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Abstract. Fine-grained visual classification (FGVC) is much more chal-
lenging than traditional classification tasks due to the inherently subtle
intra-class object variations. Recent works are mainly part-driven (either
explicitly or implicitly), with the assumption that fine-grained informa-
tion naturally rests within the parts. In this paper, we take a differ-
ent stance, and show that part operations are not strictly necessary –
the key lies with encouraging the network to learn at different granu-
larities and progressively fusing multi-granularity features together. In
particular, we propose: (i) a progressive training strategy that effec-
tively fuses features from different granularities, and (ii) a random jigsaw
patch generator that encourages the network to learn features at spe-
cific granularities. We evaluate on several standard FGVC benchmark
datasets, and show the proposed method consistently outperforms exist-
ing alternatives or delivers competitive results. The code is available at
https://github.com/PRIS-CV/PMG-Progressive-Multi-Granularity-Training.

1 Introduction

Fine-grained visual classification (FGVC) aims at identifying sub-classes of a
given object category, e.g., different species of birds, and models of cars and
aircrafts. It is a much more challenging problem than traditional classification
due to the inherently subtle intra-class object variations amongst sub-categories.
Most effective solutions to date rely on extracting fine-grained feature represen-
tations at local discriminative regions, either by explicitly detecting semantic
parts [11, 41, 38, 12, 39] or implicitly via saliency localization [33, 10, 4, 25]. It fol-
lows that such locally discriminative features are collectively fused to perform
final classification.
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Early work mostly finds discriminative regions with the assistance of manual
annotations [2, 21, 37, 40, 16]. However, human annotations are difficult to obtain,
and can often be error-prone resulting in performance degradations [41]. Re-
search focus has consequently shifted to training models in a weakly-supervised
manner given only category labels [41, 38, 33, 26, 4]. Success behind these mod-
els can be largely attributed to being able to locate more discriminative local
regions for downstream classification. However little or no effort has been made
towards (i) at which granularities are these local regions most discriminative,
e.g., head or beak of a bird, and (ii) how can information across different gran-
ularities be fused together to classification accuracy, e.g., can do head and beak
work together.

Information cross various granularities is however helpful for avoiding the
effect of large intra-class variations. For example, experts sometimes need to
identify a bird using both the overall structure of a bird’s head, and finer de-
tails such as the shape of its beak. That is, it is often not sufficient to identify
discriminative parts, but also how these parts interact amongst each other in a
complementary manner. Very recent research has focused on the “zooming-in”
factor [11, 39], i.e., not just identifying parts, but also focusing on the truly dis-
criminative regions within each part (e.g., the beak, more than the head). Yet
these methods mostly focuses on a few parts and ignores others as zooming in
beyond simple fusion. More importantly, they do not consider how features from
different zoomed-in parts can be fused together in a synergistic manner. Differ-
ent to these approaches, we further argue that, one not only needs to identify
parts and their most discriminative granularities, but meanwhile how parts at
different granularities can be effectively merged.

In this paper, we take an alternative stance towards fine-grained classifica-
tion. We do not explicitly, nor implicitly attempt to mine fine-grained feature
representations from parts (or their zoomed-in versions). Instead, we approach
the problem with the hypothesis that the fine-grained discriminative information
lies naturally within different visual granularities – it is all about encouraging
the network to learn at different granularities and simultaneously fusing multi-
granularity features together. This can be better explained by Figure 1.

More specifically, we propose a consolidated framework that accommodates
part granularity learning and cross-granularity feature fusion simultaneously.
This is achieved through two components that work synergistically with each
other: (i) a progressive training strategy that effectively fuses features from dif-
ferent granularities, and (ii) a random jigsaw patch generator that encourages
the network to learn features at specific granularities. Note that we refrain from
using “scale” since we do not apply Gaussian blur filters on image patches, rather
we evenly divide and shuffle image patches to form different granularity levels.

As the first contribution, we propose a multi-granularity progressive training
framework to learn the complementary information across different granularities.
This differs significantly to prior art where parts are first detected, and later fused
in an ad-hoc manner. Our progressive framework works in steps during train-
ing, where at each step the training focuses on cultivating granularity-specific
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Fig. 1. Illustration of features learned by general methods (a and b) and our proposed
method (c and d). (a) Traditional convolution neural networks trained with cross en-
tropy (CE) loss tend to find the most discriminative parts. (b) Other state-of-the-art
methods focus on how to find more discriminative parts. (c) Our proposed progressive
training (Here we use last three stages for explanation.) gradually locates discriminative
information from low stages to deeper stages. And features extracted from all trained
stages are concatenated together to ensure complementary relationships are fully ex-
plored, which is represented by “Stage Concat.” (d) With assistance of jigsaw puzzle
generator the granularity of parts learned at each step are restricted inside patches.

information with a corresponding stage of the network. We start with finer gran-
ularities which are more stable, gradually move onto coarser ones, which avoids
the confusion made by large intra-class variations that appear in large regions.
On its own, this is akin to a “zooming out” operation, where the network would
focus on a local region, then zoom out a larger patch surrounding this local
region, and finish when we reach the whole image. More specifically, when each
training step ends, the parameters trained at the current step will pass onto
the next training step as its parameter initialization. This passing operation es-
sentially enables the network to mine information of larger granularity based
on the region learned in its previous training step. Features extracted from all
stages are concatenated only at the last step to further ensure complementary
relationships are fully explored.

However, applying progressive training naively would not benefit fine-grained
feature learning. This is because the mulit-granularity information learned via
progressive training may tend to focus on the similar region. As the second
contribution, we tackle this problem by introducing a jigsaw puzzle generator
to form different granularity levels at each training step, and only the last step
is still trained with original images. This effectively encourage the model to
operate on patch-level, where patch sizes are specific to a particular granularity.
It essentially forces each stage of the network to focus on local patches other
than holistically across the entire image, therefore learning information specific
to a given granularity level. This effect is demonstrated in Figure 1 and the
Figure 2 illustrates the learning process of progressive training with the jigsaw
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puzzle generator. Note that, the very recent work of [4] first adopted a jigsaw
solver to solve for fine-grained classification. We differ significantly in that we do
not employ jigsaw solver as part of feature learning. Instead, we simply generate
jigsaw patches randomly as means of introducing different object parts levels to
assist progressive training.

Main contributions of this paper can be summarized as follows:

1. We propose a novel progressive training strategy to solve for fine-grained vi-
sual classification (FGVC). It operates in different training steps, and fuses
information from previous levels of granularity at each step, ultimately cul-
tivating the inherent complementary properties across different granularities
for fine-grained feature learning.

2. We adapt a simple yet effective jigsaw puzzle generator to form images with
different levels of granularity. This allows the network to focus on different
“scales” of features as per prior work.

3. The proposed Progressive Multi-Granularity (PMG) Training framework ob-
tains state-of-the-art or competitive performances on three standard FGVC
benchmark datasets.

2 Related Work

2.1 Fine-Grained Classification

Recent studies on FGVC have moved from strongly-supervised scenario with
additional annotations e.g., bounding box [2, 21, 37, 40, 16], to weakly-supervised
conditions with only category labels [11, 41, 38, 36, 12, 22, 39, 42].

In the weakly-supervised configuration, recent studies mainly focus on lo-
cating the most discriminative parts, more complementary parts, and parts of
various granularities. However, few considered how to fuse information from
these discriminative parts together. Current fusion techniques can be roughly
divided into two categories. The first category conducts predictions based on
different parts and then directly combines their probabilities together. For ex-
ample, Zhang et al. [39] trained several networks focusing on features of different
granularities to produce diverse prediction distributions, and then weighted their
results before combining them together. The other group concatenate features
extracted from different parts together for next prediction [41, 11, 12, 38]. Fu et
al. [11] found region detection and fine-grained feature learning can reinforce each
other, and built a series of networks which located discriminative regions for the
next network while conducting predictions. With similar motivation, Zheng et al.
[41] jointly learned part proposals and the feature representations on each part,
and located various discriminative parts before prediction. Both of them train
a fully-connected fusion layer to fuse features extracted from different parts. Ge
et al. [12] went one step further by fusing features from complementary object
parts with two LSTMs stacked together.

Fusing features from different parts is still a challenging problem with lim-
ited efforts. In this work, we tackle it based on the intrinsic characteristics of
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fine-grained objects: although with large intra-class variation, the subtle details
exhibit stability at local regions. Hence, instead of locating discriminative parts
first, we guide the network to learn features from small granularity to large
granularity progressively.

2.2 Image Splitting Operations

Splitting an image into pieces with the same size has been utilized for various task
in prior art. Amongst them, one typical solution is to solve the jigsaw puzzle [6,
31]. It can also go one step further by adopting the jigsaw puzzle solution as the
initialization to a weakly-supervised network, which leads to better transforma-
tion performance [35]. This helps the network to exploit the spatial relationship
of local image regions. In one-shot learning, image splitting operation was used
for data augmentation [5], which split two images and exchanged patches across
to generate new training ones. In more recent research, DCL [4] first adopted
image splitting operation for FGVC, who destructed images to emphasize local
details and then reconstructed them to learn semantic correlation among local
regions. However, it split images with the same size during the whole training
process, which made it difficult to exploit multi-granularity regions. In this work,
we apply a jigsaw puzzle generator to restrict the granularity of learned regions
at each training step.

2.3 Progressive Training

Progressive training methodology was originally proposed for generative adver-
sarial networks [18], where it started with low-resolution images, and then pro-
gressively increased the resolution by adding new layers to the network. Instead
of learning information from all scales, this strategy allows the network to dis-
cover large-scale structure of the image distribution and then shift attention to
increasingly finer scale details. Recently, progressive training strategy has been
widely utilized for generation tasks [19, 29, 34, 1], since it can simplify the infor-
mation propagation within the network by intermediate supervision.

For FGVC, the fusion of multi-granularity information is critical to the model
performance. In this work, we adopt the idea of progressive training to design a
single network that can learn these information with a series of training stages.
The input images are firstly split into small patches to train low-level layers
of the model. Then the number of patches are progressively increased and the
corresponding high-level layers are added and trained. Most of the existing work
with progressive training are focusing on the task of sample generation. To the
best of our knowledge, this has not been attempted before for the task of FGVC.

3 Approach

In this section, we present our proposed Progressive Multi-Granularity (PMG)
training framework. We encourage the model to learn stable fine-grained infor-
mation in the shallower layers, and gradually focus on learning more abstracted
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Fig. 2. The illustration of the progressive training process. The network is trained from
shallow stages with smaller patches to deeper stages with larger patches. At the end of
each training step, the parameter from current step will initialize the parameter of fol-
lowing step. This enables the network to further mine information of larger granularity
based on the detail knowledge learned in the previous training step.

information of larger granularity in the deeper layers as the training progresses.
Please refer to Figure 2.

3.1 Progressive Training

Network Architecture Our network design for progressive training is generic
and could be implemented on the top of any state-of-the-art backbone feature
extractors, like Resnet [14]. Let F be our backbone feature extractor, which has
L stages. The output feature-map from any intermediate stage is represented as
F l ∈ RHl×Wl×Cl , where Hl, Wl, Cl are the height, width and number of channels
of the feature map at l-th stage, and l = {1, 2, ..., L}. Here, our objective is to
impose classification loss on the feature-map extracted at different intermediate
stages. Hence, in addition to F , we introduce convolution block H l

conv that takes
l-th intermediate stage output F l as input and reduces it to a vector represen-
tation V l = H l

conv(F l). Thereafter, a classification module H l
class consisting of

two fully-connected layers with Batchnorm [17] and Elu[7] non-linearity, corre-
sponding to l-th stage, predicts the probability distribution over the classes as
yl = H l

class(V
l). Here, we consider last S stages: l = L,L − 1, . . . , L − S + 1.

Finally, we concatenate the output from the last S stages as

V concat = concat[V L−S+1, . . . , V L−1, V L] (1)

This is followed by an additional classification module yconcat = Hconcat
class (V concat)

Training Process During training, each iteration contains S + 1 steps where
low-level stages of the model are trained first and new stages are progressively
added. Since the receptive field and representation ability of low-level stages are
limited, the network will be forced to first exploit discriminative information
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Algorithm 1 Progressive Training

Training data set D, Training data for a batch d, Training label for a batch y.
for epoch ∈ [0, epoch num) do

for b ∈ [0, batch num) do
d, y ⇐ batch b of D
for l ∈ [L− S + 1, L] do
n⇐ 2L−l+1

V l ⇐ Hl
conv(F l(P (d, n)))

yl ⇐ Hl
class(V l)

Ll ⇐ α×LCE(yl, y)
Backprop(Ll)

end for
V concat = concat[V L−S+1, . . . , V L−1, V L]
yconcat = Hconcat

class (V concat)
Lconcat ⇐ β ×LCE(yconcat, y)
Backprop(Lconcat)

end for
end for

from local details (i.e. object textures). Directly training the whole network in-
tends to learn all the granularities simultaneously. In contrast to that, step-wise
incremental training naturally allows the model to mine discriminative informa-
tion from local details to global structures when the features are gradually sent
into higher stages.

For training, we compute cross entropy (CE) loss LCE between the ground
truth label y and the predicted output from every stage.

At each iteration, a batch of data d will be used for S + 1 steps, and we
only train one stage’s output at each step in sequence. It needs to be clear that
all parameters are used in the current prediction will be optimized, even they
may have been updated in the previous steps, and this can help all stages in the
model working together.

3.2 Jigsaw Puzzle Generator

Jigsaw Puzzle solving [35] has been found to be suitable for self-supervised task
in representation learning. On the contrary, we borrow the notion of Jigsaw
Puzzle to generate input images for different steps of progressive training. The
objective is to devise different granularity regions and force the model to learn
information specific to the corresponding granularity level at each training step.
Given an input image d ∈ R3×W×H , we equally split it into n × n patches
which have 3× W

n ×
H
n dimensions. Then, the patches are shuffled randomly and

merged together into a new image P (d, n). Here, the granularities of patches are
controlled by the hyper-parameter n.

Regarding the choice of hyper-parameter n for each stage, two conditions
needs to be satisfied: (i) the size of the patches should be smaller than the recep-
tive field of the corresponding stage, otherwise, the performance of the jigsaw
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Fig. 3. The training procedure of the progressive training strategy which consists of
S+ 1 steps at each iteration (Here S = 3 for explanation). The Conv Block represents
the combination of two convolution layers and a max pooling layer, and Classifier
represent two fully connected layers with a softmax layer at the end. At each iteration,
the training data are augmented by the jigsaw generator and sequentially fed into into
the network by S + 1 steps. In our training process, the hyper-parameter n is 2L−l+1

for the lth stage. At each step, the output from the corresponding classifier will be used
for loss computation and parameter updating.

puzzle generator will be reduced; (ii) the patch size should increase proportion-
ately with the increase of the receptive fields of the stages. Usually, the receptive
field of each stage is approximately double than that of the last stage. Hence,
we set n as 2L−l+1 for the lth stage’s output.

During training, a batch of training data d will first be augmented to several
jigsaw puzzle generator-processed batches, obtaining P (d, n). All the jigsaw puz-
zle generator-processed batches share the same label y. Then, for the lth stage’s
output yl, we input the batch P (d, n), n = 2L−l+1, and optimize all the parame-
ters used in this propagation. Figure 3 illustrates the whole progressive training
process with the jigsaw puzzle generator step by step.

It should be clarified that the jigsaw puzzle generator cannot always guar-
antee the completeness of all the parts which are smaller than the size of the
patch, because they still have chances of getting split. However, it should not
be a bad news for model training, since we adopt random cropping which is
a standard data augmentation strategy before the jigsaw puzzle generator and
leads to the result that parts with appropriate granularities, which are split at
this iteration due to the jigsaw puzzle generator, will not be always split in other
iterations. Hence, it brings an additional advantage of forcing our model to find
more discriminative parts at the specific granularity level.

3.3 Inference

At the inference phase, we merely input the original images into the trained
model and the jigsaw puzzle generator is unnecessary. If we only use yconcat for
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prediction, the FC layers for the other three stages can be removed which leads
to less computational budget. In this case, the final result C1 can be expressed
as

C1 = argmax(yconcat). (2)

However, the prediction from a single stage with information of a specific
granularity is unique and complementary, which leads to a better performance
when we simply combine all outputs together with equal weights. The multi-
output combined prediction C2 can be written as

C2 = argmax(

L∑
l=L−S+1

yl + yconcat). (3)

4 Experimental Results and Discussion

In this section, we evaluate the performance of the proposed method on three
fine-grained image classification datasets: CUB-200-2011 (CUB) [32], Stanford
Cars (CAR) [20], and FGVC-Aircraft (AIR) [27]. Firstly, the implementation
details are introduced in Section 4.1. Subsequently, the classification accuracy
comparisons with other state-of-the-art methods are provided in Section 4.2. In
order to illustrate the advantages of different components and design choices in
our method, a comprehensive ablation study and a visualization are provided in
Section 4.3 and 4.5. Besides, the discussion about the hyper-parameter selection
and the fusion techniques are provided in Section 4.4.

4.1 Implementation Details

We perform all experiments using PyTorch [28] with version higher than 1.3
over a cluster of GTX 2080 GPUs. The proposed method is evaluated on the
widely used backbone networks: VGG16 [30] and ResNet50 [14], which means
the total number of stages L = 5. For the best performance, we set S = 3,
α = 1, and β = 2. The category labels of the images are the only annotations
used for training. The input images are resized to a fixed size of 550× 550 and
randomly cropped into 448× 448, and random horizontal flip is applied for data
augmentation when we train the model. During testing, the input images are
resized to a fixed size of 550× 550 and cropped from center into 448× 448. All
the above settings are standard in the literatures.

We use stochastic gradient descent (SGD) optimizer and batch normalization
as the regularizer. Meanwhile, the learning rates of the convolution layers and the
FC layers newly added by us are initialized as 0.002 and reduced by following the
cosine annealing schedule [24]. The learning rates of the pre-trained convolution
layers are maintained as 1/10 of those of the newly added layers. For all the
aforementioned models, we train them for up to 200 epochs with batch size as
16 and used a weight decay as 0.0005 and a momentum as 0.9.
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Table 1. Comparison with other state-of-the-art methods.

Method Base Model CUB (%) CAR (%) AIR (%)

FT VGG (CVPR18) [33] VGG16 77.8 84.9 84.8
FT ResNet (CVPR18) [33] ResNet50 84.1 91.7 88.5
B-CNN (ICCV15) [23] VGG16 84.1 91.3 84.1
KP (CVPR17) [8] VGG16 86.2 92.4 86.9
RA-CNN (ICCV17) [11] VGG19 85.3 92.5 -
MA-CNN (ICCV17) [41] VGG19 86.5 92.8 89.9
PC (ECCV18) [10] DenseNet161 86.9 92.9 89.2
DFL (CVPR18) [33] ResNet50 87.4 93.1 91.7
NTS-Net (ECCV18) [38] ResNet50 87.5 93.9 91.4
MC-Loss (TIP20) [3] ResNet50 87.3 93.7 92.6
DCL (CVPR19) [4] ResNet50 87.8 94.5 93.0
MGE-CNN (ICCV19) [39] ResNet50 88.5 93.9 -
S3N (ICCV19) [9] ResNet50 88.5 94.7 92.8
Stacked LSTM (CVPR19) [12] ResNet50 90.4 - -

PMG VGG16 88.2 94.2 92.4
PMG (Combined Accuracy) VGG16 88.8 94.3 92.7
PMG ResNet50 88.9 95.0 92.8
PMG (Combined Accuracy) ResNet50 89.6 95.1 93.4

Table 2. The p-value of one-sample Student’s t-tests between combined accuracies of
our method and methods with close performances on three datasets. The proposed
method has statistically significant difference from a referred technique if the corre-
sponding p-value is smaller than 0.05

Method CUB CAR AIR

DCL (CVPR19) [4] 6.4e-07 2.5e-06 2.2e-05
MGE-CNN (ICCV19) [39] 8.7e-06 1.5e-07 -
S3N (ICCV19) [9] 4.3e-06 1.4e-05 4.5e-06

4.2 Comparisons with State-of-the-Art Methods

The comparisons of our method with other state-of-the-art methods on CUB-
200-2011, Stanford Cars, and FGVC-Aircraft are presented in Table 1. Both the
accuracy of the single output C1 and the combined output C2 are listed. In
addition, we run our method 5 times with random initialization and conduct a
one-sample Student’s t-test to confirm the significance of our results in Table 2.
Results show that our improvement is statistically significant with significance
level 0.05.

CUB-200-2011 We achieve a competitive result on this dataset in a much eas-
ier experimental procedure, since only single feed-forward propagation through
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one network is needed during testing. Our method outperforms RA-CNN [11]
and MGE-CNN [39] by 4.3% and 1.1%, even though they build several different
networks to learn information of various granularities. They train the classifica-
tion of each network separately and then combine their information for testing,
which proofs our advantage of exploiting multi-granularity information gradu-
ally in one network. Besides, even Stacked LSTM [12] obtains better performance
than our method, it is a two phase algorithm that requires Mask-RCNN [13] and
CPF to offer complementary object parts and then uses bi-directional LSTM [15]
for classification, which leads to longer inference time and more computation
budget.

Stanford Cars Our method achieves state-of-the-art performance with Resnet50
as the base model. Since the performance of yconcat is good enough, the improve-
ment of combining multi-stage outputs is not obvious. The result of our method
surpasses PC [10] even it acquires great performance gains by adopting more
advanced backbone network i.e. DenseNet161. For MA-CNN [41] and NTS-Net
[38] which first locate several different discriminative parts to combine feature
extracted from each of them for final classification. We outperform them by a
large margin of 2.3% and 1.2%, respectively.

FGVC-Aircraft On this task, the multi-output combined result of our method
also achieves the state-of-the-art performance. Although S3N [9] finds both dis-
criminative parts and complementary parts for feature extraction, and applies
additional inhomogeneous transform to highlight these parts, we still outperform
it by 0.6% with the same backbone network ResNet50, and show competitive
result even when we adopt VGG16 as the base model.

4.3 Ablation Study

We conduct ablation studies to understand the effectiveness of the progressive
training strategy and the jigsaw puzzle generator. We choose CUB-200-2011
dataset for experiments and ResNet50 as the backbone network, which means
the total number of stages L is 5. We first design different runs with the number
of stages used for output S increasing from 1 to 5 and no jigsaw puzzle generator,
as shown in Table 3. The yconcat is kept for all runs and number of steps is S+1.
It is clear that the increasing of S boosts the model performance significantly
when S < 4. However, we also notice the accuracy starts to decrease when
S = 4. The possible reason is that the low stage layers are mainly focus on
the class-irrelevant features, but the additional supervision will force it to distill
class-relevant information and then affect the overall performance.

In Table 3, we also report the results of our method with the jigsaw puzzle
generator. The hyper-parameter n of the jigsaw puzzle generator for lth stage
follows the pattern that n = 2L−l+1. It is obvious that the jigsaw puzzle generator
improves the model performance on the basis of progressive training when S <
4. When S = 4, the model with the jigsaw puzzle generator does not show
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Table 3. The performances of the proposed method by using different hyper-parameter
s with/without the jigsaw puzzle generator.

S,n Accuracy (%) Combined Accuracy (%)

1,{1,1} 86.3 86.5
2,{1,1,1} 87.6 88.0
3,{1,1,1,1} 88.3 88.7
4,{1,1,1,1,1} 87.8 88.5
5,{1,1,1,1,1,1} 87.7 88.3

1,{2,1} 86.9 86.9
2,{4,2,1} 88.5 88.7
3,{8,4,2,1} 88.9 89.6
4,{16,8,4,2,1} 88.0 88.5
5,{32,16,8,4,2,1} 87.2 87.7

Table 4. The combined accuracies of our method with different α and β

.

α, β CUB(%) CAR(%) AIR(%)

1, 1
3

88.6 94.5 92.8
1, 1

2
88.9 94.7 92.8

1,1 89.2 95.0 93.1
1,2 89.6 95.1 93.4
1,3 89.1 95.1 93.2

any advantages, and when S = 5 the jigsaw puzzle generator lowers the model
performance. This is because when n > 8 the split patches are too small to keep
meaningful information, which instigates confusion in the model training.

According to the above analysis, progressive training is beneficial for fine-
grained classification task when we choose appropriate S. In such a case, the
jigsaw puzzle generator can further improve the performance.

4.4 Discussions

The choice of hyper-parameter (α and β) In our training procedure, the
first S steps and the last step are trained for different goals: learning features with
increasing granularity as the network going deeper, and learning correlations
between multi-granularity features. Hence, we introduce two hyper-parameter α
and β to adjust their training loss. The model performances with different choice
of α and β are listed in Table 4. When we keep α = 1 , it can be observed that
the accuracy increases and then decreases as β changes. And the model achieves
the best performance on both three datasets when β = 2.

Fusion of multi-granularity information. In the experiments, we generate
images contain multi-granularity information via jigsaw puzzle generator with
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Table 5. The comparison between our fusion technique and the other manners.

Fusion Technique Combined Accuracy(%)

Four Networks Separately 87.7
One network non-progressively 89.1
One network progressively 89.6

n = {8, 4, 2, 1}, and fused these information with one network in a progressive
manner. In order to demonstrate the advantage of the fusion strategy under the
same configuration, we conduct two experiment on (i) training four different net-
works with generated images where n = {8, 4, 2, 1} separately and concatenating
their features for final classification with a fully connected fusion layer, which is
similar to the fusion technique used in RA-CNN [11], and (ii) training a model
with same architecture as ours but back-propagating the losses of four outputs
in one step. We choose CUB-200-2011 dataset for experiments with ResNet50 as
the base model and the results are listed in Table 5. The performance of four net-
works trained separately is higher than a lot of state-of-the-art methods but our
method still outperforms it by a large margin, which indicates the effectiveness
of our fusion technique. When we back-propagate losses of four outputs in one
step, which means multi-granularity information is learnt simultaneously, the
performance clearly drops even the other configurations are unchanged. Hence,
the unique advantage of progressively learning multi-granularity information is
significant.

4.5 Visualization

In order to demonstrate the achievement of our motivation, we apply the Grad-
CAM to visualize the last three stages’ convolution layers of both our method
and the baseline model. Columns (a)-(c) in Figure 4 are visualization of the
convolution layers from the third to the fifth stage of our model’s backbone net-
work, which are supervised by the jigsaw puzzle generator-processed images with
n = {8, 4, 2} sequentially. It is shown in column (a) that the model concentrates
on discriminative parts of small granularity at the third stage like bird eyes and
small pattern or texture of birds’ feathers. And when it comes to column (c),
the fifth stage of the model pays attention to parts of larger granularity. The
visualization result demonstrates that our model truly gives predictions based
on discriminative parts from small granularity to large granularity gradually.

When compared with the activation map of the baseline model, our model
shows more meaningful concentration on the target object, while the baseline
model only shows the correct attention at the last stage. This difference indicates
that the intermediate supervision of progressive training can help the model
distill useful information at low-level stages. Besides, we find the baseline model
usually only concentrates on one or two parts of the object at the last stage.
However, the attention regions of our method nearly cover the whole object at
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        (a)                 (b)                (c)                 (d)                (e)                 (f)                            
 

Fig. 4. Activation map of selected results on the CUB dataset with the Resnet50 as
the base model. Columns (a)-(c) and (d)-(f) are visualizations of the last three stages’
convolution layers of our model and the baseline model, respectively.

each stage, which indicates that jigsaw puzzle generator-processed images can
force the model to learn more discriminative parts at each granularity level.

5 Conclusions

In this paper, we approached the problem of fine-grained visual classification
from a rather unconventional perspective – we do not explicitly nor implicitly
mine for object parts, instead we show fine-grained features can be extracted
by learning across granularities and effectively fusing multi-granularity features.
Our method can be trained end-to-end without additional manual annotations
other than category labels, and only needs one network with one feed-forward
pass during testing. We conducted experiments on three widely used fine-grained
datasets, and obtained state-of-the-art performance on two of them while being
competitive on the other.
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