
iCaps: An Interpretable Classifier
via Disentangled Capsule Networks

Dahuin Jung, Jonghyun Lee, Jihun Yi, and Sungroh Yoon?

Electrical and Computer Engineering,
ASRI, INMC, and Institute of Engineering Research
Seoul National University, Seoul 08826, South Korea

{annajung0625, leejh9611, t080205, sryoon}@snu.ac.kr

Abstract. We propose an interpretable Capsule Network, iCaps, for
image classification. A capsule is a group of neurons nested inside each
layer, and the one in the last layer is called a class capsule, which is a
vector whose norm indicates a predicted probability for the class. Using
the class capsule, existing Capsule Networks already provide some level
of interpretability. However, there are two limitations which degrade its
interpretability: 1) the class capsule also includes classification-irrelevant
information, and 2) entities represented by the class capsule overlap. In
this work, we address these two limitations using a novel class-supervised
disentanglement algorithm and an additional regularizer, respectively.
Through quantitative and qualitative evaluations on three datasets, we
demonstrate that the resulting classifier, iCaps, provides a prediction
along with clear rationales behind it with no performance degradation.

Keywords: Capsule Networks, Interpretable Neural Networks, Class-
supervised Disentanglement, Generative Adversarial Networks (GANs)

1 Introduction

Despite the success of deep learning in a broad range of tasks, including image
classification and segmentation, speech synthesis, and medical decision-making,
the reliability of decisions made by artificial intelligence is still questionable.
Hence, many promising studies have been conducted regarding explainable arti-
ficial intelligence (XAI). The main task of XAI is to provide explanations that
can aid the comprehension of provided decisions to users. Using these explana-
tions, users can check whether a model performs as expected or identify potential
bias/problems inherent to the model.

Several different approaches have been proposed to explain deep learning
models. In some studies, models that can provide human-understandable ex-
planations of their predictions without retraining or modification have been
proposed. These studies aim for built-in interpretability. We herein propose a
new built-in interpretable model that offers a concept-based explanation using
Capsule Networks (CapsNets) [38].

? Correspondence to: Sungroh Yoon sryoon@snu.ac.kr

mailto:sryoon@snu.ac.kr


2 D. Jung et al.
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Fig. 1. Overview of our study. We propose a new interpretable classifier, iCaps, which
classifies an observation by only considering class-relevant variables; these class-relevant
variables are human-understandable concepts. By analyzing the values of the class-
relevant variables (concepts), we can understand the decisions made by iCaps.

As the main building block, CapsNets use capsules - a group of neurons –
that encapsulates the instantiation parameters of an entity, such as an object
or its fragments. The magnitude of the output vector of a capsule indicates the
probability that the encoded instantiation parameter is present in the input.
The capsules in the final layer are called class capsules, and the norm of each
class capsule indicates the predicted probability of each class. The instantiation
parameters of the class capsule can represent the position, color, texture, and
scaling of an object or its fragments, and these can be interpreted as concepts
to humans.

Therefore, the instantiation parameters represented by the class capsule and
its magnitudes can be used, to an extent, to explain a model’s prediction. How-
ever, two factors degrade interpretability. First, some instantiation parameters of
the class capsule represent classification-irrelevant concepts. Next, a single con-
cept can be encoded in multiple elements of the class capsule. Therefore, a single
concept can be represented by different magnitudes in two different elements.

By addressing these two problems, we propose an interpretable CapsNet
architecture, iCaps, that only contains classification-relevant distinct concepts
in the class capsule. The overview of iCaps is described in Fig. 1. To address
the first problem, we propose a novel class-supervised disentanglement method
that disentangles class-relevant and -irrelevant features within an observation,
without any leakage. For the second problem, we use an additional regularizer
based on latent traversal to prevent the same concept from being encapsulated
several times in the class capsule.

Some built-in interpretable models use predefined concepts to provide expla-
nations [22,21]. However, such prior knowledge is not available or costly to define
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in most cases; hence, in this study, we assumed where the concepts were learned
instead. Moreover, we posit three desiderata for an interpretable classifier based
on the learned concepts: informativeness, distinctness, and explainability where,
for example, informativeness ensures that only classification-relevant informa-
tion is used to provide an explanation of the model’s prediction. Based on the
three desiderata, we validated our model both theoretically and empirically. Our
main contributions in this study are as follows:

1. We improve the explainability property of CapsNets by addressing two prob-
lems: classification-irrelevant information and overlapping.

2. We suggest a novel class-disentanglement algorithm that can disentangle the
latent feature of x into two complementary subspaces: class-relevant and -
irrelevant subspaces. The class-relevant subspace of our algorithm contains
intra-class variation, unlike prior studies, which contain only inter-class vari-
ation.

3. We posit three desiderata for an interpretable classifier based on learned con-
cepts and demonstrate the effectiveness of iCaps based on the three desider-
ata.

2 Related Work

2.1 Capsule Networks

CapsNet [38] is a neural network based on a group of neurons – a vector. The
original CapsNet has a simple network structure comprising three layers. First,
an observation x undergoes a convolution layer to transfer pixel-level informa-
tion into a latent space, followed by the Primary-Capsule (PC) layer and Class-
Capsule (CC) layer. Information contained in the PC layer is transferred to the
CC layer above using a dynamic routing method, and this method is called
“routing by agreement”. The coupling coefficients between the capsules in the
PC and CC layers are updated in a direction that can increase the classifica-
tion performance (a top-down mechanism). The output of the CC layer is a
class capsule of classes, and the norm of each class capsule indicates the pre-
dicted probability for each class. The elements of the class capsules represent
the instantiation parameters of a type of entity. To encode these instantiation
parameters for the class capsules, margin loss and reconstruction loss are used.
The margin loss, LM , is:

LM = λM (yi max(0, m+ − ‖c‖)2 + 0.5 ((1− yi) max(0,
∥∥c6=i∥∥−m−)2)), (1)

where yi = 1 iff the ground-truth class label is i, c is the class capsule for the
ground-truth class i, c6=i are the class capsules except for c, m+ = 0.9, and m−

= 0.1. The reconstruction loss, Lrecon, is used, which is expressed as

Lrecon = λrecon E ‖x̂− x‖2F , (2)

where x̂ is reconstructed x using an additional decoder, which uses c as the input.
The original CapsNet presents some computational and structural limitations.
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Hence, some advanced studies based on CapsNet have been performed [2,15,19,36].
Among these, our study uses DeepCaps [36] as a base because it yields better
classification performance than the original CapsNet on more complex images by
utilizing a skip connection and a three-dimensional convolution-inspired routing
method and is easy to apply to our work. More detailed information regarding
CapsNets is available in [38,36].

2.2 Disentanglement

Our work utilizes class-supervised disentanglement to create an interpretable
classifier that provides an explanation using only classification-relevant informa-
tion. Class-supervised disentanglement learning aims to disentangle the latent
feature of x into two complementary subspaces - class-relevant and -irrelevant
subspaces - in a setting where the class label for images in the training set is pro-
vided. Two approaches can be used in class-supervised disentanglement: adver-
sarial and non-adversarial. DrNet [9] and Szabo et al. [46] are adversarial meth-
ods, whereas Cycle-VAE [20], ML-VAE [4], and LORD [12] are non-adversarial
methods. Implicitly or explicitly, all class-supervised disentanglement methods
assume that inter-class variation is much larger than intra-class variation; there-
fore, intra-class variation can be ignored. On the contrary, our work assumes that
intra-class variation should not be ignored even though it is relatively small.
From the perspective of an interpretable classifier, intra-class variation is an
important feature to explain a model’s prediction. Also, our method has some
level of similarity with InfoGAN [7] (unsupervised disentanglement method) in
a structural way. The comparison is given in Sec. S10 of the supplementary.

2.3 Interpretable Methods

Two topics of research in XAI provide two different notions of interpretability
of deep models: (1) post-hoc interpretability and (2) built-in interpretability. (1)
Post-hoc interpretability methods aim to interpret models or decisions of already
trained neural networks. By contrast, networks that are inherently interpretable
provide (2) built-in interpretability.

Post-hoc Interpretability Starting from the Saliency map [42], a number of
post-hoc interpretation methods have been suggested to visually explain the de-
cision of a classifier. These methods generate a heatmap of the same size as the
input image and highlight the decisive regions within the input image. Post-hoc
methods are based on backpropagation [1,3,40,41,42,43,44,45], local perturba-
tion [47,48], or mask optimization [5,8,10,11,34]. The resulting heatmap of post-
hoc methods are easily interpretable. However, evaluating the quality of their
results is non-trivial, and both the method and the evaluation metrics are active
research areas. Recently, several interpretable methods that offer explanations
based on concepts and prototypes have been proposed [22,31,27,6]. TCAV [22] is
a post-hoc method based on predefined concepts. TCAV offers an explanation by
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Fig. 2. Network architecture. xi and xj are two images of different labels. CC encodes
only class-relevant features of xi and xj to ci and cj , respectively. E encodes only class-
irrelevant (residual) features of xi and xj to ri and rj , respectively. G constructs the

images x̂ci,ri and x̂cj ,rj using ci ⊕ ri and cj ⊕ rj , respectively. Also, G generates the

images x̂ci,rj and x̂cj ,ri using swapped ci ⊕ rj and ci ⊕ rj , respectively. These images
are distinguished as real or fake and classified by DG and CG. DCR takes two images
x̂ and x̂′ that share the same c and r except for a single index l of c, and it is trained
to identify l.

finding the closest predefined concepts to the corresponding class in the feature
space. Unlike most post-hoc methods, TCAV only offers an explanation for a
class, not for a single data point.

Built-in Interpretability SENN [31] suggests an interpretable classifier struc-
ture that predicts a class by combining concepts and relevances. SENN encodes
input features into two representations: concepts and relevances. The importance
of a given concept for classification can be explained through the relevance score
of the corresponding concept. However, the learned concepts of SENN are not
clearly human-understandable, as analyzed in Sec. S3 of the supplementary. Pro-
toPNet [6] proposes an interpretable classifier based on prototypes. ProtoPNet
learns prototypical patches of each class from the training dataset. After finding
the prototypes, the model makes a decision by measuring the distance between
local patches of the test observation and the found prototypes of each class.

3 iCaps: An Interpretable Classifier via Disentangled
Capsule Networks

iCaps comprises six components, as illustrated in Fig. 2.

– CC : a capsule network (classifier) that represents the class-relevant latent
space.

– E: an encoder that represents the class-irrelevant (residual) latent space.
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– G: a generator that creates synthetic images using CC(x) ⊕ E(x), where ⊕
represents concatenation.

– DG: a discriminator for image generation, that distinguishes whether an ob-
servation is from the dataset or from G.

– CG: a classifier for image generation, that estimates class labels.

– DCR: a discriminator for contrastive regularization (CR), that maximizes the
distance between the concepts represented by CC

Assume that a collection of n images x1, x2, ..., xn ∈ X and their corresponding
labels yi ∈ [k] is provided. k and [k] (=[1,. . . ,k]) are the number and the set of
classes, respectively. X i represents all images corresponding to a class index i.
As described in Fig. 2, iCaps uses two images of different class labels as input
in the training phase. In the case of binary classification, the input pairs are
images of the opposite class labels. In multiclass classification, two class labels
are randomly selected in each batch.

We assume that the representation of images can be disentangled into two
complementary latent spaces, C and R. Our objective is to find a class-relevant
representation ci ∈ C and a class-irrelevant (we call as residual) representation
ri ∈ R for each image xi. The size of output vector of the class-relevant repre-
sentation is L.

3.1 Disentanglement between Class-relevant and Class-irrelevant
Information

The class-relevant subspace, C, is represented by CC , and the residual subspace,
R, is represented by E. The class-relevant representation, ci, contains all the
information relevant for classification, whereas the residual representation, ri,
contains residual information irrelevant for classification. The previous class-
supervised disentanglement methods [9,20,4,12] contain only information shared

by each class (inter-class variation) in ci, assuming that ‖ci − cj‖2F = 0 if yi = yj .
However, under this assumption, ci cannot include classification-relevant intra-
class variation. For example, if a model is trained using a dataset labeled as
female and male, and most of the males are wearing suits, then wearing a suit
should be a classification-relevant variable. In other words, this variable should
be included in c. However, to satisfy the assumption: ‖ci − cj‖2F = 0 if yi = yj
above, every man should be defined as wearing a suit. This is not true. If this
variable is not included in c, it should be included in r. Consequently, information
leakage is implied because wearing a suit is classification-relevant information in
this model.

We wish to include classification-relevant intra-class variation in ci. By ana-
lyzing only ci, we can understand the rationale behind the model’s prediction.
More information-theoretically, when the mutual information between c and y
is:

I(c; y) =

∫
y

∫
c

p(y) q(c|y) log
q(c|y)

q(c)
dc dy, (3)



iCaps: An Interpretable Classifier via Disentangled Capsule Networks 7

where q(c) =
∫
y
p(y) q(c|y) dy, I(c; y) should be non-zero, and I(r; y) should be

zero. To obtain I(c; y) > 0 and I(r; y) = 0, we utilize three objective functions.
The first objective is a cross-entropy loss that includes two images generated

by swapping r of two inputs. The loss term is:

LCG
= λCG

(E[(1− yt) · CG(x)] + E[(1− yit) · CG(x̂c
i,ri)]+

E[(1− yit) · CG(x̂c
i,rj )]− E[yt · CG(x)]]−

E[yit · CG(x̂c
i,ri)]]− E[yit · CG(x̂c

i,rj )]]),

(4)

where i and j are two different class indices, x ∼ pdata(x), xi ∼ pdata(xi),

xj ∼ pdata(xj), yt is an one-hot encoding of y ∈ [k], x̂c
i,ri ∼ G(CC(xi), E(xi)),

and x̂c
i,rj ∼ G(CC(xi), E(xj)). The class labels of the two synthetic images,

x̂c
i,ri and x̂c

i,rj , are the same as yit. For all images in Eq. 4, the higher the
probability of class i, the smaller the loss.

Furthermore, we use the prediction confidence of the model as a loss. We
propose a class-similarity (CS) loss:

LCS = λCS E
∥∥∥C logit

G (x̂c
i,ri)− C logit

G (x̂c
i,rj )

∥∥∥2
F
, (5)

where C logit
G represents the logit of CG. In Eq. 5, we can compare the likelihood

distributions of two images generated based on the same c yet different r. That
is, the images generated with the same c should have exactly the same likelihood
distributions in our framework. LCG

and LCS cause information relevant to the
classification to be included in c.

The third loss is for the residual features independent of classification. Other
similar studies use either an adversarial loss [9], KL-divergence term [4], or asym-
metric noise regularization [12] to encode class-irrelevant features in r. Unlike
these methods, we allow r to include the remaining information by causing c
to include all the relevant information for classification. The residual similarity
(RS) loss is defined as follows:

LRS = λRS E
∥∥∥E(xi)− E(x̂c

j ,ri)
∥∥∥2
F
. (6)

To minimize LRS, the class-irrelevant (residual) feature, r, of the real image
xi corresponding to class index i and the class-irrelevant (residual) feature,

r, of x̂c
j ,ri should be the same. This is only possible when c contains all the

classification-relevant information.
In addition, in our study, we assume that all dimensions of c are used to

represent class-relevant concepts. More formally,

min
l ∈ L

E[I(CC(x); y)l] > 0 (7)

where L is the size of c. However, LM , LCG
and LCS do not guarantee the above

assumption. Therefore, we propose the loss as follows:

Lconcept = − λconcept (min
l ∈ L

∣∣E[CC(xi)]− E[CC(xj)]
∣∣
l
). (8)
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Lconcept is additionally suggested to maximize the mutual information between
all elements of c and y. By using LM and Lconcept together, we enforce all
dimensions of c to represent discriminative concepts by maximizing the smallest
distance between different classes i, j among all the dimensions. We elaborate
the benefits of the proposed losses and components in Secs. 4 and S2.

3.2 Latent Traversal

We add a discriminator, DCR, to prevent overlapping concepts, which is the
second problem we wish to solve. The idea of DCR comes from latent traversal.
Latent traversal refers to generating images by traversing a single element of a
latent space; it is widely used to measure disentanglement in evaluation [18,23].
Lin et al. [28] first used the idea of latent traversal in the training phase, and
named as contrastive regularization. By following it, we also call our loss as LCR.
LCR can be expressed as follows:

LCR = −λCR El∼U [L], (x̂,x̂′)∼G(CC(x),E(x)) [〈I, logDCR(x̂, x̂′)〉] , (9)

where l is a random index over L, x̂ and x̂′ are two images generated with dif-
ferent value of CC(x)l while fixing the remaining elements. < · > represents a
dot product, and I denotes the one-hot encoding of the random index l. LCR

forces changes in the elements of c to be visually noticeable and easy to distin-
guish between each other. The difference between our LCR and that reported in
[28] is that we directly used the definition of latent traversal. However, Lin et
al. [28] fixed a single element and changes all the remaining elements, and tries
to identify the fixed element.

3.3 Interpretable Classifier Based on Learned Concepts

In addition, we replace the decoder part of DeepCaps with Generative Adversar-
ial Networks (GANs) [13] to encourage x̂c

i,rj to be realistic. To enable LCG
and

LCS to function as intended, the quality of generated image x̂c
i,rj is important.

Unlike x̂c
i,ri , x̂c

i,rj does not have a ground-truth image. Therefore, we used an
adversarial game of GANs and the ACGAN [33] structure; as such, CG and DG

share the weight except for the last fully connected layer. The losses for G and
DG are as follows:

LG = −λG E[DG(x̂)], LDG
= λDG

(E[DG(x̂)]− E[DG(x)]). (10)

LG is a loss to create a realistic image, and LDG
is a WGAN [14] based loss to

distinguish generated images by G from real images. For the gradient penalty,
we used a Lipschitz gradient penalty term [35]:

LLGP = λLGP E(‖5x̂DG(x̂)‖2 − 1)2+. (11)

The built-in interpretable model domain is still new. By analyzing similar
studies, we posit a reasonable set of desiderata for an interpretable classifier
based on learned concepts as follows:
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Table 1. Classification accuracy (CC) of p(y|c) (higher is better).

Architecture MNIST SVHN CelebA

ResNet-18 [16] 0.992 0.945 0.977
DeepCaps [36] 0.997 0.971 0.974

Ours 0.992 0.920 0.984

1. Informativeness: the concept representation of x for explanations should
preserve only classification-relevant information,

2. Distinctness: the learned concepts should be non-overlapping,
3. Explainability: a decision should be explained with human-understandable

concepts.

We obtained these conditions by (i) encoding only the class-relevant information
in c, (ii) enforcing distinctness by an additional discriminator and (iii) exploiting
the fact that the instantiation parameters represented by the class capsule are
human-understandable concepts.

To train iCaps, we alternatively trained CC , E, DG & CG, G, and DCR using
the following gradients:

θCC

+← −∆θCC
(LM + Lrecon + Lconcept + LCG

+ LCS + LRS + LCR) (12)

θE
+← −∆θE (Lrecon + LKL + LCS + LRS + LCG

) (13)

θ(DG,CG)
+← −∆θ(DG,CG)

(LDG
+ LCG

+ LCS + LLGP) (14)

θG
+← −∆θG(LG + LCG

+ Lrecon + LCS + LRS + LCR) (15)

θDCR

+← −∆θDCR
LCR (16)

LKL represents the KL term of a variational autoencoder [24]; LKL is scaled
down by a small hyperparameter such that it does not reduce the reconstruction
ability [23]. LM and Lrecon are provided in Sec. 2.1. In case of Lrecon, x̂ is from
G(CC(x), E(x)).

4 Experiments

We evaluated the performance of our method and the comparison methods on
three datasets: MNIST [25] (digit number as a class label), SVHN [32] (digit
number as a class label), and CelebA [29] (gender as a class label). In CelebA,
we used gender as a class label. Unlike person identity or other CelebA attributes,
such as smiling and beard, several factors should be considered when selecting
whether an observation is a female or a male. To demonstrate the effectiveness
of our study, a classification task is required, in which several consistent factors
are considered to classify an observation.
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Table 2. Classification accuracy of p(y|r). We trained a classifier using r of ours and
the comparison methods. The classifier would have a random chance for test datasets
if there is no class-relevant information in r (lower is better).

Architecture MNIST SVHN CelebA

Cycle-VAE [20] 0.176 0.436 0.793
ML-VAE [4] 0.717 0.445 0.786
LORD [12] 0.099 0.163 0.517

Ours 0.099 0.099 0.501

Random Chance 0.100 0.100 0.500

We predetermined the sizes of c and r for the three datasets. In MNIST and
SVHN, c ∈ R4 and r ∈ R8. In CelebA, c ∈ R8 and r ∈ R16. Sec. S6 of the
supplementary discusses the sizes of c and r in detail. In addition, Sec. S1 of the
supplementary provides details of experiment information of our work.

4.1 Informativeness

We measured the classification performance of our model and compared it with
those of ResNet-18 [16] and DeepCaps [36]. Our method shows similar accuracies
on all three datasets, as shown in Table. 1. Our model can provide an explanation
of the model’s prediction without degradation in classification performance. We
verified the informativeness of c using quantitative and qualitative methods.

Quantitative Experiments By following the protocol from Cycle-VAE [20],
we trained a simple classifier to classify class labels from the residual represen-
tation r. This experiment was conducted to evaluate whether the class-relevant
information is present in r. For comparison, we used recent class-supervised dis-
entanglement methods [20,4,12]. The details of hyperparameters used for the
comparison methods are provided in Sec. S9 of the supplementary.

As shown in Table. 2, only our method preserved a random chance in all
the three datasets. This is because unlike the comparison methods, we did not
agree with and implement the assumption that intra-class variation can be ig-
nored. For datasets created for disentanglement learning, such as Cars3D [37],
SmallNorb [26], KTH [39], etc., class-relevant intra-class variation is certainly
small. However, for complex real datasets, class-relevant intra-class variation
is typical (even large). Empirically, the classification accuracies of SVHN and
CelebA in Table. 2 show that the completely class-irrelevant r cannot be created
when assumed that intra-class variation can be ignored. For further analysis, we
measured the mutual information between y and c, r of our model: I(c; y) and
I(r; y). The c0 to c7 in Fig. 3 represent each element of the output vector of the
class capsule. As shown in Fig. 3(a, b, c), all the elements of c of our method
are strongly correlated to y, and all the elements of r are uncorrelated to y for
the datasets.
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Fig. 3. Mutual information between y and c, r of (a) MNIST, (b) SVHN, (c) CelebA,
and (d) CelebA w/o Lconcept (higher is better for c; lower is better for r)

(a) MNIST (b) SVHN 

(c) CelebA 

Fig. 4. Swapping. The images on the left of (a, b, c) are reconstructed using (ci, ri)
and (cj , rj). The images on the right of (a, b, c) are generated by swapping c: (cj , ri)
and (ci, rj).

As an ablation study, we tested the importance of Lconcept. As shown in
Fig 3(d), some elements of c obtained without Lconcept show low correlations
to y. r still does not contain any class-relevant information, however, Lconcept

is required to encode class-relevant information to each element of c. Also, We
tested the importance of LM by replacing CC with ResNet-18. The result is
discussed in Sec. S4 of the supplementary.

Qualitative Experiments By swapping, we visually evaluated which factors of
variation were encoded into c and r and whether they were semantically correct.
From two test images of different class labels, we obtained (ci, ri) and (cj , rj),
individually. Subsequently, we swapped ci and cj to generate new observations.
The images on the left of Fig. 4(a, b, c) are generated using the original set:
(ci, ri) and (cj , rj). The images on the right of Fig. 4(a, b, c) are generated by
swapping: (cj , ri) and (ci, rj). It is clear that for MNIST, r contains factors of
variation such as thickness and skew. For SVHN, r contains background color,
font color, thickness, location, and skew. For CelebA, r contains background
color and a person’s face feature. We believe that the results show semantically
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(a) w/o 𝐷CR (b) w/ 𝐷CR

Fig. 5. Ablation study of DCR. For (a), changes in rows overlap, whereas changes in
rows are distinct in (b).

c0 c1 c2 c3

cls 1 cls 1 cls 2 cls 0

cls 3 cls 4 cls 3 cls 2

cls 4 cls 5 cls 5 cls 6

cls 6 cls 9 cls 6 cls 9

Fig. 6. Concepts learned for MNIST. c0: being a big circle, c1: being a straight line,
c2: creating a small circle in the bottom part and c3: changing the upper part of the
digit to a line.

correct disentanglement. A detailed analysis of c will be presented in Sec. 4.3. In
addition, the T-SNE [30] results of r and c of our method are shown in Sec. S7.
The measured FID [17] scores of the images by reconstruction, swapping, and
random generation are provided in Sec. S8 of the supplementary.

4.2 Distinctness

Distinctness means that each concept should be represented by a single variable.
The variable type varies in each method, which can be a prototype or a latent
feature [6,31]. In our method, the single concept is represented by a single element
of the class capsule. To enforce it, we used an additional discriminator, DCR.
Fig. 5(a) shows the images generated by G trained without DCR. Each row of
image (a) indicates each element of the class capsule, and the eight images of
the row are the results of linear interpolation between -1 and 1. In Fig. 5(b),
the change in each element is distinct from each other, whereas in Fig. 5(a), the
elements overlap. For example, the change in the left-half of the first row and the
change in the right-half of the fourth row in MNIST of Fig. 5(a) are the almost
same. In such a case, the values for a single concept would be contradicting. This
shows that DCR is required to enforce distinctness between the elements. The
same trend was observed in CelebA. The qualitative and quantitative results of
CelebA are given in Fig. S2 and Table. S3 of the supplementary. In addition, the
importance of all the six components is discussed in Sec. S2 of the supplementary.

4.3 Explainability

If explanations are provided based on concepts, these concepts should be human-
understandable. In our setting, we demonstrate the learned concepts by linearly
interpolating or analyzing data points of similar values. In Fig. 6, the concept
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-1 10

c0 
(Age)

c1 
(Hair Length)

c2 
(Makeup)

c3 
(Paleness & Skin Tone)

c4 
(Men Bangs)

c5 
(Clothes)

c6 
(Beard)

c7 
(Smiling)

Fig. 7. Concepts learned for CelebA. For more details, c2 represents makeup. As the
value approaches -1, people with heavy makeup appear. c6 represents a beard. As
the value approaches -1, people who have a beard appear. Other concepts can be
understood by verifying which image has a negative or positive value for each element.

of each element is shown by linear interpolation. In MNIST, r contains concepts
such as thickness and skew, as described in Sec. 4.1. For c, the first element
represents being a large circle. As the value approaches to −1, a majority of
the digits are changed to zero. The second element represents being a straight
line, and the third and fourth elements represent creating a small circle in the
bottom part and changing the upper part of the digit to a line, respectively.
By analyzing these results, we recognized that the factors relevant to MNIST
classification are the size, number, and location of the circles and lines, and this
finding also fits to SVHN in a very similar way (Sec. S5).

For CelebA, we show the concept of each element by analyzing a set of test
images of certain values. We discovered the concepts such as age, hair length,
makeup, paleness, skin tone, men hairstyle, clothes, beard, and smile, as shown
in Fig. 7. Case c1 represents hair length. As the value approaches 1, a person
with extremely short hair appears. Case c4 represents men’s hairstyle. A person
who has men bangs and perm typically exhibits a value less than 0. In case c5,
the majority of men exhibit values less than 0. c5 is close to -1 when the person
wears a suit and close to 1 when the person wears open-shoulder clothes.

We discovered an interesting phenomenon: In case c0, the element represents
age. For persons appearing young, they typically have a value less than 0. Statis-
tically, the number of females with values less than 0 was high, and the number
of females with values greater than 0 was low. For males, the situation was vice
versa. The model learned data bias from the CelebA dataset. When we analyzed
the attribute named “young” of the CelebA dataset, we discovered an imbalance
in the number of data, i.e., a ratio 2:1 (female:male). Similar to this case, we
discovered an imbalance in CelebA attributes “pale skin” (3:1) and “smiling”
(2:1), and these biases were encoded as class-relevant concepts (c0, c3, and c7).
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Age

F

M

F

M

-0.073

0.439

-0.101

0.043

Hair
Length

-0.271

0.411

-0.261

-0.016

Make
up

-0.364

0.325

-0.101

-0.001

Skin
Tone

-0.469

0.300

0.006

0.017

Men
Bangs

0.306

-0.344

-0.027

-0.054

Clothes

0.175

-0.370

0.073

0.040

Beard

0.408

-0.410

-0.116

0.001

Smiling

-0.523

0.124

-0.063

0.024

Confidence

0.999

0.999

0.335

0.087

(a)

(b)

(c)

(d)

Fig. 8. Explanations generated by iCaps for four samples. In the cases of (a, b), iCaps
is accurate in the predictions. On the contrary, in the cases of (c, d), iCaps misclassified
with a low confidence score. By analyzing the values of each concept of the samples,
we can understand the high and low confidence of iCaps in making the predictions.

We discovered that our model can be used as a detector of hidden data bias;
this will be investigated in future studies.

Herein, we demonstrate the explainability of our method using samples. In
Fig. 8, we present classification success cases of a female and a male, as well as
misclassification cases of a female and a male. By analyzing the values of the
concepts, we understood why the model classified Fig 8(a) as a female with such
high confidence. Fig 8(a) was predicted as a female owing to observations of long
hair, pale skin, no men bangs, no beard, and a smiling face. In the misclassifica-
tion case (d), the model showed very low confidence in the classification because
the model could not find a strong relevance to any concepts.

5 Conclusion and Future Work

We propose a novel disentanglement method that the class-relevant subspace
contains both class-relevant inter- and intra-class variation. Using the proposed
method, we build a new interpretable model that provides explanations of the
model’s prediction based on class-relevant distinct concepts.

In addition, the generator of our model can generate an image of the desired
combination of the concepts. Hence, it can be used for data augmentation or
additional explanations. Also, we will keep analyzing the possibility of our model
as a detector of data bias. In future studies, we try to improve reconstruction
ability and further, add a sentence generation phase at the end so that the model
can generate an explanation as a sentence automatically.
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