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Abstract. Scene Graph, as a vital tool to bridge the gap between lan-
guage domain and image domain, has been widely adopted in the cross-
modality task like VQA. In this paper, we propose a new method to edit
the scene graph according to the user instructions, which has never been
explored. To be specific, in order to learn editing scene graphs as the
semantics given by texts, we propose a Graph Edit Distance Reward,
which is based on the Policy Gradient and Graph Matching algorithm,
to optimize neural symbolic model. In the context of text-editing image
retrieval, we validate the effectiveness of our method in CSS and CRIR
dataset. Besides, CRIR is a new synthetic dataset generated by us, which
we will publish soon for future use.
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1 Introduction

Nowadays, in our daily life, more and more people have grown accustomed to
typing in texts to obtain images from search engine. However, if they are not
satisfied with searching results or they would like to modify the previous results,
the only thing they can do is altering the language, then searching again. If users
can provide their instructions about how to edit the searching results, it will be
more than convenient for them to retrieve satisfied images. Figure 1 shows the
simulation of such a scenario in the synthetic dataset. Vo et al. [27] firstly propose
this text-editing image retrieval task, where the input query is composed by an
input image I,py+ and an input text Tj;,py¢, describing the desired modifications
of Iipnput- Here, Tiypy can be viewed as user instructions and I,y can be viewed
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Fig. 1. Examples about cross-modal image retrieval. Given a query image and a query
text describing the modification to the query image, we expect to edit the scene graph
of the query image then retrieve a target image from database.

as the unsatisfactory image. We believe it is a superb platform for simulating
the cross-modal task in real life.

Teaching machines to comprehend interaction between language and vision
is an essential step for solving the Text+Image problem. There are some visual
question answering(VQA [2,11]) systems [12,31] succeeding in crossing modal-
ities by reasoning over Scene Graphs [13] following the semantics given by the
texts, which proves Scene Graphs can bridge the gap between vision and lan-
guage. Some image captioning models [19,30] also adopted Scene Graphs and
achieves good results, demonstrating that Scene Graphs are a fantastic repre-
sentation of image scenes. We represent our scene by Scene Graph owing to
the advantages of Scene Graphs. In this way, we transform the image editing
problem into Scene Graph editing problem.

Due to the booming of computation resources, “old school” symbolic mod-
els lose its position from the competition with numeric model [20], which need
less human intervening. However, it is undeniable that symbolism has one se-
cret weapon, neat representation, which the high dimensional numeric does not
possess. Recently, utilizing the advantage of symbolism, Yi et al. [31] propose ap-
plying neural symbolic model on CLEVR, [11] with fully transparent reasoning.
In details, firstly they use a scene parser to derender the scenes from images.
Then they train a seq2seq program generator to predict the latent program
from a question. Finally, their program executor will execute these predicted
programs over symbolic scene representations to produce answer. Motivated by
their model’s neat representations and fully explainable characteristics, we em-
ploy it to parse the user instructions. We design a Scene Graph Generation
Engine to parse each image into a symbolic scene graph, whose nodes represent
the objects while edges represent the relation between nodes. We also design a
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Fig. 2. Model Overview. The intact query text is “remove big cube to the right of
purple object”. The intact Predicted Program is “remove”, “filter_size[large]”, “fil-
ter_shape[cube]”, “relate[right]”, “filter_color[purple]”. Because the query text is longer
than the predicted program, our Program Generator will pad “NULL” program to fix
the length inconsistency.

module to edit the scene graph. After that, the retrieval problem can be con-
verted to a graph matching problem [5], which has low combinatorial space due
to the symbolic representation.

We notice that REINFORCE [29] algorithm applied to finetune the Neural
Symbolic Model [31] is the most vital part in achieving marvelous results. Fol-
lowing Johnson et al. [12], Yi et al. apply 0, 1 reward to finetune their program
generator. This reward, however, is quite coarse if applying to our task. To be
specific, only when exact matching [5] happens, which means all the nodes and
all the edges in two generated symbolic scene graphs(one is generated from query
image, another is generated from target image) matching, it is set to 1. To re-
fine it, we propose applying Graph Edit Distance [23] based reward, which can
optimize our model better.

In our experiment, we discover the CSS dataset [27] is simple because it has
plenty of exact location information. To validate our model’s efficacy further,
we follow CLEVR’s [11] generation process and generate our own Complex Rea-
soning Image Retrieval, called CRIR, which contains multi-hop queries thus the
scene graphs are hard to be accurately edited. Moreover, our dataset breaks the
constraints of exact location so it is more close to the real world scenes.

To summarize, our contributions are:

— We propose a GED reward to explore editing the scene graph with user
instruction in the context of text-editing image retrieval. We refine the pre-
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Fig. 3. (a) Image database scale — CRIR vs. CSS. (b) CSS only has zero-hop query.
CRIR has 5 different types of queries. (¢) Query Text Scale — CRIR vs. CSS. In CSS
dataset, both training set and testing set contain 6k queries, while in CRIR dataset,
both training set and testing set have 4.5k queries in each type of templates, totally
22.5k queries. (d) Query text type details. CRIR eliminates the dataset bias, each
template generating the same number of queries.

vious neural symbolic model aiming at VQA and make it suitable for our
cross-modal image retrieval task. To the best of our knowledge, we are the
first to propose editing the scene graph.

— We propose a new dataset, CRIR, which contains abundant complex queries
with full annotations of images. The dataset breaks the constraints of exact
location in CSS [27], which can be used to validate the generalization ability
of our model and simulate the real-world image retrieval scene better.

— Based on the policy gradient algorithm [29], we propose Graph Edit Dis-
tance(GED) reward to finetune our model as well as apply GED as retrieval
metric, making it learn to edit scene graphs better. In the context of text-
editing image retrieval task, we validate the efficacy of our model. Notably,
we achieves new state-of-the-art performance on both CRIR and CSS [27],
surpassing the previous methods by large margins.

2 Related Work

Image Retrieval. Conventional image retrieval [15] is a task to retrieve the
most similar image to the query image from database, which is also viewed
as image to image matching problem. In recent year, with much stronger im-
age feature extractor [7,26], conventional image retrieval has also made a huge
progress [3,6,16] and has been extended to different real-world scenes like face
retrieval. [18,25].

Johnson et al. [13] first proposed cross-modality image retrieval. The task can
be defined as given a text Tj,py¢, the model should retrieve an image I;4,ge¢ Which
is the most relevant to the Tj;,;,¢. They also give the definition of scene graph and
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use it to represent the content of the scene, which builds a bridge between image
domain and text domain. What’s more, cross-modality image retrieval is also
extended to real-world scenes such as recipe to food image retrieval where the
input query is recipe, food image to recipe retrieval, using deep metric learning
method [28].
Visual Question Answering. Visual Question Answering [2] requires model
to answer question given by text based on the input image. Solving this problem
is a vital step to cross the modalities between language and vision.

Recently, Johnson et al. [11] utilize Blender to render images and they obtain
a synthetic, virtual, and diagnostic dataset named CLEVR with full annotations
of objects, such as 3D coordinates, size, shape, color, material, etc. The low cost
of rendering virtual datasets allows for the appearance of CLEVR based datasets.
For instance, Liu et al. [17] refine the CLEVR program generation engine and
propose CLEVR-REF+ for referring expression task. They also modify the ren-
dering engine which generates images with segments and bounding box infor-
mation. There are also some real-world VQA datasets like VQA v1.0, v2.0 [2]
and GQA [10], etc. Though the annotations cost is high, they provide a more
realistic platform for validating the methods.
Neural Module Network. NMN is firstly proposed by Andreas et al. [1].
They parsed the natural language sentences into programs and applied it to
instantiate different neural modules, then executing them to obtain the answer.
Following their work, Johnson et al. [12] and Hu et al. [9] extend the Neural
Module Network to the CLEVR dataset. But their neural modules are numeric
one with executing programs and reasoning on high dimensional features. Yi
et al. [31] propose symbolic module network to execute programs over symbolic
scenes generated by scene parser achieving new state-of-the-art result in CLEVR,
99.9%. Due to the efficacy of their model, we adapt them to text-editing image
retrieval task.

3 Method

In section 3.1, we introduce our model. In section 3.2, we give the definition
of Graph Edit Distance. In section 3.3, we introduce policy gradient with new
method we proposed to estimate the gradient in this task.

3.1 Owur Model

Figure 2 shows the overview of our model. Our model is adapted from neural
symbolic reasoning model in [31]. The first step to train our model is super-
vised training separately on both Scene Graph Generation Engine (SGGE) and
Program Generator (PG) with Images and small number of ground truth latent
programs(We provide the training details in Section 5.1 and 5.2 ). In finetuning,
the input of our model contains Tj,pyt and Iippy:. From SGGE, We obtain the
symbolic scene graph of the I;yp,: while the latent program can be parsed by
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Fig. 4. A scene graph editing case in CSS dataset. CSS Scene Graph does not have any
edges. So Modifying Engine just reason over nodes. In final remove program, we keep
structure of the scene graph by just substituting the attribute values in operation. Red
nodes in ME means attended nodes. Minimum GED means the minimum Graph Edit
Distance between Modified Scene Graph and other Scene Graphs in CSS.
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PG. The output of PG will be put into Modifying Engine (ME) with the gener-
ated scene graph. Then ME will execute programs sequentially and output the
modified scene graph. Finally, the modified scene graph is compared with the
target scene graph, which is generated from target image by the same SGGE,
in Graph Edit Distance metric. After the computation of GED, the GED based
reward can be backpropagated to finetune the PG.

The details about three main components, Scene Graph Generation Engine,
Program Generator, Modifying Engine show as follows:

Scene Graph Generation Engine. We use SGGE to obtain the 3D co-
ordinates with attribute values, including shape, size, color, material, for each
objects in the image. In detail, Mask R-CNN is applied to generate segment
proposals of each object in the image. Then we input the segment of each object
with original image, resized to 224 by 224, into a Resnet-34 [8] to predict 3D
coordinates.

Program Generator. The program generator follows the language model
proposed by [31] which is improved version of [12] with attention. It is a seq2seq
model. We set the dimension of input word vector to 300, 2 hidden layers in
both encoder and decoder to 256 dimension. As the Figure 2 shows, we return
a reward from the final part to finetune our program generator. Because the
Modifying Engine (ME) execution part is symbolic, the gradient stream will
be cut down there, which means the model is undifferentiable when entering
ME. Therefore, we exploit small number of ground truth programs to pretrain
our PG, then using GED reward to finetune it. Because training and finetuning
details are different in different datasets, we will elaborate them in Experiment
(Section 5).
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Modifying Engine. The modifying engine will execute programs predicted
by program generator over symbolic scene graphs. Thanks to the neat represen-
tation of symbolic representation, the reasoning and modifying operations over
symbolic scene graphs are fully transparent and make our image retrieval pro-
cess explainable. We adopt different modifying engines in two experiments. The
details about 2 modifying engines show in Section 5.1 and 5.2. We implement our
Modifying Engine as a set of modules in Python. Each program has one counter-
part module in ME. The programs will first be converted to the corresponding
modules and then be executed in Modifying Engine sequentially.

3.2 Graph Edit Distance.

Graph Edit Distance(GED) is a graph matching [5] approach first proposed

by Sanfeliu et al. [23]. The concept of GED is finding the optimal set of edit

operation which can transform Graph G into Graph Gs.

Definitionl. (Graph G)

A graph G can be represented by a 3-tuple (V,«, ), such that: V is a set of

nodes. « : V. — L is the node labeling function. 8 : V x V — L is the edge

labeling function.

Definition2. (Graph Isomorphism)

A graph isomorphism between G; = (Vi,aq,81) and Gy = (Va,a9,(2) is a

bijective mapping f : Vi — V5 such that a1(x) = a(f(z)) for all z € V; and

Bi((x,9)) = Ba((f(x), f(y))) for all (z,y) € Vi x VA

Definition3. (Common Subgraph)

Let G| C Gy and G C G, if there exists a graph isomorphism between G and
5, both G} and G will be called a common subgraph of G and Ga. Moreover,

a graph G is called a maximum common subgraph of G; and G5 if G is a common

subgraph of G; and G5 and there exists no other common subgraph of G; and

G5 that has more nodes than G.

Definition4. (error-correcting graph matching)

An error-correcting graph matching from G; to G2 is a bijective function f :

Vl — VQ where Vl C V4 and VQ C V.

Definition5. (Graph Edit Distance)

Let G1 = (W1, a1, B1), G2 = (Va, g, B2) be two graphs, the GED between these

2 graphs is defined as

k
GED(G1,G5) =  min " > ele), (1)

€1, ,ex €Y =1

where f is an error-correcting graph matching f : Vi — Vs from Graph G; to
Graph G5 and ¢ denotes the cost function measuring the strength c(e;) of an
edit operation e; and v(f) denotes the set of edit paths transforming G into
G>. Insertions, deletions, and substitutions of both edges and nodes are 4 types
of edit operations allowed. Thus, the right part of equation 1 can be denoted
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as [4] )

min c(e;) = min Cnalx)+
e1,~-,6kev(G’1,G2)Z ( ) < Z d()

=1 JJGVl—V1 (2)

> i@+ D ensl@) + Y Ces(e))7

z€Va—Vs zeVy ecE,

where c¢,q(x) is the cost of deleting a node z € V; — V; from Gj. cni(z) is the
cost of inserting a node z € Vo — Vs in Go, cns(z) is the cost of inserting a
node z € V; by f(z) € ‘72, and ces(e) is the cost substituting a node x € Vi by
f(x) € Va and c.s(e) is the cost of substituting an egde e = (,y) € Vi x V; by
e =(f(z), fly)) € Vo x Va. The cost of 4 operations are hyperparameter in our
model. In experiment part5, we will show the best hyperparameters in different
datasets.

We follow the widely used quick GED computation algorithm proposed by
Riesen et al. [22] which is referred to as A*GED to compute GED in our paper.

3.3 Policy Gradient 4+ GED reward

In Reinforcement Learning, unlike the image classification and segmentation, the
problems are usually undifferentiable with high-dimensional discrete states and
learning (state, action) pair is very hard. However, the policy, such as make a
robot move left or kick a ball, is easier to learn. Thus, we can formally define
a class of parametrized policies as IT = {mp,0 € R™}. And for each policy, the
value is defined as equation 3, where r; is the reward in the time step t, 4! is
the attenuation coefficient in the time step t.

J(O) =E | D y'rilmo (3)
t>0

Our goal is to find the optimal policy 6* = argmaxy J(#). And one of simple
algorithms to solve this problem is REINFORCE [29] which applies gradient
ascent to optimize the parameter 6. The expected future reward can be written

as J(@) = ETNp(T;@) [T(T)]
= /r(r)p(r; 0)dr,

where the p(7; 0) is the probability of trajectory 7 in sampling. And by differen-
tiating the equation 4, we can obtain:

(4)

VoJ(0) :/T(T)VHP(T;G)dT. (5)

Vop(7;0) in equation 5 can be rewritten as
Vop(7;0)

Vop(;0) = p(7;0) e

= p(7;0)Vglogp(T;0). (6)
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Fig. 5. A scene graph editing case in CRIR dataset. ME is Modifying Engine. PG is
Program Generator. SGGE is Scene Graph Generation Engine. Symbolic Reasoning
over CRIR scene graphs need utilizing edge information, as shows in “Relate” program
reasoning part. Here, we display the reasoning details of ME. The reasoning process in
CRIR is more complex than in CSS.

Finally, we can estimate J(6) as equation 6:

VoJ(0) ~ Z r(T)Vologmg (ar|s:), (7)

t>0

where s; is the state in time step t.

As previously state in Section 1, the simple 0, 1 reward is coarse in our task.
Thanks to the graph matching algorithm, we have a better measurement about
the similarity of 2 graphs. To measure the reward after a number of programs
executing in Modifying Engine better, we propose a new reward (See equation
8) combining Graph Edit Distance with policy gradient algorithm named GED
reward. In experiment, we will validate the efficacy of this reward when it is
applied to finetune our program generator.

reward =1— GED. (8)

4 CRIR Dataset

After exploring the Color, Shape, Size(CSS) [27] dataset carefully, we find it
just adopt one simplest kind of template, zero-hop, in CLEVR'’s [11] template
universe, which means it does not need any reasoning process before editing the
scene graphs. Thus, inheriting the CLEVR template universe, we generate more
complex reasoning dataset called CRIR to validate the reasoning and general-
ization ability of our model.
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Our dataset generation can be split into 2 parts, image generation and query
text generation, which will be discussed in section 4.1 and section 4.2 respectively.

4.1 Image Generation

Firstly, we select 3k images from CSS [27] Dataset, which should have at least
4 objects in the scenes. Then we add material information to these objects,
which means randomly choosing the metal or rubber for the object. According
to the query answer (generation process is explained in section 4.2), we modify
the scene files in CSS. Then following the image generation engine provided by
Liu [17] et al., we create our own image database, which contains 26k images
in the training set and 26k images in the testing set. The image database is
larger than the previous CSS image database, we show details in Figure 3a. Our
objects contain 4-dimension information, color, shape, size, material, comparing
to 3-dimension in CSS.

4.2 Query Generation

The queries’ generation can be summarized as follows:

1. We add 3 types of programs, add, remove and make, to the CLEVR-
programs universe. Make programs are combined with a value chosen from 4
attributes, shape, color, material and size. For instance, in the query text “make
yellow sphere in front of green cube small”, the program is “make[small]”.

2. We inherit the CLEVR templates and throw away the templates that are
unsuitable for retrieval queries. Specifically, we select 5 templates from CLEVR
[11]: Zere Hop, One Hop, Two Hop, Three Hop, Single And, which are suitable
for generating our image retrieval text queries.

3. We modify the CLEVR question generation engine, whose original output
is the answer in CLEVR answer set. To be specific, we force our engine to output
the objects’ indices which need to be modified with the text query suitable for
this task, unlike the questions in CLEVR. Firstly, we generate remove, make
queries and maintain the number of remove queries 2 times more than make
queries. Then we use these queries to change the image scenes according to the
remove or make type and objects’ indices. After that, we apply these scenes to
render new images. For add query generation, we compare the original scene
with the generated scene one by one, if it reduces one object, we put it to an
addition candidate list. After that, we randomly choose pairs from the list then
change query type from add to remove and convert the Iigrget t0 Linpyt until the
number of add query text is equal to the remove query text. Finally, we obtain
22.5k queries in training set and 22.5k queries in testing set.

Results. We compare CRIR dataset with CSS dataset which shows in Figure
3. To conclude, CRIR’s image database is larger than CSS, Figure 3a. CRIR’s
query text is more versatile than CSS’s, Figure 3b. Additionally, CRIR’s scale
in query texts is larger than CSS’s, Figure 3c. In Figure 3d, we show the details
about the types of query text in CRIR. All these perspectives above demonstrate
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Method ImageO TextO Concate MRN [14] Relat [24] FiLM [21] TIRG [27] Ours

Add 0.1 0.1 73.6 72.9 4.7 75.9 83.6  99.7
Remove 0.2 0.1 45.3 42.8 49.8 52.3 64.3  99.8
Make 9.1 0.1 63.2 64.6 61.8 68.6 73.3  99.9
Overall 6.3 0.1 60.6 60.1 62.1 65.6 73.7  99.8

Table 1. Quantitative results in CSS. The retrieval metric is Recall at rank 1. ImageO
and TextO means Image Only and Text Only, respectively. Concate is a method just
concatenating language feature and image feature without other processing. As show
above, our model with GED reward surpasses all other models by large margins in all
three types of queries.

we generate a more complex reasoning and hard-to-edit dataset for text-editing
image retrieval task.

5 Experiment

To display the effectiveness of our model on editing the scene graphs, we carry
out experiments on CSS and CRIR. Our measurement is set to recall at rank 1
in order to better compare with other methods.

5.1 Experiment on CSS Dataset

Because nearly 85% percent query texts in CSS dataset has exact location word,
we create exact location program for this dataset, such as “Location[B-L]” pro-
gram in Figure 4, which can attend the object at Bottom-Left grid. The location
boundaries used to split the 3 by 3 grids are (-0.99, 0.86) horizontally and (-0.47,
2.35) vertically. In CSS training, we randomly select 30 text queries (add, re-
move, make, each 10) and annotate them for pretraining our program generator,
with learning rate 6 x 10™%, 12000 iterations, and batch size 64. Especially, in
CSS, we keep the structure of Scene Graph when ME executing programs to
modify it. We show an example of ME’s reasoning details in Figure 4.

In Modifying Engine, we inherit programs which have prefix filter from
CLEVR and create corresponding modules for them. Here we list some special
programs outside CLEVR-programs universe and its corresponding modules’
operation details, which shows as follows:

Location Modules. Location modules are instantiated from location pro-
grams and they will select the exact location like “Top-Left” for operating mod-
ification later on. There are totally 9 different location modules corresponding
to 3 by 3 grids.

Remove, Add, Make Modules. According to the start word of the query
text we can obtain Remove, Add, or Make programs to instantiate modules and
execute operations over structural scene graph. All these three types of modules
will be executed last. We also create 2 reasoning modes, “normal” and “add”.
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Mode “normal” is created for Remove and Make modules while mode “add” for
Add module. Remove module is applied to change every attribute value of the
attended nodes into NULL while Make modules change the specific attribute that
attended by the previous modules. But in Add type queries, some attributes will
not be assigned value, for example, in query text “Add small cube to the top-
left”, the color information is not assigned. Thus we create value 1 for these
unassigned attributes when modifying the node in Add. In Graph Edit Distance
[23] computation, value 1 can match any value except NULL.

Graph Edit Distance in CSS. In the CSS settings, scene graphs are struc-
tural and each graph has 9 nodes with rigid location. Thus in equation 2, only
substituting cost exists. The Graph Edit Distance [23] computation can be sim-
plified as:

GED = min ( Z Cns(T)). 9)

z€V1

For every node having 3 attributes, we set the cost of substituting every attribute
to 1/3 and force the reward to be 0 if GED between 2 graphs is larger than 1. In
the testing, we apply graph edit distance as our retrieval metric. If GED of two
pairs’ graphs happen to be the same, we will randomly choose one as our target
image. We return this reward to finetune the program generator with 50,000
iterations and early-stopping strategy. Batch size is fixed to 64 in finetuning.

Results and Analysis. As table 1 shows, our model achieves state-of-the-art
result and surpass the previous baseline model TIRG [27] drastically no matter
in which query text type. Additionally, We give an example in CSS and display
our symbolic model’s transparent and powerful reasoning ability in Figure 4.
The results and the visualization prove our method’s effectiveness on editing
symbolic scene graph according to the instructions.

One biggest problem in CSS is that if our model predicts the correct loca-
tion program, it will attend to the correct object because of the exact location
information text provided. Besides, all queries in CSS are Zero Hop, which does
not need any edge information for reasoning. Only through attribute filter or
location programs can the model attend to correct nodes. Therefore, we propose
a more complex dataset to validate our model’s reasoning ability: 1. To simulate
the real-world scene, the dataset should just provide the relational location in-
formation, not exact locations. 2. The dataset should also contain more complex
queries, not just Zero Hop. Aiming at this, we generate CRIR. Details can be
referred to Section 4.2.

5.2 Experiment on CRIR Dataset

In CRIR dataset, we remove the location programs to simulate a more realistic
situation. Though we can still generate the structural scene graph shown as
Figure 4, we consider that 3 by 3 grid structural scene graph is a special case in
the real world. Therefore, we cancel this rigid location and generate relational
scene graphs for the images in the CRIR dataset then editing relational scene
graphs. In training procedure, we randomly select 300 programs (add, remove,
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Model Zero_Hop One_Hop Two_Hop Three_Hop Single_And Overall

Concatenate 45.1 25.2 16.7 3.7 15.8 21.3
MRN [14] 44.8 28.3 19.4 3.5 19.6 23.1
Relat [24] 51.9 28.2 21.3 4.0 18.1 24.7
FiLM [21] 50.2 28.1 21.1 3.6 16.3 23.9
TIRG [27] 53.8 29.6 22.9 4.8 19.4 26.1
0,1 Reward 95.9 95.4 95.8 95.3 94.5 95.4

GED Reward 99.0 98.4 98.2 97.9 98.4 98.4

Table 2. Quantitative results in CRIR. The retrieval metric is Recall at rank 1. We
adapt Vo’s [27] code to train TIRG and Concat models in CRIR. 0, 1 means applying
0, 1 reward to finetune our model. GED means applying GED reward to optimize our
model. In particular, our model with GED reward optimizing surpass all the other
models in every type of query.

make type each 100 programs) to pretrain our program generator with 16,000
iterations and 7 x 10~* learning rate. Add, Remove modules in CRIR settings are
different from CSS. To illustrate, Add module in CRIR Modifying Engine will
add a pseudo node to the scene graph, unlike Add module in CSS just changing
the attended node. We give an instance here. Assuming the query text is “Add
red large sphere to the left of large yellow cylinder”, our Modifying Engine will
execute Add module to create one pseudo node. The pseudo node will create edges
linking to all other nodes in scene graphs. Then if PG outputs “Relate[left]”
program, it will assign edge linking to the “large yellow cylinder” Left value.
For Remove module, unlike the example shows in Figure 4 just changing the
attributes to NULL, in CRIR, Remove module will remove the attended objects
and all the edges of the nodes as example shows in Figure 5.

Graph Edit Distance in CRIR. We apply graph edit distance to finetune
our program generator. Unlike the graph edit distance in CSS dataset without
edge information, in this part, our graph edit distance has all costs (four parts)
in equation 2. And we set the cost of inserting a node to 1, the cost of deleting to
1, substituting an attribute value to 1/4, and substituting an edge to 1/16. We
only return the positive reward and force negative reward to 0. We return this
reward to finetune PG with 60, 000 iterations, early-stopping training strategy
and batch size is fixed to 64.

Results and Analysis. We provide the quantitative results in table 2. As
it shows, our model can still maintain high-level performance in all five types
of queries while TIRG [27] and Concat models drop its performance on CRIR
drastically. Zero Hop is the easiest type query text so all the model achieve
its best performance on this type of query text. From table 2, we also discover
that Three Hop is so complicated that TIRG and Concat model can not learn
this type of query text well, but our models are able to comprehend this type
of queries. Notably, Our GED reward is more efficient than simple 0, 1 reward
according to the last 2 columns of table 2. The performance of our model with
GED reward surpasses all other models in all types of queries, which proves
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Query Image

Ours

Query Text: make shiny object on
the right side of the tiny cyan sphere
in front of the red object large

(@

Fig. 6. The qualitative results in CRIR. (a) represents the input query while (b) is the
retrieval results by applying our model (with GED reward optimizing) and TIRG [27]

the GED reward is a precise measurement of the final modified graph to the
target graph. We also show one case of our model’s (optimized by GED reward)
symbolic reasoning insight in Figure 5.

We compare the performance of feature combination model and ours quali-
tatively and show a case in Figure 6. As case shows, the TIRG [27] just retrieve
the image with similar objects while our scene-graph-editing based model can
understand the true meaning of this text and retrieve the correct image in CRIR
dataset. In conclusion, our model has more powerful generalization ability than
TIRG [27].

6 Conclusion

In this paper, we have proposed a GED reward for learning to edit scene graph
in the context of text-editing image retrieval. By exploiting CLEVR toolkit, we
generate a Complex Reasoning Image Retrieval dataset, simulating a harder case
of editing. To the best of our knowledge, we are the first to apply Graph Edit
Distance as retrieval metric. Furthermore, we validate our model on both CSS
and CRIR dataset and achieve nearly perfect results, surpassing other models
by large margins, proving the effectiveness of editing scene graphs in the context
of text-editing image retrieval. However, our model still need prior information
like the annotations of some latent programs to pretrain the PG. We expect our
machine can own the reasoning ability without using any prior information in
the future.
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