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Abstract. Generating a new font library is a very labor-intensive and
time-consuming job for glyph-rich scripts. Despite the remarkable suc-
cess of existing font generation methods, they have significant drawbacks;
they require a large number of reference images to generate a new font
set, or they fail to capture detailed styles with only a few samples. In this
paper, we focus on compositional scripts, a widely used letter system in
the world, where each glyph can be decomposed by several components.
By utilizing the compositionality of compositional scripts, we propose a
novel font generation framework, named Dual Memory-augmented Font
Generation Network (DM-Font), which enables us to generate a high-
quality font library with only a few samples. We employ memory com-
ponents and global-context awareness in the generator to take advantage
of the compositionality. In the experiments on Korean-handwriting fonts
and Thai-printing fonts, we observe that our method generates a signif-
icantly better quality of samples with faithful stylization compared to
the state-of-the-art generation methods quantitatively and qualitatively.
Source code is available at https://github.com/clovaai/dmfont.

1 Introduction

Advances of web technology lead people to consume a massive amount of texts
on the web. It makes designing a new font style, e.g., personalized handwriting,
critical. However, because traditional methods to make a font library heavily rely
on expert designers by manually designing each glyph, creating a font library is
extremely expensive and labor-intensive for glyph-rich scripts such as Chinese
(more than 50,000 glyphs), Korean (11,172 glyphs), or Thai (11,088 glyphs) [11].

Recently, end-to-end font generation methods [1,16,17,26,5,4] have been pro-
posed to build a font set without human experts. The methods solve image-to-
image translation tasks between various font styles based on generative adversar-
ial networks (GANs) [10]. While the methods have shown the remarkable achieve-
ment, they still require a large number of samples, e.g., 775 samples [16,17] to
generate a new font set. Moreover, they require additional training to create a
new glyph set, i.e., they need to finetune the pretrained model on the given
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Fig. 1: Few-shot font generation results. While previous few-shot font gen-
eration methods (AGIS [8], FUNIT [23], and EMD [35]) are failed to generate
unseen font, our model successfully transfer the font style and details.

new glyph subset. Thus, these finetune-based methods are rarely practical if
collecting the target glyphs is extremely expensive, e.g., human handwriting.

Several recent studies attempt to generate a font set without additional train-
ing with a large number of glyphs, but using only a few samples [2,31,35,8,30].
Despite their successful few-shot generation performances on training styles, ex-
isting few-shot font generation methods often fail to generate high-quality font
library with unseen style few-shot samples as illustrated in Figure 1. We solve
this problem using the inherent glyph characteristics in contrast to most of the
previous works handling the problem in the end-to-end data-driven manner with-
out any human prior. A few researchers have considered characteristics of glyphs
to improve font generation methods [31,17], but their approaches are either still
requiring more than 700 samples [17], or only designed for memory efficiency [31].

In this paper, we focus on a famous family of scripts, called compositional

scripts, which are composed of a combination of sub-glyphs or components. For
example, the Korean script has 11,172 valid glyphs with only 68 components.
One can build a full font library by designing only 68 sub-glyphs and combine
them by the pre-defined rule. However, this rule-based method has a significant
limitation; a sub-glyph changes its shape and position diversely depending on
the combination, as shown in Figure 2. Hence, even if a user has a complete
sub-glyphs, generating a full font set is impossible without the combination rule
of components. Due to the limitations, compositional scripts have been manually
designed for each glyph despite its compositionality [11].

Our framework for the few-shot font generation, Dual Memory-augmented
Font Generation Network (DM-Font), utilizes the compositionality supervision
in the weakly-supervised manner, i.e., no component-wise bounding box or mask
is required but only component labels are required, resulting on more efficient
and effective generation. We employ the dual memory structure (persistent mem-

ory and dynamic memory) to efficiently capture the global glyph structure and
the local component-wise styles, respectively. This strategy enables us to gener-
ate a new high-quality font library with only a few samples, e.g., 28 samples and
44 samples for Korean and Thai, respectively. In the experiments, the generated
Korean and Thai fonts show both quantitatively better visual quality in various
metrics and qualitatively being preferred in the user study.
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2 Related Works

2.1 Few-shot image-to-image translation

Image-to-image (I2I) translation [15,36,6,19,7] aims to learn the mapping be-
tween different domains. This mapping preserves the content in the source do-
main while changing the style as the target domain. Mainstream I2I translation
methods assume an abundance of target training samples which is impractical.
To deal with more realistic scenarios where the target samples are scarce, few-
shot I2I translation works appeared recently [23]. These methods can be directly
applied to the font generation task as a translation task between the reference
font and target font. We compare our method with FUNIT [23].

As an independent line of research, style transfer methods [9,20,14,25,21,32]
have been proposed to transfer styles of an unseen reference while preserving
the original content. Unlike I2I translation tasks, style transfer methods cannot
be directly transformed to font generation tasks, because they usually define
the style as the set of textures and colors. However, in font generation tasks,
the style of font is usually defined as discriminative local property of the font.
Hence, our work does not concern style transfer methods as our baseline.

2.2 Automatic font generation

Automatic font generation task is an I2I translation between different font do-
mains, i.e., styles. We categorize the automatic font generation methods into
two classes, which are many-shot and few-shot methods, according to way to
generate a new font set. Many-shot methods [1,16,26,5,4,17] directly finetune
the model on the target font set with a large number of samples, e.g., 775. It is
impractical in many real-world scenarios when collecting new glyphs is costly,
e.g., handwriting.

In contrast, few-shot font generation methods [35,30,2,8,31] does not require
additional finetuning and a large number of reference images. However, the ex-
isting few-shot methods have significant drawbacks. For example, some methods
generate a whole font set at single forward path [2,30]. Hence, they require a
huge model capacity and cannot be applied to glyph-rich scripts but scripts
with only a few glyphs, e.g., Latin alphabet. On the other hand, EMD [35] and
AGIS-Net [8] can be applied to any general scripts, but they show worse syn-
thesizing quality to unseen style fonts, as observed in our experimental results.
SA-VAE [31], a Chinese-specific method, keeps the model size small by com-
pressing one-hot character-wise embeddings based on compositionality of Chi-
nese script. Compared with SA-VAE, ours handles the features as component-
wise, not character-wise. It brings huge advantages in not only reducing feature
dimension but also in performances as shown in our experimental results.

3 Preliminary: Complete Compositional Scripts

Compositional script is a widely-used glyph-rich script, where each glyph can be
decomposed by several components as shown in Fig. 2. These scripts account
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궚긑감기ㄱ
ㄱ + ∅ + ∅ ㄱ + ㅣ + ∅ ㄱ + ㅏ + ㅁ ㄱ + ㅡ + ㅌ ㄱ + ㅝ + ㅄ

Composed 

glyph

Sub-glyphs

Fig. 2: Examples of compositionality of Korean script. Even if we choose
the same sub-glyph, e.g., “ㄱ”, the shape and position of each sub-glyph are
varying depending on the combination, as shown in red boxes.

for 24 of the top 30 popular scripts, including Chinese, Hindi, Arabic, Korean,
Thai. A compositional script is either complete or not, where each glyph in
complete compositional scripts can be decomposed to fixed number sub-glyphs.
For example, every Korean glyph can be decomposed by three sub-glyphs (See
Fig. 2). Similarly, a Thai character has four components. Furthermore, complete
compositional letters have specific sub-glyph sets for each component type. For
example, the Korean alphabet has three component types where each component
type has 19, 21, 28 sub-glyphs. By combining them, Korean letter has 19× 21×
28 = 11, 172 valid characters. Note that the minimum number of glyphs to get
the entire sub-glyph set is 28. Similarly, Thai letter can represent 44×7×9×4 =
11, 088 characters, and 44 characters are required to cover whole sub-glyphs.

Some compositional scripts are not complete. For example, each character of
the Chinese letter can be decomposed into a diverse number of sub-glyphs. Al-
though we mainly validate our method on Korean and Thai scripts, our method
can be easily extended to other compositional scripts.

4 Dual Memory-augmented Font Generation Network

In this section, we introduce a novel architecture, Dual Memory-augmented Font
Generation Network (DM-Font), which utilizes the compositionality of a script
by the augmented dual memory structure. DM-Font disentangles global compo-
sition information and local styles, and writes them into persistent and dynamic
memory, respectively. It enables to make a high-quality full glyph library only
with very few references, e.g., 28 samples for Korean, 44 samples for Thai.

4.1 Architecture overview

We illustrate the architecture overview of DM-Font in Fig. 3a. The generation
process consists of encoding and decoding stages. In the encoding stage, the
reference style glyphs are encoded to the component features and stored into
the dynamic memory. After the encoding, the decoder fetches the component
features and generates the target glyph according to the target character label.

Encoder Enc disassembles a source glyph into the several component fea-
tures using the pre-defined decomposition function. We adopt multi-head struc-
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(c) Decoding phase detail.

Fig. 3: DM-Font overview. (a) The model encodes the reference style glyphs
and stores the component-wise features into the memory – (b). The decoder gen-
erates images with the component-wise features – (c). (b) The encoder extracts
the component-wise features and stores them into the dynamic memory using
the component label uc

i and the style label ŷs. (c) The memory addressor loads
the component features by the character label yc and feeds them to the decoder.

ture, one head per one component type. The encoded component-wise features
are written into the dynamic memory as shown in Figure 3b.

We employ two memory modules, where persistent memory (PM) is a
component-wise learned embedding that represents the intrinsic shape of each
component and the global information of the script such as the compositional-
ity, while dynamic memory (DM) stores encoded component features of the
given reference glyphs. Hence, PM captures the global information of sub-glyphs
independent to each font style, while encoded features in DM learn unique local
styles depending on each font. Note that DM simply stores and retrieves the
encoded features, but PM is learned embedding trained from the data. There-
fore, DM is adaptive to the reference input style samples, while PM is fixed after
training. We provide detailed analysis of each memory in the experiments.

Memory addressor provides the access address of both dynamic and persis-
tent memory based on the given character label yc as shown in Figure 3b and Fig-
ure 3c. We use pre-defined decomposition function fd : yc 7→ {uc

i | i = 1 . . .Mc}
to get the component-wise address, where uc

i is the label of i-th component of yc,
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andMc is the number of sub-glyphs for yc. For example, the function decomposes
a Korean character, “한” by fd(“한”) = {“ㅎ”, “ㅏ”, “ㄴ”}. The function maps
input character to Unicode and decomposes it by a simple rule. More details of
the decomposition function are given in Appendix.

The component-wise encoded features for the reference x̂, whose character
label is ŷc and style label is ŷs, are stored into DM during the encoding stage. In
our scenario, the encoder Enc is a multi-head encoder, and ŷc can be decomposed
by fd(ŷc) to sub-glyph labels ûc

i . Hence, the features in DM at address (ûc
i , ŷs),

DM(ûc
i , ŷs) is computed by Enci(x̂), where i is the index of the component type

and Enci is the encoder output corresponding to i.
In the decoding stage, decoder Dec generates a target glyph with the target

character yc and the reference style ys using the component-wise features stored
into the dynamic memory DM and the persistent memory PM as the following:

G(yc, ys) = Dec
([

DM(uc
i , ys), PM(uc

i ) | u
c
i ∈ fd(yc)

])

, (1)

where [x0, . . . , xn] refers to the concatenation operation.
For the better generation quality, we also employ a discriminator and a com-

ponent classifier. For discriminator D, we use a multitask discriminator [27,23]
with the font condition and the character condition. The multitask discriminator
has independent branches for each target class and each branch performs binary
classification. Considering two types of conditions, we use two multitask dis-
criminator, one for character classes and the other for font classes, with a shared
backbone. We further use component classifier Cls to ensure the model to
fully utilize the compositionality. The component classifier provides additional
supervision to the generator that stabilizes the training.

Moreover, we introduce the global-context awareness and local-style preser-
vation to the generator, called compositional generator. Specifically, self-
attention blocks [3,33] are used in the encoder to facilitate relational reasoning
between components, and the hourglass block [29,22] is attached to the decoder
to aware global-context while preserving locality. In the experiment section, we
analyze the impact of the architectural improvements on the final performance.
We provide the architecture and the implementation details in Appendix.

DM-Font learns the compositionality in the weakly-supervised manner; it
does not require any exact component location, e.g., component-wise bounding
boxes, but only component labels are required. Hence, DM-Font is not restricted
to the font generation only, but can be applied to any generation task with
compositionality, e.g., attribute conditioned generation tasks. Extending DM-
Font to attribute labeled datasets, e.g., CelebA [24], will be an interesting topic.

4.2 Learning

We train DM-Font from font sets (x, yc, yf ) ∼ D, where x is a target glyph
image, yc and yf is a character and font label, respectively. During the training,
we assume that different font labels represent different styles, i.e., we set ys = yf
in equation (1). Also, for the efficiency, we only encode a core component subset
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to compose the target glyph x into the DM instead of the full component set.
For example, the Korean script has the full component set with size 68, but only
3 components are required to construct a single character.

We use adversarial loss to let the model generate plausible images.

Ladv = Ex,y [logDy(x)] + Ex,y [log(1−Dy(G(yc, yf )))] , (2)

where G generates an image G(yc, yf ) from the given image x and target label
y by equation (1). The discriminator Dy is conditional on the target label y.
We employed two types of the discriminator to solve the problem. The font
discriminator is a conditional discriminator on the source font index and the
character discriminator aims to classify what is the given character.

L1 loss adds supervision from the ground truth target x as the following:

Ll1 = Ex,y [‖x−G(yc, yf )‖1] . (3)

We also use feature matching loss to improve the stability of the training.
The feature matching loss is constructed using the output from the l-th layer of

the L-layered discriminator, D
(l)
f .

Lfeat = Ex,y

[

1

L

L
∑

l=1

‖D
(l)
f (x)−D

(l)
f (G(yc, yf ))‖1

]

. (4)

Lastly, to let the model fully utilize the compositionality, we train the model
with additional component-classification loss. For the given input x, we ex-
tract the component-wise features using the encoder Enc, and train them with
cross-entropy loss (CE) using component labels u ∈ fd(yc), where fd is the com-
ponent decomposition function to the given character label yc.

Lcls = Ex,y





∑

uc

i
∈fd(yc)

CE(Enci(x), u
c
i )



+Ey





∑

uc

i
∈fd(yc)

CE(Enci(G(yc, yf )), u
c
i )



 .

(5)
The final objective function to optimize the generator G, the discriminator

D, and the component classifier C is defined as the following:

min
G,C

max
D

Ladv(font) + Ladv(char) + λl1Ll1 + λfeatLfeat + λclsLcls, (6)

where λl1, λfeat, λcls are control parameters to importance of each loss function.
We set λl1 = 0.1, λfeat = 1.0, λcls = 0.1 for all experiments.

5 Experiments

5.1 Datasets

Korean-handwriting dataset. Due to its diversity and data sparsity, gener-
ating a handwritten font with only a few samples is challenging. We validate the
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models using 86 Korean-handwriting fonts1 refined by the expert designer. Each
font library contains 2, 448 widely-used Korean glyphs. We train the models us-
ing 80% fonts and 90% characters, and validate the models on the remaining
split. We separately evaluate the models on the seen (90%) and unseen (10%)
characters to measure the generalizability to the unseen characters. 30 characters
are used for the reference.

Thai-printing dataset. Compared with Korean letters, Thai letters have more
complex structure; Thai characters are composed of four sub-glyphs while Ko-
rean characters have three components. We demonstrate the models on 105
Thai-printing fonts2. The train-evaluation split strategy is same as Korean-
handwriting experiments, and 44 samples are used for the few-shot generation.

Korean-unrefined dataset. We also gather unrefined Korean handwriting
dataset from 88 non-experts, letting each applicant write 150 characters. This
dataset is extremely diverse and not refined by expert designers different from
the Korean-handwriting dataset. We use the Korean-unrefined dataset as the
validation of the models trained on the Korean-handwriting dataset, i.e., the
Korean-unrefined dataset is not visible during the training, but only a few sam-
ples are visible for the evaluation. 30 samples are used for the generation as well
as the Korean-handwriting dataset.

5.2 Comparison methods and evaluation metrics

Comparison methods. We compare our model with state-of-the-art few-shot
font generation methods, including EMD [35], AGIS-Net [8], and FUNIT [23].
We exclude the methods which are Chinese-specific [31] or not applicable to
glyph-rich scripts [30]. Here, we slightly modified FUNIT, originally designed
for unsupervised translation, by changing its reconstruction loss to L1 loss with
ground truths and conditioning the discriminator to both contents and styles.

Evaluation metrics. Assessing a generative model is difficult because of its
non-tractability. Several quantitative evaluation metrics [18,13,34,28] have at-
tempted to measure the performance of the trained generative model with differ-
ent assumptions, but it is still controversial what is the best evaluation methods
for generative models. In this paper, we consider three diverse levels of evaluation
metrics; pixel-level, perceptual-level and human-level evaluations.

Pixel-level evaluation metrics assess the pixel structural similarity be-
tween the ground truth image and the generated image. We employ the structural
similarity index (SSIM) and multi-scale structural similarity index (MS-SSIM).

However, pixel-level metrics often disagree with human perceptions. Thus,
we also evaluate the models with perceptual-level evaluation metrics. We

1 We collect public fonts from http://uhbeefont.com/.
2 https://github.com/jeffmcneill/thai-font-collection.
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Table 1: Quantatitive evaluation on the Korean-handwriting dataset.

We evaluate the methods on the seen and unseen character sets. Higher is better,
except perceptual distance (PD) and mFID.

Pixel-level Content-aware Style-aware
SSIM MS-SSIM Acc(%) PD mFID Acc(%) PD mFID

Evaluation on the seen character set during training

EMD [35] 0.691 0.361 80.4 0.084 138.2 5.1 0.089 134.4
FUNIT [23] 0.686 0.369 94.5 0.030 42.9 5.1 0.087 146.7
AGIS-Net [8] 0.694 0.399 98.7 0.018 23.9 8.2 0.088 141.1
DM-Font (ours) 0.704 0.457 98.1 0.018 22.1 64.1 0.038 34.6

Evaluation on the unseen character set during training

EMD [35] 0.696 0.362 76.4 0.095 155.3 5.2 0.089 139.6
FUNIT [23] 0.690 0.372 93.3 0.034 48.4 5.6 0.087 149.5
AGIS-Net [8] 0.699 0.398 98.3 0.019 25.9 7.5 0.089 146.1
DM-Font (ours) 0.707 0.455 98.5 0.018 20.8 62.6 0.039 40.5

trained four ResNet-50 [12] models on the Korean-handwriting dataset and Thai-
printing dataset to classify style and character label. Unlike the generation task,
the whole fonts and characters are used for the training. More detailed classifier
training settings are in Appendix. We denote a metric is context-aware if the met-
ric is performed using the content classifier, and style-aware is defined similarly.
Note that these classifiers are independent to the font generation models, but
only used for the evaluation. We report the top-1 accuracy, perceptual distance
(PD) [18,34], and mean FID (mFID) [23] using the classifiers. PD is computed by
L2 distance of the features between generated glyph and GT glyph, and mFID
is a conditional FID [13] by averaging FID for each target class.

Finally, we conduct a user study on the Korean-unrefined dataset for mea-
suring human-level evaluation metric. We ask users about three types of
preference: content preference, style preference, and user preference considering
both content and style. The questionnaire is made of 90 questions, 30 for each
preference. Each question shows 40 glyphs, consisting of 32 glyphs generated by
four models and 8 GT glyphs. The order of choices is shuffled for anonymity. We
collect total 3,420 responses from 38 Korean natives. More details of user study
are provided in Appendix.

5.3 Main results

Quantitative evaluation. The main results on Korean-handwriting and Thai-
printing datasets are reported in Table 1 and Table 2, respectively. We also report
the evaluation results on the Korean-unrefined dataset in Appendix. We follow
the dataset split introduced in Section 5.1. In the experiments, DM-Font remark-
ably outperforms the comparison methods in most of evaluation metrics, espe-
cially on style-aware benchmarks. Baseline methods show slightly worse content-
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Table 2: Quantatitive evaluation on the Thai-printing dataset. We eval-
uate the methods on the seen and unseen character sets. Higher is better, except
perceptual distance (PD) and mFID.

Pixel-level Content-aware Style-aware
SSIM MS-SSIM Acc(%) PD mFID Acc(%) PD mFID

Evaluation on the seen character set during training

EMD [35] 0.773 0.640 86.3 0.115 215.4 3.2 0.087 172.0
FUNIT [23] 0.712 0.449 45.8 0.566 1133.8 4.6 0.084 167.9
AGIS-Net [8] 0.758 0.624 87.2 0.091 165.2 15.5 0.074 145.2
DM-Font (ours) 0.776 0.697 87.0 0.103 198.7 50.3 0.037 69.4

Evaluation on the unseen character set during training

EMD [35] 0.770 0.636 85.0 0.123 231.0 3.4 0.087 171.6
FUNIT [23] 0.708 0.442 45.0 0.574 1149.8 4.7 0.084 166.9
AGIS-Net [8] 0.755 0.618 85.4 0.103 188.4 15.8 0.074 145.1
DM-Font (ours) 0.773 0.693 87.2 0.101 195.9 50.6 0.037 69.6

aware performances on unseen characters than seen characters, e.g., AGIS-Net
shows worse content-aware accuracy (98.7 → 98.3), PD (0.018 → 0.019), and
mFID (23.9 → 25.9) in Table 1. In contrast, DM-Font consistently shows bet-
ter generalizability to the unobserved characters during the training for both
datasets. It is because our model interprets a glyph at the component level, the
model easily extrapolates the unseen characters from the learned component-
wise features stored in memory modules.

Our method shows significant improvements in style-aware metrics. DM-Font
achieves 62.6% and 50.6% accuracy while other methods show much less accu-
racy, e.g., about 5% for Korean unseen and Thai unseen character sets, respec-
tively. Likewise, the model shows dramatic improvements in perceptual distance
and mFID as well as the accuracy measure. In the latter section, we provide
more detailed analysis that the baseline methods are overfitted to the training
styles and failed to generalize to unseen styles.

Qualitative comparison. We also provide visual comparisons in Figure 4
and Figure 5, which contain various challenging fonts including thin, thick, and
curvy fonts. Our method generates glyphs with consistently better visual quality
than the baseline methods. EMD [35] often erases thin fonts unintentionally,
which causes low content scores compared with the other baseline methods.
FUNIT [23] and AGIS-Net [8] accurately generate the content of glyphs and
capture global styles well including overall thickness and font sizes. However, the
detailed styles of the components in their results look different from the ground
truths. Moreover, some generated glyphs for unseen Thai style lose the original
content (see the difference between green boxes and red boxes in Figure 4 and
Figure 5 for more details). Compared with the baselines, our method generates
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EMD
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AGIS-Net

FUNIT

(a) Seen character set during training.

EMD

Ours

GT

AGIS-Net

FUNIT

(b) Unseen character set during training.

Fig. 4: Qualitative comparison on the Korean-handwriting dataset. Vi-
sualization of generated samples with seen and unseen characters. We show insets
of baseline results (green box), ours (blue box) and ground truth (red box). Ours
successfully transfers the detailed style of the target style, while baselines fail to
generate glyphs with the detailed reference style.

the most plausible images in terms of global font styles and detailed component
styles. These results show that our model preserves details in the components
using the dual memory and reuse them to generate a new glyph.

User study. We conduct a user study to further evaluate the methods in terms
of human preferences using the Korean-unrefined dataset. Example generated
glyphs are illustrated in Figure 6. Users are asked to choose the most preferred
generated samples in terms of content preservation, faithfulness to the reference
style, and personal preference. The results are shown in Table 3, which present
similar intuitions with Table 1; AGIS-Net and our method are comparable in
the content evaluation, and our method is dominant in the style preference.

5.4 More analysis
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AGIS-Net
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(a) Seen character set during training.

EMD

Ours

GT

AGIS-Net

FUNIT

(b) Unseen character set during training.

Fig. 5: Qualitative comparison on the Thai-printing dataset. Visualiza-
tion of generated samples with seen and unseen characters. We show insets of
baseline results (green box), ours (blue box) and ground truth (red box). Over-
all, ours faithfully transfer the target style, while other methods even often fail
to preserve contents in unseen character sets.

Ablation study. We investigate the impact of our design choices by ablative
studies. Table 4a shows that the overall performances are improved by adding
proposed components such as dynamic memory, persistent memory, and compo-
sitional generator. We report full table in Appendix.

Here, the baseline method is similar to FUNIT whose content and style ac-
curacies are 93.9 and 5.4, respectively. The baseline suffers from the failure of
style generalization as previous methods. We observe that dynamic memory and
persistent memory dramatically improves style scores while preserving content
scores. Finally, our architectural improvements bring the best performance.

We also explore the performance influence of each objective. As shown in
Table 4b, removing L1 loss and feature matching loss slightly degrades perfor-
mances. The component-classification loss, which enforces the compositionality
to the model, is the most important factor for successful training.
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Table 3: User study results on the Korean-unrefined dataset. Each num-
ber is the preferred model output out of 3, 420 responses.

EMD [35] FUNIT [23] AGIS-Net [8] DM-Font (ours)

Best content preserving 1.33% 9.17% 48.67% 40.83%
Best stylization 1.71% 8.14% 17.44% 72.71%

Most preferred 1.23% 9.74% 16.40% 72.63%

Fig. 6: Samples for the user study. The Korean-unrefined dataset is used.

Table 4: Ablation studies on the Korean-handwriting dataset. Each con-
tent and style score is an average of the seen and unseen accuracies. Hmean
denotes the harmonic mean of content and style scores.

(a) Impact of the memory modules.

Content Style Hmean

Baseline 96.6 6.5 12.2
+ Dynamic memory 99.8 32.0 48.5
+ Persistent memory 97.6 46.2 62.8
+ Compositional G 98.3 63.3 77.0

(b) Impact of the objective functions.

Content Style Hmean

Full 98.3 63.3 77.0

Full −Ll1 97.3 53.8 69.3
Full −Lfeat 97.8 51.3 67.3
Full −Lcls 3.1 16.0 5.2

Style overfitting of baselines. We analyze the generated glyphs using our
style classifier to investigate the style overfitting of the baseline methods. Figure 7
shows the predicted classes for each model output. We observe that the baseline
methods often generate samples similar to the training samples. On the other
hand, our model avoids the style overfitting by learning the compositionality of
glyphs and directly reusing components of inputs. Consequently, as supported
by previous quantitative and qualitative evaluations, our model is robust to the
out-of-distributed font generation compared to the existing methods. We provide
more analysis of the overfitting of comparison methods in the Appendix.

Component-wise style mixing. In Figure 8, we demonstrate our model can
interpolate styles component-wisely. It supports that our model fully utilizes the
compositionality to generate a glyph.
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GT EMD EMD FUNIT FUNIT AGIS-Net AGIS-Net Ours Ours
(output) (NN) (output) (NN) (output) (NN) (output) (NN)

Fig. 7: Nearest neighbor analysis. We report the generated images by each
model (output) with the given unseen reference style (GT) and the ground truth
samples whose label is predicted by the style classifier (NN). Red boxed sam-
ples denote training samples. We can conclude that the baseline methods are
overfitted to the training style while ours easily generalizes to unseen style.

Fig. 8: Component-wise style mixing. We interpolate only one component
(marked by blue boxes) between two glyphs (the first column and the last col-
umn). The interpolated sub-glyphs are marked by green boxes. Our model suc-
cessfully interpolates two sub-glyphs, while preserving other local styles.

6 Conclusions

Previous few-shot font generation methods often fail to generalize to unseen
styles. In this paper, we propose a novel few-shot font generation framework for
compositional scripts, named Dual Memory-augmented Font Generation Net-
work (DM-Font). Our method effectively incorporates the prior knowledge of
compositional script into the framework via two external memories: the dynamic
memory and the persistent memory. DM-Font utilizes the compositionality su-
pervision in the weakly-supervised manner, i.e., neither component-wise bound-
ing box nor mask used during the training. The experimental results showed
that the existing methods fail in stylization on unseen fonts, while DM-Font
remarkably and consistently outperforms the existing few-shot font generation
methods on Korean and Thai letters. Extensive empirical evidence support that
our framework lets the model fully utilize the compositionality so that the model
can produce high-quality samples with only a few samples.
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