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In the main paper, we propose the BCNet, a deep neural network model
that takes a near front view color image of the clothed human body as input,
and outputs reliable garments and body 3D geometries separately. In this sup-
plemental material, we first describe some implementation details, then present
more qualitative results and discuss the limitations of our approach.
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Fig. 1. The architecture of the skinning weight(SK net) and displacement network(Dis
net). T'wo networks follow similar architecture with slightly different configuration, as
presented in the figure. The Multi-Layer transform(MLT) is a module that utilizes a
shared Multi-Layer perceptron(MLP) to change the feature dimension for each vertex.
The ResBlock follows the design of the standard residual network.

1 Implementation Details

Detailed Architecture. In this section, we describe the detailed architecture
design of the skinning weight network and displacement network. Both net-
works follow similar architecture presented in Fig. 1 while with slightly different
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module configuration and computing flow. The architecture is a point-to-point
feature calculation process that does not require upsampling or downsampling.
We utilize Multi-Layer transform(MLT') and ResBlock to construct the network.
The MLT uses a shared Multi-Layer perceptron(MLP) to change the feature
dimension for each vertex. And the ResBlock is used to extract deeper features
following the classical design. To obtain global information, we do max-pooling
on the middle layer feature and concatenate it to the input of the final MLT.
Optionally, we can also concatenate the shallow feature to enhance the inference
ability of high-frequency details. The specific graph convolution, input features,
and outputs for the two networks are different, and they have been described in
the main paper.

Details of Rigged and Posed Registration. Before computation, we need
to segment the rigged avatars. Some of the purchased rigged avatars provide
accurate garment and skin segmentation. For segmentation that is inaccurate or
unavailable, we manually segment the models with Blender utilizing the texture
or color information. For BUFF[56] data, we segment similarly. The garment and
skin segmentation of the Digital Wardrobe [7] is available. For the optimization,
we implement the whole objective energy with Pytorch framework, and minimize
the loss with the Adam iteration method.

2 More Results

In this section, we show more evaluations and results of our approach and com-
parisons with the state-of-the-art methods. First, we show samples of our con-
structed dataset in Fig. 2. Then, we show more evaluations of our skinning weight
network. Next, we show a qualitative comparison with MGN [7] in Fig. 5 and
more reconstruction results in Fig. 6, Fig. 7, and Fig. 8. Finally, more garment
transfer and switching results are presented in Fig. 9, Fig. 10 and Fig. 11.

Samples of Constructed Dataset. In Fig. 2, we present more samples of
our constructed Synthetic Dataset and HD Texture Dataset. Our constructed
datasets include various kinds of postures and garments, and the garment ge-
ometries match quite well with the corresponding images.

Table 1. The skinning weight ¢; errors(x1072) between the predicted weight by our
skinning weight network and ground truth, and the Euclidean distance(ED) in mm
between deformed meshes with predicted and ground truth weights.

type [¢1 mean|{; std|ED mean|ED std
I-shirt| 0.81 | 2.83 0.40 0.57
s-shirt| 0.84 2.82 0.43 0.54
l-pant| 0.45 | 1.92 0.30 0.36
s-pant| 0.51 | 2.23 0.34 0.61
l-skirt| 0.71 2.88 0.64 2.00
s-skirt| 0.66 | 2.55 0.42 0.90
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Fig. 2. Some examples of Synthetic Dataset and HD Texture Dataset. We show color
image and geometry in each group. The first two rows are samples from Synthetic
Dataset, and the last two rows are samples from HD Texture Dataset. Our constructed
dataset includes various kinds of postures and garments.

Evaluation of Skinning Weight Network. We test the reconstruction
ability of our skinning weight network. For each neutral garment of the whole
test set, we reconstruct the skinning weights with our network and compute
the ¢; error relative to the ground truth weights. Then, to evaluate skinning
deformation, we compute the Euclidean distances between deformed garments
with predicted and ground truth weights, respectively. Twenty random postures
from the Mocap dataset are used to deform these neutral garments. From second
to fifth columns of Table 1, the average and standard deviation of ¢ error and
Euclidean distance for each garment type are given in turn. As can be observed
from the results, our model can generate highly accurate results. In Fig. 3, we
visualize the error maps of several deformed garments of different types.

For some specific garments, close vertices in some parts may have very differ-
ent skinning weights. For example, the vertices on either side of the crotch have
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Fig. 3. Error maps between deformed clothes with predicted skinning weights and
ground truth weights.

close vertex positions, while the skinning weights are very different because they
belong to different legs. In this case, the vertex normals of input could supply
useful information to distinguish these ambiguous vertices. As shown in Fig. 4,
the network without normals as input can not predict accurate weights of some
vertices, leading to significant errors and artifacts.

Qualitative Comparison with MIGN. We show two comparison results on
BUFF [56] dataset with MGN [7] in Fig. 5. The results by MGN are generated by
8 views input without postprocessing optimization. We can see that the predicted
body shapes by our method match the input image more closely. Besides, our
predicted garments can capture size variation, such as the length of trouser legs.
For the MGN method, the predicted garments are bound with SMPL, which
limits its expression ability of large displacement. Therefore, although the input
images are different, the results of MGN tend to maintain the same style and
size for the same garment type.
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Fig. 4. Ablation study of the vertex normals as input for skinning weight network. On
the left is the deformed pant with GT weights, the middle is the result of the network
without normals as input, and the right is the result of the network with full input.
Predictions without normals as input would produce artifacts in ambiguous vertices.
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Fig. 5. Two comparison results with MGN on BUFF. From left to right of each group,
the reference image, predicted shapes(without post-optimization) by MGN, and pre-
dicted shapes by our method are presented. We can observe that the predicted body
shapes by our method match the input images better than the ones by MGN. More-
over, our garments can capture the size variation of the input image, while predicted
garments of MGN tend to maintain similar size for the same garment type even with
different input images. The mismatched parts between predicted garment size and the
input image are marked with red boxes.

Qualitative Results. To demonstrate the reconstruction ability of our
method, we show more results on different datasets. In Fig. 6, we show some
reconstruction results from our test set. In Fig. 7, we show some reconstruction
results from the Digital Wardrobe [7]. In Fig. 8, reconstruction results on real
images are given. From these results, we can see that our method can capture
the body and garment shapes from the input images quite well.

Garment Transfer. Fig. 9 shows a garment switching example and two
garment transfer examples between images. All the reconstructed shapes are
rendered with texture to improve the visual authenticity. In Fig. 10 and Fig. 11,
we present more results of garment transfer and switching on HD Texture test
dataset. Based on our method, we can easily transfer or switch garments geom-
etry and texture between two images, even with different garment types. These
applications further confirm the ability of our method to correctly predict the
3D shapes of garment and human body.

3 Limitations

Our method still has some limitations which deserve further study.

— Our method currently supports six garment types. Therefore, current trained
model can not correctly predict the garment type which does not belong
to the six garment types. One example is shown in Fig. 12 A. However,
our method can be extended to support new garment type with the same
strategy in the paper.

— In this work, our method can recover the body and garment shapes while we
does not consider the hair, shoes, hats, and multi-layered clothing. We show
an example of multi-layered clothing in Fig. 12 B.
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Fig. 6. Reconstructed results by our method on test set. Each group includes the input
image and our result.

— Clothed body images contain enormous diversities in the aspect of cloth
types, textures, body shapes, lighting conditions, background, and camera
angles. The trained model might produce over-smooth results for test images
that have very different styles with the training dataset. Two examples are
shown in Fig. 12 C. However, synthesizing more realistic data and utilizing
more real data in our proposed framework can alleviate this problem.



Fig. 7. Reconstructed results by our method on DW Dataset [7]. Our method can
recover the body shape, posture, and cloth type and shape quite well.

Fig. 8. Reconstructed results by our method on real images. Each group includes the
input image and our result. First row is three images from the internet, and second
row is two images from PeopleSnapshot [3] dataset.
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Fig. 9. On the left, with two input images of the first row, we can predict their body
shapes and exchange garments geometries and textures with BCNet. In the right, two
garment transfer examples are given. In each row, we transfer the garments of the first
image to the second image and show the reconstructed shapes with texture on the third
column.
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Fig. 10. More garment transfer results on test dataset. The target garment images
are shown in the first column, and the garment in the target image is transfered to
four different source clothed body images. For each result, the predicted body and
transfered garments with texture are presented.
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Fig. 11. Examples of garment switching. We supply pairs clothed body images in the

first row and present predicted bodies and switched garments with texture in the second
row.
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Fig. 12. The proposed method has shortcomings. We present three challenges for future
work in the figure. A) Incorrect garment reconstruction due to unsupported garment
type. B) Multi-layered garments are treated as a single layer garment. C) Over-smooth
results for two images captured by Kinect v2 camera [55].



