suitable performance improvement in the process of
adding components one by one on top of DeepCaps (CC and G) on the CelebA
dataset. As shown in Table. S3, each component encourages proper performance
increase which we expected.

First, the FID score [5] indicates the quality of the generated image, and when
the value is smaller, it is better. MI refers to mutual information, specifically,
I(z; y) in Table. S3(2) and I(c; y) in Table. S3(3, 4, and 5). We also measured the
importance of DCR using Mutual Information Gap (MIG) which is a quantitative
metric suggested in the β-TCVAE [2] paper. A large MIG represents that a
ground-truth factor has high mutual information (MI) with only one element.

As mentioned in Table. 1 in the main manuscript, DeepCaps (Table. S3(1))
already shows high accuracy. Our method aims at providing explanations about
its performance with maintained accuracy. For it, four more components are
added. In turn, we added a discriminator, DG, on the reconstruction stage,
such as generative adversarial networks. Improving reconstructed image quality
was essential for disentanglement. Through DG, the FID score is improved from
101.53 to 87.00 as shown in Table. S3. Next, we added E to divide the features as
class-relevant and -irrelevant. However, to completely achieve it, CG is needed.
When E and CG are added in turn, MI is increased from 0.02 to 0.08 and
from 0.08 and 0.56. As last, we added DCR for distinctness. We qualitatively
showed that the semantic overlap between the elements of the class capsule is
reduced by DCR. In our experiments, the MIG value is increased from 0.03 to
0.2 when DCR is added. That is, we quantitatively confirmed that DCR helps
less semantic overlap between the elements. In addition, the qualitative result is
shown in Fig. S2.

Table S3. Results of ablation studies. FID = Frechet Inception Distance [5] (lower is
better), MI = Mutual Information (higher is better), and MIG = Mutual Information
Gap [2] (higher is better).

Architecture FID↓ MI↑ MIG↑

(1) CC and G 101.53 - -
(2) CC , G, and DG 87.00 0.02 -
(3) CC , G, DG, and E 87.02 0.08 -
(4) CC , G, DG, E, and CG 86.83 0.56 0.03
(5) CC , G, DG, E, CG, and DCR 86.72 0.56 0.20

For the MNIST and SVHN datasets, the importance of DCR was very clear
and easy to identify. This is because MNIST and SVHN do not have many factors
of variations that should be considered when classifying an input. Therefore, the
concepts are prone to overlap when we do not enforce distinctness.
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CelebA tended to overlap less, however, DCR was still important. As shown
in Fig. S2(a), the changes in c1, c3, c4, and c5 are very similar without DCR.
However, in (b), the change in each element is clearly distinct from each other.

(a) w/o 𝐷CR (b) w/ 𝐷CR

Fig. S2. Ablation study of DCR (CelebA). For (a), changes in rows overlap (c0-c7),
whereas changes in rows are distinct in (b).

S3 Comparison with SENN

We tested the performance of SENN [9] on the CelebA dataset and compared
with ours. SENN also aims to provide similar types of explanations as we pro-
vide. For SENN, the test accuracy is 96.90, which is similar to ours and non-
interpretable classifiers. However, the learned concepts of SENN do not provide
a proper explanation about their classifications as shown in Fig. S3. It is hard
to recognize the learned concepts of any dimension by analyzing the top and
bottom 7 prototypes. In the case of c1, c3, c4, and c6, all images have equal
value, so that we could not obtain prototypes. We chose dimension 8 for a fair
comparison with our method.

In the case of our method, most concepts can be induced by analyzing the
top and bottom 7 prototypes as shown in Fig. S4. However, for c6, we had to
check more images having high or low values in order to obtain the learned
concept. The reason that the images which do not fit the concept are selected
as prototypes is that disentanglement is based on the reconstructed image, not
the real image. As given in Fig. S4(b), the reconstructed image seems to have a
beard. This makes inappropriate images be selected as prototypes. To overcome
this problem, more clear and accurate reconstruction is important. For it, we
still work on its performance.
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c0 c1 c2 c3 c4 c5 c6 c7

(a)

Fig. S3. Top and bottom 7 prototypes of SENN [9] (Female vs. Male). It is difficult to
recognize what concept each dimension represents.
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(a)

(b)

c0 c1 c2 c3 c4 c5 c6 c7
(Age) (Hair Length) (Makeup) (Paleness) (Men Bangs) (Clothes) (Beard) (Smiling)

Fig. S4. (a): Top and bottom 7 prototypes of our method (Female vs. Male). To some
extent, we can recognize the learned concepts by only analyzing the given prototypes.
(b): Reconstructed images of the bottom 7 of the beard (c6) concept. The reconstructed
images seem to have a beard. In the case of c6, we had to analyze more images having
values closer to 1 or -1 in order to get a clear concept.
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S4 Replacement of CapsNet CC

We conducted an experiment by replacing CC with ResNet-18. All settings are
the same with original experiments except for margin loss (LM ) because of their
structural difference. In this experiment, we checked that the represented con-
cepts are ambiguous, or different concept per class is detected in one element so
that we can’t obtain clear or consistent concepts. It makes hard to understand
for human. This is due to the absence of LM . As explained in [35], only LM +
Lrecon help a single concept to be represented in a single element, independent
with class (not just Lrecon). CC is an essential component of our framework.

S5 Concepts for SVHN

We observed that MNIST and SVHN learn very similar concepts. For SVHN,
case c0 creates a small circle in the bottom part, c1 is being a line. Cases c2 and
c3 change the upper part of the digit to a line and to a circle, respectively, as
shown in Fig. S5.

Furthermore, we saw that some elements have additional changes in the back-
ground in addition to the change in the digit. For case c1, when the value be-
comes -1, the circle next to the digit becomes thicker or darker. For case c3,
the pattern next to the digit becomes darker or larger. As such, c seems to con-
tain classification-relevant intra-class information even though it is difficult to
analyze in the case of SVHN.

c0 c1 c2 c3

cls 3 cls 1 cls 2 cls 2

cls 4 cls 4 cls 3 cls 5

cls 5 cls 5 cls 4 cls 6

cls 8 cls 6 cls 8 cls 9

Fig. S5. Concepts learned for SVHN. c0: creating a small circle in the bottom part,
c1: being a line, c2: changing the upper part of the digit to a line, and c3: changing the
upper part of the digit to a circle (round).
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S6 Size of c

When the size of c is reduced by half, the accuracies of MNIST and CelebA are
preserved. However, in the case of SVHN, the accuracy decreased and did not ex-
ceed 87%. The accuracies of MNIST and CelebA were not degraded significantly;
however, it was found that r contained much more class-relevant information
than before, as illustrated in Fig. S6.

For MNIST and SVHN, when the size of c is reduced by half, more than one
concept tends to appear in a single element. It seems that MINST and SVHN
separate the range of a single element, and contain several concepts in ranges.
For CelebA, rather than containing several concepts in a single element, only
four concepts among the total of eight appeared.

When the size of c is doubled, there is no disadvantage in accuracy. However,
perceiving the concept represented by each element becomes challenging. When
the appropriate number of elements is assigned, identifying the concept repre-
sented by each element is comparably easy. However, if the number of elements
becomes too large, each element seems to have a smaller concept than humans
can perceive, or to have a similar concept between each other. Therefore, it is
important to assign an appropriate size to c. We will work on this problem in
future work.
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Fig. S6. Mutual information between y and c, r of (a) MNIST, (b) SVHN, and (c)
CelebA when the size of c becomes half of the reported one (higher is better for c;
lower is better for r).
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S7 T-SNE

As shown in Sec. 4.1, our method disentangles the latent feature of x to the
two complementary spaces: class-relevant and class-irrelevant latent. Here, we
additionally demonstrate it with T-SNE [8]. As shown in Figs. S7, S8, and S9, c
shows ten or two separate clusters, and r shows a single cluster for all classes.

(a) MNIST: 𝑐 (b) MNIST: 𝑟

Fig. S7. T-SNE for MNIST. (a) class-relevant feature c and (b) class-irrelevant feature
r.

(a) SVHN: 𝑐 (b) SVHN: 𝑟

Fig. S8. T-SNE for SVHN. (a) class-relevant feature c and (b) class-irrelevant feature
r.
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(a) CelebA: 𝑐 (b) CelebA: 𝑟

Fig. S9. T-SNE for CelebA. (a) class-relevant feature c and (b) class-irrelevant feature
r.
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S8 FID Score

We measured the FID score of CelebA. As shown in Table. S4, for reconstruc-
tion, our method shows a better FID score [5] than the original DeepCaps. Given
that DeepCaps [10] consists of a decoder, it cannot swap and randomly generate
new images; therefore, we could not measure the generation and swapping per-
formance of DeepCaps. Although it is not a fair comparison, the performance
of our swapping and random generation is comparable to that of reconstruction
of DeepCaps. As shown in Fig. S10, our method shows good quality even for
images created by swapping.

Table S4. FID score of CelebA (lower is better).

Ours DeepCaps [10]

Reconstruction Swapping Generation Reconstruction

FID 86.72 103.22 103.35 101.53

Reconstruction

Ours

Deep
Caps

Swapping

Generation

Reconstruction

Fig. S10. The generated images by ours and DeepCaps [10]. We can see that the
generated images by DeepCaps are blurry, compared to the images by ours.



iCaps: An Interpretable Classifier via Disentangled Capsule Networks 13

S9 Comparison Methods

For the comparison methods, we reported the average of the test accuracies of
five runs. In the case of Cycle-VAE [7], for MNIST, we directly copied the exper-
imental results of the original paper since it was reported. Except for MNIST, we
experimented on the SVHN and CelebA (female vs. male) datasets because these
experiments were not included in the original paper. Given that the complexity
of the SVHN dataset is similar to that of the MNIST dataset, we followed each
dimension of c and r used for MNIST (256, 64). For CelebA, we tested on a set
of (64, 64), (256, 64) and (64, 512) for (c, r) and selected and reported the best
results of each experiment (64, 512). We ran the code with the reported number
of epochs in this study.

In the case of ML-VAE [1], for MNIST, we ran the code with epoch 200 and
followed the structure and hyperparameter setting (c = 10, r = 10) given by
the official GitHub code of the authors. For SVHN, based on the experiments of
the original paper, we ran the code with epoch 200 and the two hyperparameter
settings : (256, 64) and (64, 64). Since (64, 64) shows better results, we reported
the results of (64, 64).

In the case of LORD [4], we set the size of c to 256 and r to 128 in all
experiments in accordance with the original paper.

S10 Similarity with InfoGAN

Our work is structurally similar to the unsupervised disentanglement method, In-
foGAN [3], in that it uses Generative Adversarial Networks. However, InfoGAN
additionally uses a factorized code predictor to learn factored representations
of given observations. Unlike, our work uses an encoder and capsule network to
disentangle class-relevant and -irrelevant features.



14 D. Jung et al.

References

1. Bouchacourt, D., Tomioka, R., Nowozin, S.: Multi-level variational autoencoder:
Learning disentangled representations from grouped observations. In: Thirty-
Second AAAI Conference on Artificial Intelligence (2018)

2. Chen, R.T.Q., Li, X., Grosse, R., Duvenaud, D.: Isolating sources of disentangle-
ment in variational autoencoders. In: Advances in Neural Information Processing
Systems (2018)

3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan:
Interpretable representation learning by information maximizing generative adver-
sarial nets. In: Advances in neural information processing systems. pp. 2172–2180
(2016)

4. Gabbay, A., Hoshen, Y.: Demystifying inter-class disentanglement.
In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=Hyl9xxHYPr

5. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Advances
in neural information processing systems. pp. 6626–6637 (2017)

6. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th International
Conference on Pattern Recognition. pp. 2366–2369. IEEE (2010)

7. Jha, A.H., Anand, S., Singh, M., Veeravasarapu, V.: Disentangling factors of vari-
ation with cycle-consistent variational auto-encoders. In: European Conference on
Computer Vision. pp. 829–845. Springer (2018)

8. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learn-
ing research 9(Nov), 2579–2605 (2008)

9. Melis, D.A., Jaakkola, T.: Towards robust interpretability with self-explaining neu-
ral networks. In: Advances in Neural Information Processing Systems. pp. 7775–
7784 (2018)

10. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S.,
Rodrigo, R.: Deepcaps: Going deeper with capsule networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 10725–10733
(2019)


