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Abstract. We investigate the problem of compressive acquisition of a
dynamic light field. A promising solution for compressive light field ac-
quisition is to use a coded aperture camera, with which an entire light
field can be computationally reconstructed from several images captured
through differently-coded aperture patterns. With this method, it was
assumed that the scene should not move throughout the complete acqui-
sition process, which restricted real applications. In this study, however,
we assume that the target scene may change over time, and propose
a method for acquiring a dynamic light field (a moving scene) using a
coded aperture camera and a convolutional neural network (CNN). To
successfully handle scene motions, we develop a new configuration of im-
age observation, called V-shape observation, and train the CNN using
a dynamic-light-field dataset with pseudo motions. Our method is vali-
dated through experiments using both a computer-generated scene and
a real camera.
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1 Introduction

The concept of a light field, which is a 4-D signal representation that describes all
light rays traveling in 3-D space [1,12,23], has been used in various applications,
such as view synthesis [19, 27, 34, 54], depth estimation [35, 44, 48, 51], synthetic
refocusing [18,32], super resolution [5,48], 3-D display [16,22,39,49], and object
recognition [25, 45]. A light field is usually represented as a set of dense multi-
view images, where many (tens to hundreds) views are aligned in parallel with
tiny viewpoint intervals.

Acquiring a light field is challenging due to the large amount of data, for
which several approaches have been investigated. The most straightforward ap-
proach is to use a moving camera gantry [23] or multiple cameras [11, 38, 50]
to capture a target scene from different viewpoints. This approach is costly in
terms of the hardware or time required to acquire the entire light field. Another
approach is to use lens-array based cameras that can capture both the spatial
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and directional information of the light rays [2, 3, 31, 32]. These cameras can
acquire an entire light field in a single image, but the spatial resolution of each
viewpoint image is in a trade-off relationship with the number of viewpoints.3

The final approach we mention is compressed acquisition using, e.g., a coded
aperture/mask camera [4,17,24,26,30,40,43,53]. We are interested in the final
approach due to its potential advantage in efficiency and the ability to acquire
a light field in the full spatial resolution of the image sensor.

With this final approach, the target light field is computationally recon-
structed from several observed images of the same target scene with different
encoding (aperture/mask) patterns. 4 The number of images required for recon-
struction can be successfully reduced by optimizing the encoding process (e.g.,
finding optimal aperture/mask patterns) and corresponding reconstruction algo-
rithm. In earlier studies, this problem was tackled in the context of compressed
sensing [6, 7, 10], and reconstruction methods were developed on the basis of
sparse representation on a learned dictionary [26, 40] and approximation using
the most significant basis vectors [53]. In more recent studies, deep neural net-
works were successfully applied for better reconstruction from fewer observed
images [13, 17, 29, 42]. For example, Inagaki et al. [17] reported that only a few
observed images were sufficient for reconstructing a light field with 5×5 or 8×8
views. This successful result came with the learning-based optimization of the
entire acquisition process modeled using a deep convolutional neural network
(CNN). However, most of the methods mentioned here have been applied only
to static light fields (stationary scenes).

In this study, we focused on the problem of compressive acquisition of dy-
namic light fields (moving scenes). Specifically, we extended Inagaki et al.’s
method [17], which was designed exclusively for static light fields, to dynamic
light fields. In short, we propose a method for acquiring a dynamic light field
using a coded aperture camera and a CNN. To our knowledge, this is the first
work that achieves compressive acquisition of a dynamic light field based on the
concept of “deep optics”, where the optical elements (aperture patterns) and
reconstruction algorithm are jointly optimized through deep learning.

Given successful results [17] for static light fields, one might easily conceive
of the following two naive strategies for dynamic light fields, both of which are
unsuccessful, as shown from our experiments. The first strategy is to recon-
struct a light field at each time from only a single observed image [26], which
helps avoid the effect of scene motions. Thanks to the recent deep-learning-based
optimization, the quality of light field reconstruction from a single image has im-
proved [8, 29, 37]. However, it is essentially difficult for this strategy to achieve

3 The combination of a lens-array based camera and ordinary camera has also been
explored to increase the temporal resolution [46], but the trade-off between the
spatial and directional resolutions still remains unsolved.

4 A related topic is angular super resolution [19, 27, 47, 52, 54], where the target light
field is synthesized from sparser (e.g., located at the four corners) views. This is
regarded as a special case of compressive acquisition where the encoding process is
limited to view subsampling.
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geometrically-correct reconstruction, because in principle, the disparity informa-
tion cannot be extracted from a single observed image alone. In particular, when
an ordinary image (without aperture/mask coding) is used as the input [8, 37],
the resulting light field is only “hallucinated” based on the implicit knowledge
learned from the training dataset rather than the apparent geometric cues. An-
other naive strategy is to assume that the scene is stationary for a short time
and directly apply a method designed for static light fields. In this case, a light
field at a certain time can be reconstructed from several images observed over
different times [40]. Using several images helps in obtaining 3-D information em-
bedded as disparities related to different aperture patterns. This strategy was
expected to work well for scenes with few motions. However, it fails in practice
because scene motions are non-negligible even between two consecutive times.

To summarize, we need several (at least two) images to obtain sufficient
geometric cues for reconstructing a 3-D structure of the target scene, which are
embedded as disparity information among the images captured through different
aperture patterns. At the same time, the observed images are also affected by
the scene motions over time. In other words, the difference among the observed
images is not only due to the disparities but also by scene motions, which greatly
complicates the reconstruction problem. To address this issue in our method,
we first introduced a new configuration of image observation, called V-shape
observation, to help the CNN successfully separate the disparity information
from scene motions. We then constructed a dynamic-light-field dataset from
static light fields with pseudo motions, and used it for training the CNN to make
the CNN more adaptable to dynamic scenes. Our method was quantitatively
evaluated through simulation experiments using a computer-generated dynamic
scene. We also applied our method for a coded aperture camera and succeeded
in capturing a real dynamic scene with fine quality.

2 Proposed Method

We present a method for acquiring a dynamic light field (a moving scene) with a
coded aperture camera and a CNN. Our method can be regarded as an extension
of the method by Inagaki et al. [17] that was designed exclusively for static light
fields. However, to our knowledge, our work is the first to achieve compressive
acquisition of a dynamic light field based on the concept of deep optics, where
the optical elements (aperture patterns) and reconstruction algorithm are jointly
optimized for dynamic light fields through deep learning.

In this section, we first introduce notations and the problem formulation in
Section 2.1. Next, we explore several possible configurations for dynamic light-
field reconstruction and discuss the proposed method in Section 2.2. We explain
the architecture of the CNN in Section 2.3 then describe the datasets, training
procedure, and the optimized aperture patterns in Section 2.4.
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Fig. 1. Coded aperture camera (left) and example of dynamic light field (right)

2.1 Notations and Problem Formulation

A schematic diagram of a coded aperture camera is shown in Fig. 1 (left). All in-
coming light rays to the camera are parameterized with four variables (u, v, x, y),
where (u, v) and (x, y) denote the intersections with the aperture and imaging
planes, respectively. The light field is defined over 4-D space (u, v, x, y), with
which the light intensity is described as l(u, v, x, y). When we consider scene
motions over time t, the light intensity is described as l(u, v, x, y, t) on 5-D space.

We consider a coded aperture design with which the transmittance of the
aperture can be controlled at any position and time. The transmittance at po-
sition (u, v) and t is defined as a(u, v, t). The image-formation process through
a coded aperture camera is described as

it(x, y) =
1

|Et|

∫∫∫
Et×U×V

a(u, v, τ)l(u, v, x, y, τ)dudvdτ, (1)

where it(x, y) is the observed image at t, Et is the exposure time around t, and
U × V denotes the effective aperture area.

We next transform Eq. 1 into a discretized representation on the time and
aperture domains. We assume that the light field and aperture pattern are con-
stant during each exposure time, i.e., l(u, v, x, y, τ) = lt(u, v, x, y) and a(u, v, τ) =
at(u, v) for τ ∈ Et. In this case, t can be considered as an index instead of a real
value. We also assume that the aperture plane is discretized into several square
blocks indexed by a pair of integers (u, v). We can simplify Eq. 1 as

it(x, y) =
∑
u,v

at(u, v)lu,v,t(x, y). (2)

We rewrite lt(u, v, x, y) as lu,v,t(x, y), which can be regarded as one of the rec-
tified sub-aperture images observed from viewpoint (u, v) at t. Figure 1 (right)
illustrates a case in which the aperture plane was discretized in 5 × 5 regions;
thus, a light field at each t is represented as 5×5 multi-view images. The observed
image given by Eq. 2 is a weighted sum of those multi-view images.

Given the model of Eq. 2, our goal is to reconstruct the original light field
at each t, lu,v,t(x, y), from several observed images around t: it′(x, y) for t

′ ∈ Tt,
where Tt denotes the local temporal window around t. The aperture patterns,
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at(u, v), should also be optimized simultaneously. This is a problem of com-
pressed sensing with an extreme compression ratio, where a set of multi-view
images (e.g., 5 × 5 views) is compressed into a single observed image at each t.
However, in the reconstruction stage, we can use the information not only from
the corresponding time (it(x, y)) but also from other adjacent times t′ ∈ Tt (e.g.,
it−1(x, y) and it+1(x, y)), which will help improve reconstruction quality.

The observation and reconstruction processes of a dynamic light field can be
translated into a neural network model. The observation process at t, which is
given by Eq. 2, can be written in a form of a mapping as f : Lt → It where Lt

represents a tensor that contains all the pixels of lu,v,t(x, y) for all viewpoints
(u, v) for a specific t, and It represents a tensor that contains all the pixels
of it(x, y) at t. The reconstruction process is written as g : {It′ |t′ ∈ Tt} → L̂t

where L̂t corresponds to an estimate of Lt. The composite mapping h = g ◦ f
can be regarded as an auto-encoder, where f and g correspond to the encoder
and decoder, respectively, and a set of observed images, it′(x, y) for t′ ∈ Tt, is
regarded as a latent representation. The goal of optimization is formulated, e.g.,
with the squared error loss, as

f̂ , ĝ = argmin
f,g

||Lt − L̂t||2. (3)

As detailed later, we implemented the composite mapping as a deep CNN, using
2-D convolutional neural layers exclusively. The entire network can be trained
end-to-end by using a training dataset. The learned parameters in f̂ and ĝ cor-
respond to the aperture patterns at(u, v) and reconstruction algorithm, respec-
tively, both of which are jointly optimized. When applied to a real coded aperture
camera, f̂ is conducted by the physical imaging process on the camera and the
aperture patterns of which are configured in accordance with the learned pa-
rameters in f̂ . The images acquired from the camera are fed to the network
corresponding to ĝ, then, the target light field is reconstructed on the computer.

Our problem described above is similar but more challenging than that of
Inagaki et al. [17]. In [17], the target light field is assumed to be static and the
observation process is described as

it(x, y) =
∑
u,v

at(u, v)lu,v(x, y). (4)

Time t still appears in at(u, v) and it(x, y) but disappears from lu,v(x, y). In this
case, the same light field can be observed several times as several images it(u, v)
observed through different aperture patterns at(u, v) over t. The target light
field was reconstructed with reasonable fidelity because the difference in the ob-
served images was caused solely by the difference in the aperture patterns. More
intuitively, due to the difference in the masking patterns on the aperture plane,
the observed images have disparities in accordance with the depth of each pixel
(x, y), from which the reconstruction algorithm can deduce 3-D information of
the target scene. In our case, however, the target light field lu,v,t(x, y) changes
over t; thus, each light-field instance lu,v,t(x, y) can be observed only once. Sim-
ilarly to Inagaki et al. [17], we change the aperture patterns over t, but the
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differences in the observed images are due to not solely by the difference in the
aperture patterns, which is known and even controllable, but also by the scene
motions, which are unknown and should be estimated from the observed images.

2.2 Reconstruction of Dynamic Light Field

As mentioned earlier, we can use several observed images It′ (t′ ∈ Tt) to re-
construct a light field L̂t at t. We now discuss how to do this more specifically
considering several design factors. We then present our method, V-shape obser-
vation trained with our dynamic-light-field dataset.

The first factor is the number of aperture patterns used for observation.
According to Inagaki et al. [17], only two images observed through two different
aperture patterns are sufficient to reconstruct a static light field consisting of
5 × 5 or 8 × 8 views. Therefore, we determined to use at most two aperture
patterns; using more patterns would be helpful to improve the reconstruction
quality, but we did not do this to avoid increasing complexity. As shown at the
bottom of Fig. 2, two aperture patterns, A and B, are alternately repeated over
t. Therefore, at each t, we have only one observed image with one of the aperture
patterns. An image observed through aperture pattern A at t is denoted as IAt .
Note that the target light field changes over t.

The second and third factors are the number of observed images used for
reconstruction and the type of training data: static or dynamic light fields. The
possible reconstruction methods we considered along with the proposed method
are summarized in the top-left table of Fig. 2 and discussed in detail below.

(i) Single: reconstruction from only a single observed image (top-right in
Fig. 2). At each t, Lt is reconstructed from a single observed image IAt , using a
pre-trained decoder ĝ, denoted as “CNN” in the figure. In this case, Tt = {t};
thus, the model is free from scene motions; the training can be conducted with
a static dataset, and the reconstruction is not affected by scene motions. How-
ever, it is difficult to expect good reconstruction quality because the disparity
information cannot be obtained from a single image alone in principle.

(ii) 2-S: reconstruction from two consecutive images using a model trained
on a static dataset (bottom-left in Fig. 2). This is a naive application of Inagaki
et al.’s method [17] for reconstructing a dynamic light field. We assume that
the scene is static over t in which two images are captured and simply apply
the model trained on a static dataset. We adopt Tt = {t − 1, t} and try to
reconstruct Lt from IAt−1 and IBt . One might expect that this would work well
with little motion because Inagaki et al.’s method [17] worked perfectly for static
scenes. However, from our experiments, the scene motion cannot be negligible
even between two consecutive images, which leads to poor reconstruction quality.

(iii) 2-D: reconstruction from two consecutive images using a model trained
on a dynamic dataset. This is the same as (ii) except for the training dataset;
the model is trained on a dynamic dataset, which will make the model more
adaptable to dynamic scenes. However, even in this case, the reconstruction
quality is insufficient. One possible reason is that the scene motion and disparity
information are inseparable on the two observed images. As mentioned earlier,
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Table of reconstruction methods

Reconstruction

𝐼𝑡−1
𝐴 𝐼𝑡

𝐴 𝐼𝑡+1
𝐴 𝐼𝑡+2

𝐴

Aperture

pattern
Acquired images

𝐼𝑡−2
𝐴

Reconstructed dynamic light field

time

CNN CNN CNN CNN CNN

A

𝐿𝑡𝐿𝑡−1𝐿𝑡−2 𝐿𝑡+1 𝐿𝑡+2

(i) Using a single observed image (Single)

𝐼𝑡+3
𝐴

𝐼𝑡−2
𝐵

Reconstruction

𝐼𝑡−1
𝐴 𝐼𝑡+1

𝐴

Aperture

pattern
Acquired images

Reconstructed dynamic light field

time

𝐼𝑡
𝐵 𝐼𝑡+2

𝐵

CNN CNN

A

B

𝐿𝑡 𝐿𝑡+2

(ii)(iii) Using two observed images (2-S, 2-D)

Reconstruction

𝐼𝑡−1
𝐴

𝐼𝑡
𝐵

𝐼𝑡+1
𝐴

𝐼𝑡+2
𝐵

𝐼𝑡+3
𝐴

Aperture 

pattern
Acquired images

𝐼𝑡−2
𝐵

Reconstructed dynamic light field

time

CNNCNN CNN

A

B

𝐿𝑡 𝐿𝑡+2𝐿𝑡−2

(iv) Using three observed images (ours)

Fig. 2. Reconstruction of dynamic light field with several possible configurations

the difference between the two images is caused by the difference in the aperture
patterns (which induces disparities) and scene motions.

(iv) 3-D (V-shape): reconstruction from three consecutive images using
a model trained on a dynamic dataset (bottom right in Fig. 2). This is our
proposed method. We adopt Tt = {t − 1, t, t + 1} and try to reconstruct Lt

from the three observed images, IAt−1, I
B
t , and IAt+1. Images IAt−1 and IAt+1 are

captured with the same aperture pattern, i.e., A, so that the difference between
these images is exclusively attributed to scene motions. Image IBt contains both
disparity and motion information with respect to the other two images. We
expect that feeding these three images can help the CNN successfully separate
disparity information from scene motions, which leads to better reconstruction
quality of Lt. We call this “V-shape” observation because the locus tracing the
three images constitutes a “V” shape.

2.3 Network Architecture

Figure 3 illustrates an example of the networks we constructed where the light
field is composed of 25 (5 × 5) viewpoints and the temporal window is set to
Tt = {t − 1, t, t + 1}. The basic architecture is similar to that of Inagaki et
al.’s [17], which was dedicated to static light fields, but our network can handle
dynamic light fields thanks to the extensions described in Section 2.2. We now
briefly summarize the architecture.
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Fig. 3. Network structure for dynamic light field acquisition, where encoder and de-
coder parts are shown in blue and orange background, respectively.

The network is composed solely of 2-D convolutional layers; thus, it is ag-
nostic of the spatial resolution. An instance of a light field at t (Lt) is treated
as a 2-D image having multiple channels. More specifically, a light field with
25 viewpoints is translated into a 2-D image with 25 channels5. Therefore, the
input and output of the network have 25 channels. For each convolution layer,
we use one-pixel stride and appropriate zero padding to maintain the image size
before and after the convolution. The number of channels can be changed at each
convolution layer. Therefore, the image size (height and width) is kept constant
throughout the network but only the number of channels is changed as the data
proceed in the network.

The encoder part of the network f is designed with some constraints because
it corresponds to the physical-image-capturing process of a coded aperture cam-
era. Specifically, the transmittance of the aperture pattern (at(u, v)) should be
limited within [0, 1], and each pixel (x, y) on the imaging plane cannot be mixed
with its neighbors. Similarly to Inagaki et al. [17], we implemented this process
using a single 2-D convolutional layer that has a 1 × 1 convolution kernel and
reduces the number of channels from 25 to 1 (the weights of this layer correspond
to the transmittance of the aperture pattern). To keep the range limitation for
the kernel weights, we clipped the weights within [0, 1] each time when the net-
work was updated with a mini-batch during the training stage. The bias terms
were kept to 0. In the training stage, we added zero-mean Gaussian noise to It,
which is important to make the learned model robust against camera noise.

5 We assume that the light field has only one color channel for simplicity. For a color
light field, RGB color channels are treated individually.
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The decoder part of the network g can take an arbitrary form because the
whole process is executed on the computer. We use the same decoder as that
adopted by Inagaki et al. [17]. This decoder was designed to gradually increase
the number of channels from three to 25 to obtain a tentative output then refine
the tentative output through another deep residual CNN developed for image
super-resolution [20]. The channel-increase step consists of several convolutional
layers with 5× 5 kernels and linear activation, and the refinement step consists
of 19 convolution layers with 3× 3 kernels and rectified-linear-unit activation.

2.4 Dataset and Training Procedure

We first explain how we prepared static and dynamic light field datasets used
to train the networks. We then mentioned the details of the training procedure
and the obtained aperture patterns. The number of views for a light field was
set to 5 × 5 and 8 × 8.

We followed the procedure of Inagaki et al. [17] in preparing the static-
light-field dataset. The training samples were collected from many light-field
datasets [9, 14, 15, 28], which are summarized in Table 1. From each light field,
we extracted image patches with 64× 64 pixels at the same position from all 25
or 64 views and combined them to compose a light-field sample. The position of
the image patches was changed to obtain many samples from each light field; we
took patches every 32 pixels both in the horizontal and vertical directions but
discarded those with almost uniform intensities. Three (RGB) color channels of
each light field were used as three individual light fields. We augmented the data
by changing the intensity levels of each sample uniformly. We multiplied 1.0, 0.9,
0.8, 0.7, 0.6 and 0.5 with the original samples. Finally, we collected 295,200 and
166,680 samples for 5× 5 and 8× 8 views, respectively, which were used to train
the networks for Single and 2-S.

We next prepared a dynamic light field dataset, which was necessary to train
the networks for 2-D and 3-D (V-shape). We need a dataset in which each sample
consists of 5× 5 or 8× 8 views over three consecutive times. To the best of our
knowledge, there are no public datasets suitable for our purpose. Therefore, we
created such a dataset from the static-light-field dataset by giving it pseudo
motions. As illustrated in Fig. 4, we clipped out three slightly different regions
from a single image patch and regarded them as a temporal sequence. More
specifically, we extracted three image patches with 60 × 60 pixels from each
of the patches (64 × 64 pixels) of the static-light-field dataset. The extracted
patches, gathered from all the views, constituted a sample of dynamic light field
corresponding to a set of Lt−1, Lt and Lt+1. We assume that the pseudo motions
over t are linear and of a constant velocity limited within 2 pixels between the
time intervals (δt). Specifically, we applied 25 motion patterns to each static
light-field sample, resulting in 7,380,000 and 4,167,000 samples for 5 × 5 and
8 × 8 views, respectively. The motion patterns included linear motions in 16
directions with 2 pixels/δt, 8 directions with 1 pixel/δt, and a stationary one, as
illustrated at the bottom of Fig. 4.
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Fig. 4. Creating dynamic training samples
with pseudo motions

Table 1. Datasets used for training
5× 5 views (51 light fields)

Chess, Lego Bulldozer, Lego Truck, Eucalyp-
tus Flowers, Amethyst, Bracelet, The Stanford
Bunny, Jelly Beans, Lego Knights, Tarot Cards
and Crystal Ball (small angular extent), Treasure
Chest (Stanford [9]), Red Dragon, Happy Bud-
dha, Messerschmitt, Dice, Green Dragon, Mini
Cooper, Butterfly, Lucy (MIT [28]), Bedroom,
Bicycle, Herbs, Origami, Boxes, Cotton, Side-
board, Antinous, Boardgames, Dishes, Greek,
Museum, Pens, Pillows, Platonic, Rosemary, Ta-
ble, Tomb, Town, Vinyl (New HCI [15]), Buddha,
Buddha 2, StillLife, Papillon, MonaRoom, Me-
dieval, Horse, Couple, Cube, Maria, Pyramide,
Statue (Old HCI [14])

8× 8 views (30 light fields)
Chess, Lego Bulldozer, Lego Truck, Eucalyp-
tus Flowers, Amethyst, Bracelet, The Stanford
Bunny, Jelly Beans, Lego Knights, Tarot Cards
and Crystal Ball (small angular extent), Treasure
Chest Bedroom (Stanford [9]), Bicycle, Herbs,
Origami, Boxes, Cotton, Sideboard, Antinous,
Boardgames, Dishes, Greek, Museum, Pens, Pil-
lows, Platonic, Rosemary, Table, Tomb, Town,
Vinyl (New HCI [15])
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(ours) 
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ce 

(i) Single (ii) 2-S (iv) 3-D (V-shape)

(ours) 
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Fig. 5. Aperture patterns optimized through deep learning (left: 5× 5, right: 8× 8)

For each of the cases with 5 × 5 and 8 × 8 views, we used almost the same
network for Single, 2-S, 2-D, and 3-D (V-shape) to make the comparison as fair as
possible. The only difference was the joint between the encoder and decoder parts
because the number of observed images used for reconstruction differs depending
on the method (one to three). We used and extended the source code provided
by Inagaki et al. [17]. The software was implemented using Python version 3.6.6
and Chainer [41] version 5.4.0. The batch size for training was set to 15. We used
a built-in Adam optimizer [21]. The standard deviation of noise added to the
observed image It was set to σ = 0.005 with respect to the image-intensity range
[0, 1] of It. The number of epochs was fixed to 20 throughout the experiments.
The training with V-shape observation (our proposal) took approximately 5 days
on a PC equipped with NVIDIA Geforce GTX 1080 Ti. Although the training
was conducted with small image patches, the full-resolution light field could be
processed at once in the testing stage because our network is fully convolutional.

The aperture patterns obtained with Single, 2-S, 2-D, and 3-D (V-shape) are
shown in Fig. 5. Due to the noise added to the observed images, the resulting
aperture patterns were seemingly made sufficiently bright, which helped them
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Fig. 6. Quantitative comparison of reconstructed light fields (left: 5× 5, right: 8× 8)

to be robust against the noise. For the case with two aperture patterns, they
are optimized to be partial and complementary to each other, so that the im-
ages acquired with them should contain much disparity information with each
other. Moreover, the optimization resulted in different patterns depending on
the methods due to the difference of the datasets and observation patterns.

3 Experiments

We first present quantitative evaluations using a computer-generated dynamic
scene. We then mention an experiment using a physical coded-aperture camera
to capture a real dynamic scene.

3.1 Quantitative Evaluation

We compared the four methods denoted as Single, 2-S, 2-D, and 3-D (V-shape).
Note that Single and 2-S correspond to the methods proposed by Inagaki et al.
[17], which were designed exclusively for static light fields. In addition, we tested
several methods that can obtain a light field from a single image at each time t:
Marwah-1, Srinivasan-1, and Lytro-like camera. Marwah-1 [26] is a compressed-
sensing-based method constructed on the learned dictionary and sparsity prior,
where a light field with 5 × 5 views is reconstructed from a single coded image.
Srinivasan-1 [37] is a deep-learning-based method that reconstructs 8 × 8 views
from an ordinary image. Lytro-like camera is a simulation of a lens-array based
camera [31, 32] that obtains 8 × 8 views simultaneously but with a less (1/8
× 1/8) spatial resolution (the resulting images were upsampled to the original
resolution using bicubic interpolation). We also tested a method (Reference) with
which Lt is reconstructed using the same network as the one for 2-S but from
two images (IAt and IBt ) observed at the same t, which is practically impossible
but serves as the reference that shows the upper-bound reconstruction quality.

For quantitative evaluation, we generated a light-field sequence of a dynamic
scene using POV-Ray [33], which is composed of 840 × 593 pixels and 5 × 5 or
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Fig. 7. Reconstructed light fields of computer-generated dynamic scene (5× 5 views)

Ground truth
(51-st frame)

Ground truth
(101-st frame)

Srinivasan-1 Lytro-like Single 2-S 3-D (V-shape)

Fig. 8. Reconstructed light fields of computer-generated dynamic scene (8× 8 views)

8 × 8 views over 200 temporal frames. This test scene contains several slowly
revolving planets, producing scene motions with various velocities in various
directions. At test time, we added zero-mean Gaussian noise with σ = 0.005 to
the images observed from the coded aperture/mask cameras (Single, 2-S, 2-D,
3-D (V-shape), and Marwah-1) to simulate noisy imaging conditions.
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Figure 6 shows the peak signal-to-noise ratios (PSNRs) (the squared errors
were averaged over 25 or 64 views) over t for each method 6. Figures 7 and 8
show the reconstructed top-left views at the 51-st and 101-st frames, for each of
which an epipolar plane image (EPI) and the difference from the ground truth
(magnified by 3) were also shown to better present the reconstruction quality.
See the supplementary video for further details.

Several observations can be found from those results. First, reconstruction
from a single observed image (Single, Marwah-1, and Srinivasan-1) was not suc-
cessful because a single image alone cannot carry the disparity information.
Meanwhile, Lytro-like camera can obtain correct disparities with a single shot
but with the limited (1/8 × 1/8) spatial resolution (zoom in on the digital ver-
sion). Second, the quality of 2-S was lower than that of Single, although two
observed images were provided for 2-S. In contrast, 2-D exhibited significantly
better reconstruction quality than Single and 2-S. This shows the importance
of the dynamic-light-field dataset over the static one to handle scene motions
successfully. Finally, our proposed method (3-D (V-shape)) exhibited the best
reconstruction quality among the methods, and its performance was even close
to Reference. The superiority of our method over 2-D indicates the effective-
ness of V-shape observation, with which the reconstruction algorithm can better
separate the disparity information and scene motions. The test scene including
various motions was successfully reconstructed with our method despite the fact
that the dataset used for training contained only rather simple linear motions.
See Appendix for more results with larger scene motions.

3.2 Experiment Using Physical Coded Aperture Camera

Finally, we acquired a dynamic light field using a physical coded aperture camera.
We adopted the same hardware design as that reported in previous studies [17,
26,30,36]. The resolution of the camera (FLIR GRAS-14S5C-C) was 1384×1036
pixels, which is equivalent to the spatial resolution of light field acquired with
it. We used a Nikon Rayfact lens (25 mm F1.4 SF2514MC). The aperture was
implemented using an liquid crystal on silicon (LCoS) display (Forth Dimension
Displays, SXGA-3DM) with 1280 × 1024 pixels. We divided the central area
(750 × 750 pixels) of the LCoS display into 5 × 5 regions (each with 150 × 150
pixels), which corresponded to the angular resolution (the number of views) of
5 × 5. The exposure time was set to 40 msec. Due to the hardware constraint,
the frame rate for the observed images was approximately 12 frames per second,
and the light field video was reconstructed with 6 frames per second.

The experimental setup and camera we used are illustrated in Fig. 9 (top-
left and top-center). The target scene consisted of three objects located on a
motorized turntable, which produced various scene motions. We used two sets of
aperture patterns corresponding to 2-S and 3-D (V-shape). The reconstruction
was carried out with the respective reconstruction networks. Some examples

6 For Marwah-1, only some of the frames were reconstructed due to heavy computa-
tion. It took approximately 20 hours to reconstruct a single light field.
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Fig. 9. Experiment using physical coded-aperture camera (see supplementary video)

of the reconstructed top-left views and EPIs are shown in Fig. 9 (bottom). The
result from 2-S seems quite poor; unnatural object edges and incorrect disparities
are noticeable. Our method exhibited fine reconstruction quality over all the
viewpoints over t. See the supplementary video for more details.

4 Conclusions

We developed a method of acquiring a dynamic light field through a coded
aperture camera, where the entire process of light field acquisition (including
the aperture patterns for the camera) is modeled as a deep CNN and opti-
mized through training on a large amount of light-field data. Our contribution
is twofold, both of which are indispensable to successfully handle a dynamic
light field. We first introduced a new configuration of image observation called
V-shape observation to help the CNN successfully separate the disparity infor-
mation from scene motions. We then constructed a dynamic light field dataset
(constructed from the static dataset with pseudo motions) to train the CNN,
which makes it more adaptable to dynamic scenes. To our knowledge, this is the
first work that achieves compressive acquisition of a dynamic light field based
on the concept of deep optics, which will inspire further development of compu-
tational cameras. Our future work will include extending the training dataset to
cover a larger amount of motions and exploring better network structures and
color-processing methods. Exploring other input configurations (with different
numbers of aperture patterns and observed images) would also be an interesting
direction.
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