Supplement of Spherical Feature Transform for Deep Metric Learning

Yuke Zhu¹, Yan Bai², and Yichen Wei¹

¹ MEGVII Inc. {zhuyuke, weiyichen}@megvii.com ² Tong Ji Unversity yan.bai@tongji.edu.cn

Proof of Proposition 1

Proposition 1. Suppose $N_1(\mu_1, \Sigma_1)$ and $N_2(\mu_2, \Sigma_2)$ are two Gaussian approximations of spherical distributions. If they are spherical-homoscedastic, then the rotation matrix between them is spanned by μ_1 and μ_2 .

Proof. From the Definition 2, the rotation matrix from N_1 to N_2 is **A** and is spanned by $\boldsymbol{\mu}_1$ and one eigenvector \mathbf{v}_1 of $\boldsymbol{\Sigma}_1$. Analogously, N_2 is also sphericalhomoscedastic with N_1 and the rotation matrix from N_2 to N_1 is \mathbf{A}^{-1} , which is spanned by $\boldsymbol{\mu}_2$ and one eigenvector \mathbf{v}_2 of $\boldsymbol{\Sigma}_2$. As **A** is orthogonal and the subspace for the *rotation transform* and its reverse is identical, the subspace spanned by $\{\boldsymbol{\mu}_1, \mathbf{v}_1\}$ and the subspace spanned by $\{\boldsymbol{\mu}_2, \mathbf{v}_2\}$ are exactly the same. As $\boldsymbol{\mu}_1$ and $\boldsymbol{\mu}_2$ are linearly independent, so the subspace is also spanned by $\{\boldsymbol{\mu}_1, \boldsymbol{\mu}_2\}$. \Box *Proof of Proposition 3*

Proposition 3. SFT degenerates to the *translation transform* iff for \forall feature **x** with **x** = $\mu + \sigma$, $\mu \perp \sigma$

Proof of Sufficiency. Suppose $\mathbf{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m}$ and $V = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ are two sets of basis for the two subspaces of $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}$ respectively. Let $\mathbf{Q} = \mathbf{V}\mathbf{V}^T$. \mathbf{Q} is the projection matrix of subspace \mathbf{V} . For any $\boldsymbol{\sigma}$ and any $\boldsymbol{\mu}$, the following relation holds:

$$\begin{aligned} \mathbf{Q}\boldsymbol{\sigma} &= \boldsymbol{\sigma} \\ \mathbf{Q}\boldsymbol{\mu} &= \mathbf{0} \end{aligned} \tag{1}$$

We use this relation to evaluate the SFT defined in Eq. 3, $\tilde{\mathbf{x}}_2 = \mathbf{A}\mathbf{x}_1$.

$$\tilde{\mathbf{x}}_2 = \mathbf{A}\mathbf{x}_1 = \mathbf{A}(\boldsymbol{\mu}_1 + \boldsymbol{\sigma}_1) = \mathbf{A}(\boldsymbol{\mu}_1 + \mathbf{Q}\boldsymbol{\sigma}_1) = \boldsymbol{\mu}_2 + \mathbf{A}\mathbf{Q}\boldsymbol{\sigma}_1.$$
(2)

We further use the calculation of matrix \mathbf{A} defined in Eq. 4 to evaluate the right part of the above expression.

$$\mathbf{AQ} = \mathbf{Q} + (\mathbf{n}_2 \mathbf{n}_1^T \mathbf{Q} - \mathbf{n}_1 \mathbf{n}_2^T \mathbf{Q}) \sin(\alpha) + (\mathbf{n}_1 \mathbf{n}_1^T \mathbf{Q} + \mathbf{n}_2 \mathbf{n}_2^T \mathbf{Q}) (\cos(\alpha) - 1),$$
(3)

As $\mathbf{n_1}$ and $\mathbf{n_2}$ used in Eq. 4 are calculated by linear combination of μ_1 and μ_2 , they are also projected to null space by \mathbf{Q} , which results in $\mathbf{AQ} = \mathbf{Q}$. Then Eq. 2 can further be written as:

$$\tilde{\mathbf{x}}_2 = \boldsymbol{\mu}_2 + \mathbf{A}\mathbf{Q}\boldsymbol{\sigma}_1 = \mathbf{x}_1 + \mathbf{Q}\boldsymbol{\sigma}_1 = \mathbf{x}_1 + \boldsymbol{\sigma}_1, \qquad (4)$$

which is just the translation transform. \Box Proof of Necessity. Suppose for $\forall \mathbf{x}_1 = \boldsymbol{\mu}_1 + \boldsymbol{\sigma}_1$ and any target class $\boldsymbol{\mu}_2$, the result of rotation transform is equivalent with the that of translation transform: $\mathbf{A}\mathbf{x}_1 = \boldsymbol{\mu}_2 + \boldsymbol{\sigma}_1$. We have $\mathbf{A}\mathbf{x}_1 = \mathbf{A}(\boldsymbol{\mu}_1 + \boldsymbol{\sigma}_1) = \boldsymbol{\mu}_2 + \mathbf{A}\boldsymbol{\sigma}_1$. So $\mathbf{A}\boldsymbol{\sigma}_1 = \boldsymbol{\sigma}_1$. It means that $\boldsymbol{\sigma}_1$ lies in the invariant subspace of \mathbf{A} . As \mathbf{A} is spanned by $\boldsymbol{\mu}_1$ and $\boldsymbol{\mu}_2, \, \boldsymbol{\sigma}_1 \perp \boldsymbol{\mu}_1, \, \boldsymbol{\sigma}_1 \perp \boldsymbol{\mu}_2$. As the degeneration happens for any $\boldsymbol{\sigma}$ and any $\boldsymbol{\mu}$, so $\boldsymbol{\mu} \perp \boldsymbol{\sigma}$ must be always hold.