
A Differentiable Recurrent Surface for
Asynchronous Event-Based Data

Supplementary Material

Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci

Politecnico di Milano, Italy
{marco.cannici,marco.ciccone,andrea.romanoni,matteo.matteucci}@polimi.it

1 Implementation

The Matrix-LSTM feature extraction process can be implemented efficiently by
means of two order-aware reshape operations. These two operations, namely
groupByPixel and groupByTime, allow event streams to be split based on the
pixel location and temporal bin. After being reshaped, the input is ready to be
processed by a single LSTM network, implementing parameter sharing across
all pixel locations and temporal windows. In the following we give a detailed
overview of the two reshape operators.

1.1 GroupByPixel

This operation translates from event-sequences to pixel-sequences. Let X be a

tensor of shape N × Tmax × F , representing the features f
(x,y)
n,i of a batch of

N samples, where Tmax is the length of the longest sequence in the batch. We
define the groupByPixel mapping on X as an order-aware reshape operation that

rearranges the events into a tensor of pixel-sequences of shape P × T
(x,y)
max × F

where T
(x,y)
max is the length of the longest pixel sequence E(x,y)n and P is the number

of active pixels (i.e., having at least one event) in the batch, which equals N ·H ·W
only in the worst case. Pixel-sequences shorter than T

(x,y)
max are padded with zero

events to be processed in parallel.
The tensor thus obtained is then processed by the LSTM cell that treats

samples in the first dimension independently, effectively implementing parameter
sharing and applying the transformation in parallel over all the pixels. The LSTM
output tensor, which has the same shape of the input one, is then sampled by

taking the output corresponding to the last event in each pixel-sequence E(x,y)n ,
ignoring values computed on padded values, and the obtained values are then
used to populate the dense representation. To improve efficiency, for each pixel-

sequence E(x,y)n , groupByPixel keeps also track of the original spatial position
(x, y), the index of the sample inside the batch and the length of the pixel-

sequence T
(x,y)
n , namely the index of the last event before padding. Given this set

of indexes, the densification step can be performed as a simple slicing operation.
See Figure 1 for visual clues. groupByPixel is implemented as a custom CUDA

2 M. Cannici et al.

LSTM

Tmax

sample 1

sample 2

sample 1

sample 2

Event-sequences

Pixel-sequences Dense Surfaces

H*W H

W

N*H*W x T (x,y)

MAX

Fig. 1. An example of the groupByPixel operation on a batch of N = 2 samples and a
2× 2 pixel resolution. Different colors refer to different pixel locations while intensity
indicates time. For clarity, the features dimension is not shown in the figure

Table 1. Comparison between Matrix-LSTM and ConvLSTM on both Ev2Vid and
EST ResNet18 configurations on the N-Cars dataset

delay relative ts absolute
3× 3 5× 5 3× 3 5× 5

Ev2Vid with
3 chans, 1 bin

Matrix-LSTM (ours) 95.05± 0.96% 93.38± 0.64% 94.92± 0.74% 94.34± 0.94%
ConvLSTM [7] 92.33± 0.41% 92.65± 0.78% 93.97± 1.30% 93.61± 1.59%

EST with
16 chans, 1 bin

Matrix-LSTM (ours) 93.14± 0.77% 92.18± 0.28% 92.83± 1.32% 92.15± 0.67%
ConvLSTM [7] 90.39± 0.94% 90.73± 1.05% 92.52± 1.26% 92.05± 0.56%

kernel that processes each sample in parallel and places each event feature in
the output tensor maintaining the original temporal order.

1.2 GroupByTime

The Matrix-LSTM variant that operates on temporal bins performs a similar
pre-processing step. Each sample in the batch is divided into a fixed set of inter-
vals. The groupByTime cuda kernel pre-processes the input events generating a
N ∗B×T b

max×F tensor where the B bins are grouped in the first dimension and
taking care of properly padding intervals (T b

max is the length of the longest bin in
the batch). The Matrix-LSTM mechanism is then applied as usual and the result-
ing N ∗B ×H ×W × C tensor is finally reshaped into a N ×H ×W ×B ∗ C
event-surface.

2 Matrix-LSTM vs ConvLSTM

In Figure 2a of the paper we report a comparison between ConvLSTM and
Matrix-LSTM using the Ev2Vid–ResNet18 configuration, i.e., the configuration
of choice for all comparisons in the paper. For completeness, in Table 1 we ex-
tend the evaluation also to EST, using the 16 channels and 1 bin setting, which
is one of our best performing EST configuration on N-Cars. Matrix-LSTM per-
forms better on all experiments, highlighting its capabilities to better handle
asynchronous event-based data if compared to ConvLSTM. We also highlight

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 3

1,000

2,000

3,000

4,000

5,000

6,000

K
ev

en
ts

/
s

1 2 8 16 32 64 128 256
0

2

4

6

8

10

12

batch size

M
ea

n
T

im
e

(m
s)

1 channel

2 channels

3 channels

4 channels

8 channels

16 channels

(a)

1,000

2,000

3,000

4,000

5,000

6,000

K
ev

en
ts

/
s

1 2 8 16 32 64 128 256
0

2

4

6

8

10

12

batch size

M
ea

n
T

im
e

(m
s)

1 bin

2 bins

4 bins

9 bins

16 bins

(b)

Fig. 2. Number of processed events per second (dashed lines) and timing (solid lines)
with varying number of channels (a), and bins (b)

that the performance improvement is greater on delay relative temporal fea-
tures than on ts absolute ones. ConvLSTM, indeed, processes temporal slices
containing potentially uncorrelated events that happened at different time in-
stants. While delays are always consistent within each pixel sequence, they are
not within the ConvLSTM kernel receptive field. Using an absolute temporal
encoding alleviates this issue on both Ev2Vid and EST architectures, while still
performing worst than Matrix-LSTM. Our extraction layer, indeed, preserves
the original events arrival order within each receptive field during features ex-
traction, which allows to achieve better performance both on ts absolute and
delay relative input features. Moreover, structured delay relative features per-
form better on Matrix-LSTM than simple absolute features.

3 Time Performance

While the performance reported in Figure 3b of the paper are computed on
each sample independently to enable a fair comparison with the other methods,
in Figure 2a and Figure 2b we study instead how the mean time required to
process a sample over all the N-Cars training dataset and the corresponding
events throughput change as a function of the batch size. Both performance
dramatically increase when multiple samples are processed simultaneously in
batch. This is crucial at training time, when optimization techniques greatly
benefit from batch computation.

Furthermore, while increasing the number of output channels, for the same
choice of batch size, increases the time required to process each sample (since the
resulting Matrix-LSTM operates on a larger hidden state), increasing the num-
ber of bins has an opposite behaviour. Multiple intervals are indeed processed
independently and in parallel by the Matrix-LSTM that has to process a smaller
number of events in each spatial location, sequentially. In both configurations,
finally, increasing the batch size reduces the mean processing time.

4 M. Cannici et al.

4 Classification

Table 2. Classification accuracy (%) on the N-MNIST [5] dataset.

Method Classifier Channels (bins) Accuracy

H-First spike-based -
HOTS [4] histogram similarity - 80.8
HATS [8] SVM - 99.1

G-CNN [1] Graph CNN - 98.5
RG-CNN [1] Graph CNN - 99.0

Events Count [1] ResNet50 2 (1) 98.4

Ev2Vid [6]
Ev2Vid custom

convnet
1 (1) 98.3

Matrix-LSTM
(Ours)

Ev2Vid custom
convnet

1 (1) 98.9± 0.21

Table 3. Classification accuracy (%) on the ASL-DVS [1] dataset.

Method Classifier Channels (bins) Accuracy

G-CNN [1] Graph CNN - 87.5
RG-CNN [1] Graph CNN - 90.1

Events Count [1] ResNet50 2 (1) 88.6
EST [2] ResNet50 2 (1) 99.57

Matrix-LSTM
(Ours)

ResNet50 2 (1) 99.73± 0.04

We perform additional experiments on the N-MNIST dataset [5] and on
the newly introduced ASL-DVS [1] dataset. On N-MNIST we directly compare
with the Ev2Vid [6] reconstruction procedure, where the custom convolutional
network proposed in [6] is used as backbone, while we compare with the EST [2]
surface on ASL-DVS, making use of ResNet50 [3] as backbone. On both cases,
Matrix-LSTM performs better than other event-surface mechanisms and also
outperforms alternative classification architectures.

5 Optical Flow Prediction

5.1 Ev-FlowNet Baseline Results

We performed optical flow experiments starting from the publicly available Ev-
FlowNet codebase [9] and replacing the original hand-crafted features with the
proposed Matrix-LSTM layer. We first made sure to revert the baseline archi-
tecture to the original configuration, checking that we were able to replicate the
paper results. Indeed, the public code contains minor upgrades over the paper

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 5

Table 4. Effect of adding a Squeeze-and-Excitation layer on the optical flow prediction
task

Method
indoor flying1 indoor flying2 indoor flying3

dt=1 dt=4 dt=1 dt=4 dt=1 dt=4
AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier

Ev-FlowNet [10] - 1.03 2.2 2.25 24.7 2.12 15.1 4.05 45.3 1.53 11.9 3.45 39.7
Ev-FlowNet (ours) - 1.015 2.736 3.432 48.685 1.606 12.089 5.957 63.226 1.548 11.937 5.247 57.662

Matrix-LSTM
(Ours)

1 bin 1.017 2.071 3.366 42.022 1.642 13.89 5.870 65.379 1.432 10.44 5.015 57.094
2 bins 0.829 0.471 2.269 23.558 1.194 5.341 3.946 42.450 1.083 4.390 3.172 31.975

2 bins + SELayer 0.821 0.534 2.378 25.995 1.191 5.590 4.333 45.396 1.077 4.805 3.549 36.822
4 bins 0.969 1.781 3.023 36.085 1.505 11.63 4.870 49.077 1.507 12.97 4.652 43.267

4 bins + SELayer 0.844 0.634 2.330 24.777 1.213 6.057 4.322 44.769 1.070 4.625 3.588 36.442
8 bins 0.881 0.672 2.290 24.203 1.292 6.594 3.978 42.230 1.181 5.389 3.346 33.951

8 bins + SELayer 0.905 0.885 2.308 24.597 1.286 6.761 4.046 44.366 1.177 5.318 3.391 35.452

version. We contacted the authors that provided us with the needed modifica-
tions. These consist of removing the batch normalization layers, setting to 2 the
number of output channels of the layer preceding the optical flow prediction
layer, and disabling random rotations during training. For completeness, we re-
port the results we obtained by training the baseline from scratch with these
fixes in Table 4.

To test how the network adapts to different flow magnitudes, the Ev-FlowNet
[10] was tested on two evaluation settings for each test sequence: with input
frames and corresponding events that are one frame apart (denoted as dt=1),
and with frames and events four frames apart (denoted as dt=4). While we were
able to closely replicate the results of the first configuration (dt=1), with a minor
improvement in the indoor flying2 sequence, the performance we obtain on the
dt=4 setup is instead worse on all sequences, as reported on the first two rows
of Table 4.

Despite this discrepancy, which prevents the Matrix-LSTM performance on
dt=4 settings to be directly compared with the results reported on the Ev-
FlowNet paper, we can still evaluate the benefits of our surface on larger flow
magnitudes. Indeed, this work evaluates the Matrix-LSTM layer based on the
relative performance improvement obtained by substituting the original features
with our layer. Using our Ev-FlowNet results as baseline, we show that Matrix-
LSTM is able to improve the optical flow quality even on the dt=4 setting,
highlighting the capability of the layer to adapt to different sequence lengths
and movement conditions. We report an improvement of up to 30.426% on dt=1
settings and up to 39.546% on dt=4 settings using our results as baseline.

5.2 Squeeze-and-Excitation Layer

Optical flow prediction is a complex task that requires neural networks to ex-
tract accurate features precisely describing motion inside the scene. An event
aggregation mechanism is therefore required to extract rich temporal features
from the events. In Section 4.2 of the paper we show that time resolution is
a key factor for extracting effective feature with Matrix-LSTM. In particular,
increasing the number of bins has great impact on the predicted flow and allows
the network to retain temporal information over long sequences. Here we focus,

6 M. Cannici et al.

instead, on the effect of correlating temporal features by adding a SELayer to
the Matrix-LSTM output. Table 4 reports the performance obtained using this
additional layer on the MVSEC [11] task. The results we obtained show that
adding an SELayer only improves performance on the 4 bins configuration for
the dt=4 benchmark, while it consistently helps reducing the AEE metric on
the dt=1 setting.

By comparing features obtained from subsequent intervals, the SELayer adap-
tively recalibrates features and helps modelling interdependencies between time
instants, which is crucial for predicting optical flow. We believe that a simi-
lar approach can also be applied to other event aggregation mechanisms based
on voxel-grids of temporal bins to improve their performance, especially those
employing data driven optimization mechanisms [2].

6 Qualitative Results

The event aggregation process performed by the Matrix-LSTM layer is incremen-
tal. Events in each pixel location are processed sequentially; state and output
of the LSTM are updated each time. We propose to visualize the Matrix-LSTM
surface as an RGB image by using the ResNet18-Ev2Vid configuration and in-
terpreting the 3 output channels as RGB color. A video of such visualization
showing the incremental frame reconstruction on N-Caltech101 samples is pro-
vided at this url: https://marcocannici.github.io/matrixlstm.

We use a similar visualization technique to show optical flow predictions for
indoor flying sequences. Since we use our best performing model that uses 2
temporal bins, we decide to only show the first 3 channels of each temporal
interval. Moreover, instead of visualizing how the event representation builds as
new events arrive, we only show the frame obtained after having processed each
window of events.

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 7

References

1. Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., Andreopoulos, Y.: Graph-based
object classification for neuromorphic vision sensing. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 491–501 (2019)

2. Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning
of representations for asynchronous event-based data. In: IEEE International Con-
ference of Computer Vision (ICCV) (October 2019)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

4. Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: Hots: a hier-
archy of event-based time-surfaces for pattern recognition. IEEE transactions on
pattern analysis and machine intelligence 39(7), 1346–1359 (2016)

5. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience
9, 437 (2015)

6. Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-to-video: Bringing
modern computer vision to event cameras. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 3857–3866 (2019)

7. SHI, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.k., WOO, W.c.: Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting. In:
Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 28, pp. 802–810. Curran Associates, Inc.
(2015)

8. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: Hats: His-
tograms of averaged time surfaces for robust event-based object classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1731–1740 (2018)

9. Zhu, A., Yuan, L., Chaney, K., Daniilidis, K.: Ev-flownet: Self-supervised optical
flow estimation for event-based cameras. https://github.com/daniilidis-group/EV-
FlowNet

10. Zhu, A., Yuan, L., Chaney, K., Daniilidis, K.: Ev-flownet: Self-supervised optical
flow estimation for event-based cameras. In: Proceedings of Robotics: Science and
Systems. Pittsburgh, Pennsylvania (June 2018)

11. Zhu, A.Z., Thakur, D., Özaslan, T., Pfrommer, B., Kumar, V., Daniilidis, K.:
The multivehicle stereo event camera dataset: An event camera dataset for 3d
perception. IEEE Robotics and Automation Letters 3(3), 2032–2039 (2018)

