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In this supplementary material, we first describe the implementation details
and more ablation studies for object detection regarding the macro-structure
of the detector search space, and the balance between width and depth of the
searched architectures (Section 1). We then provide the implementation details
for instance segmentation in Section 2, including the search and the training.
Lastly, Section 3 provides some details of the search space and search method for
image classification, as well as the results on the effect of decoupling RepShare.

1 Object Detection

1.1 Implementation Details

Architecture Search for the Subnetworks. The search takes 12.5k iterations with
batch size 4. The initial learning rate is 0.004 and divided by 10 at iteration
10k. The size of the input images are resized such that the short side is 416 and
the long side is less or equal to 693. The norm of the gradients are clipped to
20 to stabilize the search. During the search, we derive a discrete architecture
every 2.5k iterations. The search process is terminated when the current derived
architecture is the same as the previous one (i.e. 2.5k iterations before it). In
our experiments, we find that the search mostly terminates at 12.5k iterations
on VOC, and continuing the search does not change the derived architecture.
Meanwhile, Ltrain(w,α), which is also considered as an indicator of the search
process, flattens. Therefore, we use 12.5k iterations for all the experiments for
consistency. To balance the efficiency and consistency between the search and
detector retraining, we set M = 1 and c′ = 96 for the search. Notably, c = 256
is used for all the experiments in this work, including the search and training.

Object detector training. Once we obtain the derived architectures, we train
the whole detector on the MS-COCO train2017. For FCOS, we exactly follow
the training strategy as in [7] for different backbone networks, including input
image sizes, learning rate schedule and iterations. Similarly, the same training
strategy as in [5] is adopted for RetinaNet. All the FCOS detectors (including
vanilla and FAD) are trained using the improvements introduced in [7]. Note that
the centerness in FCOS is predicted based on the first cell group. For detector
training, we set M = 2 and c′ = 96, unless specified.
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Fig. 1. FAD with different channel sizes and number of repeated cells. When
channel size C varies, the number of repeated cells in the groups M is fixed to be 2;
whereas C is fixed to be 96 when M varies. Results are obtained on the MS-COCO
minival set, using ResNet-50 as the backbone.

1.2 More Ablation Studies on Object Detection

Ablation on the macro-structure of FAD. Searching and training a FAD with two
parallel groups for classification and box regression (i.e. similar to RetinaNet [5]
and FCOS [7]) achieve 40.0 AP, which is 0.3 lower than the sequential-group
design in the main paper. We also experiment with the sequential groups in
reverse order, i.e. classification is performed after the first group and regression
after the second. This results in a drop of 0.1 AP. Therefore, the design of the
macro-structure brings much smaller improvements comparing to the proposed
search method.

Channel size and the number of cells. The capacity of the derived architecture
searched by FAD can vary in two directions: the channel size c′ in the transfor-
mation blocks and the number of repeated cells M in both groups. For a better
understanding on their effects, we take FAD on FCOS with ResNet-50 [2] as a
base model and vary c′ and M . Figure 1 shows the performance trend of both di-
rections. The two curves grow fast at the beginning and then increase in a slower
pace, as we expect. Nevertheless, all the FAD models outperform FCOS. As the
model with M = 2 has the best trade-off between performance and model size,
we fix M = 2 throughout the object detection experiments in the main paper.

2 Implementation Details for Instance Segmentation

Architecture search for the mask head. The search is performed using Mask
R-CNN [1] on the MS-COCO train2017 set, which is randomly split into two
halves: one for optimizing the architecture α and the other for learning the
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Table 1. Ablation on the decoupling. Test error (lower is better) on CIFAR-10.
Shared Trans. refers to the transformations that correspond to the shared representa-
tions (i.e. t1 and t2 in Figure 2 in the main paper), and Other Trans. denotes the t3 to
t5.

Method Decouple
Shared Trans. Other Trans. Params Test Error

(%) (%) (M) (%)

w/o RepShare - 87.1 12.9 3.3 2.93± 0.11

w RepShare
7 30.0 70.0 3.8 3.15± 0.12
3 85.7 14.3 3.2 2.98± 0.08

network weights w. We set M , c′ and c to be 1, 64 and 256, respectively. The
search takes 180k iterations, with an initial learning rate of 0.02 and decreased
by 10 at the 120k and 160k iteration. The weight decay is 0.00001. The rest of
search details are the same as object detector search. The search for mask head
architecture requires 2.6 GPU-days. We use the same strategy as that for object
detectors to derive the searched architecture.

Segmentation network training. For training Mask FAD with the searched archi-
tecture, we exactly follow [1]. For a fair comparison, we set M = 2 and c′ = 96,
which results in a similar capacity of Mask R-CNN. We also transfer the searched
architecture to a more recent segmentation network, Mask Scoring R-CNN [3]
(MS R-CNN). The same training scheme as in [3] is adopted for MS FAD.

3 Image Classification

To further demonstrate the effectiveness of decoupling the transformations from
the shared representations, we conduct ablation study on CIFAR-10 [4].

3.1 Search Space and Search Method

We follow the experimental details in [6], but with a different search space. For
normal cells, the candidate operations are t1 to t5, while the reduction cell only
has two options: max/avg-pooling. ‘Skip-connect’ is included to both cells. Note
that the goal of the experiments is not to search for better architectures for image
classification. Instead, by constructing this simpler and smaller search space, we
can illustrate the decoupling effect more clearly. To reduce the variance, we
search for 4 architectures with or without the decoupling, and train for 5 runs
each.

3.2 Results and Discussion

Table 1 reports the percentage of two groups of transformations being chosen in
the derived architectures and the mean error with standard deviation. With the
decoupling, t1 and t2 are more likely to appear after the derivation, since they
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are no longer strictly tied to the shared representations. More importantly, the
performance is better with the decoupling. We see that the coupling effect harms
the search quality for image classification but not much for object detection and
instance segmentation. We think that it is because t1 and t2 are not as favored
in those two tasks as in image classification, since the two tasks benefit more
from the combination of larger RFs.
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