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1 Derivation of expressions for backward pass for WF-K
and WF-KPN

Under the assumption of periodic image boundary conditions, the degradation
matrix K and the convolution matrix Gd are circulant and, therefore, they can
be diagonalized in the Fourier domain. Hence, the solution of the Wiener filter
for the proposed models WF-K and WF-KPN can be expressed in a closed form
as

x̂ = FH

(
D∗KFy

|DK|2 + eα
∑D
d=1 |DGd|2

)
, (1)

where the division of the vector in the numerator by the diagonal matrix in the
denominator is applied in an element-by-element fashion.

The regularization kernels gd and the power of the trade-off α are learned dur-
ing the training process using back-propagation. While the solution to Eq. 1 com-
prises complex quantities, the loss function used for the network training is real-
valued, allowing the parameter update to be performed using back-propagation.
For this reason, we have implemented our customized layers which depend on
the analytical derivations of the gradients of the solution x̂ w.r.t. the trainable
parameters.

Below, we present the derivation of the expressions of the gradients for
the backward pass. Unless explicitly stated otherwise, we assume the use of
denominator-layout notation in the calculations.

1.1 Gradient w.r.t. α

We start the derivation of the closed-form expressions for back-propagation with
a calculation of the gradient of the Wiener filter solution x̂ w.r.t. the parameter
α. Let us denote the solution in Eq. (1) as a function defined by the parameters,

f(α,y,gd) = FH

(
D∗KFy

|DK|2 + eα
∑D
d=1 |DGd|2

)
. (2)



2 V. Pronina et al.

Note that similarly to Eq. (1), the division operation in the Eq. (2) is meant
to describe the element-wise division of the vector in the numerator by the
corresponding diagonal element of the diagonal matrix in the denominator.

For simplicity and compactness of the calculations we denote the numerator
and the denominator in Eq. (2) as

D∗KFy = z, (3)

|DK|2 + eα
D∑
d=1

|DGd|2 = Ω. (4)

With the notations defined in Eqs. (3) and (4), the function in Eq. (2) yields the
form of

f(α,y,gd) = FHΩ−1z. (5)

Note that Ω−1 is a diagonal matrix. Assuming the numerator-layout notation,
the gradient of f(α,y,gd) w.r.t. the parameter α can be calculated as

∂f(α,y,gd)

∂α
=
∂FHΩ−1z

∂α
= −FHΩ−1

∂Ω

∂α
Ω−1z =

= −FHΩ−1eα
D∑
d=1

|DGd|2Ω−1z = −eαFHΩ−2
D∑
d=1

|DGd|2D∗KFy.

(6)

1.2 Gradient w.r.t. gd

Next, we derive the expression for the gradient of f(α,y,gd) w.r.t. the regu-
larization kernel gd. To do that, we rewrite Eq. (2) as f(α,y,gd) = FHh(g),
where

h(g) =
λ∗K � Fy

|λK|2 + eα
∑D
d=1 |Tdgd|2

. (7)

This way, we can express the gradient of f(α,y,gd) w.r.t. gd as

∂f(α,y,gd)

∂gd
=
∂FHh(g)

∂gd
=
∂h(g)

∂gd
F∗. (8)

We emphasize that DK and DGd
are diagonal matrices and we use the following

notation:

λK = vec(DK)

λGd
= vec(DGd

) = Tdgd (9)

Td = FSGdPGd ∈ CN×Ld.

Here vec(D) is meant to define the vector which lies on the main diagonal of
the diagonal matrix D. Note that the operation � corresponds to element-wise
multiplication, and the division in Eq. (7) applies element-wisely. Here SGd ∈
RN×N is a circulant shift operator and PGd ∈ RN×Ld is a zero-padding operator.
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Taking into consideration Eq. (7) and the notations in Eq. (9), h(g) can be
rewritten as

h(g) =


M1λ

∗
K�Fy

|M1λK|2+eα
∑D
d=1 |M1Tdgd|2

...
MNλ

∗
K�Fy

|MNλK|2+eα
∑D
d=1 |MNTdgd|2

 , (10)

where Mi ∈ R1×N is a vector every element of which except i is equal to zero,
and the i-th element is equal to 1. Therefore, the i-th element of the vector h(g)
is

hi(g) =
Miλ

∗
K � Fy

|MiλK|2 + eα
∑D
d=1 |MiTdgd|2

=
ai

bi + eαui(g)
. (11)

Here we denote

ai = Miλ
∗
K � Fy,

bi = |MiλK|2 (12)

ui =

D∑
d=1

|MiTdgd|2 =

D∑
d=1

g>d T∗>d M>
i MiTdgd.

To calculate the gradient of hi(g) w.r.t. the j-th regularization kernel gj one
must perform indirect differentiation, starting with acquiring the gradient of
ui(g) w.r.t. gj ,

∂ui(g)

∂gj
=

D∑
d=1

(
∂gd
∂gj

T∗>d M>
i MiTdgd +

∂gd
∂gj

T>d M>
i MiT

∗
dgd

)
=

= (T∗>j M>
i MiTj + T>j M>

i MiT
∗
j )gj .

(13)

Incorporating the result obtained in Eq. (13) into ∂hi(g)
∂gj

, we derive

∂hi(g)

∂gj
= ai

∂(bi + eαui(g))−1

∂gj
= −ai

eα

(bi + eαui(g))2
∂ui(g)

∂gj
=

= −eα Miλ
∗
K � Fy

(|MiλK|2 + eα
∑D
d=1 |MiTdgd|2)2

· (Rij + Rij)gj ,

(14)

where Rij = TH
j M>

i MiTj and Rij is conjugate to Rij .

The gradient of ∂h(g)
∂gj

can be written as

∂h(g)

∂gj
=
[
∂h1(g)
∂gj

∂h2(g)
∂gj

... ∂hN (g)
∂gj

]
∈ RLd×N (15)

Taking into consideration Eq. (15) and applying the chain rule, we derive the

expression for ∂h(g)
∂gj

F∗q from Eq. (8), where q ∈ RN×1 is a real-valued vector,

backpropagated from further layers. This way we can write

∂h(g)

∂gj
F∗q =

D∑
i=1

∂hi(g)

∂gj
Qi, Qi = MiF

∗q. (16)
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Let us derive the expression under the summation in Eq. (16) as

∂hi(g)

∂gj
Qi = −eα Miλ

∗
K � Fy

(|MiλK|2 + eα
∑D
d=1 |MiTdgd|2)2

·

· (Rij + Rij)gjMiF
∗q = −eα(Rij + Rij)gjMiz. (17)

Here we use the notation DK = diag(λK), DGd = diag(λGd
), and therefore

z =
D∗

KFy

(|DK|2+eα
∑D
d=1 |DGd

|2)2 � F∗q. Here, the division operation corresponds to

the element-wise division of the vector in the numerator by the corresponding
diagonal elements of the diagonal matrix in the denominator. Here diag(λ) de-
notes a square matrix with vector λ on the main diagonal and zeros otherwise.

Incorporating Eq. (17) into Eq. (16) and considering Q = F∗q we can write

∂h(g)

∂gj
Q = −eα

D∑
i=1

(Rij + Rij)gjMiz = −eα
D∑
i=1

(
TH
j M>

i MiTj+

+TH
j M>

i MiTj

)
gjzi = −eαP>Gj

S>Gj

(
FH

D∑
i=1

M>
i MiλGj

zi+

+ F>
D∑
i=1

M>
i Miλ

∗
Gj

zi

)
= −eαP>Gj

S>Gj

(
FH(λGj

� z)+

+ F>(λ∗Gj
� z)

)
= −eαP>Gj

S>Gj

(
FH(λGj

� z) + FH(λGj � z∗)
)
.

(18)

We note that FH(λGj
� z∗) is real, therefore FH(λGj

� z∗) = FH(λGj
� z∗).

This way Eq. (18) can be rewritten as

∂h(g)

∂gj
Q = −eαP>Gj

S>Gj

(
FH(λGj � z) + FH(λGj � z∗)

)
=

= −eαP>Gj
S>Gj

FH
(
λGj � (z + z∗)

)
=

= −2eαP>Gj
S>Gj

FH
(
λGj

� Re(z)
)
.

(19)

This way the expression for the gradient of f(α,y,gd) with respect to the
regularization kernel gd is

∂f(α,y,gd)

∂gd
q = −2eαP>Gd

S>Gd
FH ·

·

[
λGd

� Re

(
D∗KFy

(|DK|2 + eα
∑D
d=1 |DGd

|2)2
� F∗q

)]
.

(20)

The division operation in Eq. (20) defines the element-wise division of the vector
in the numerator by the corresponding diagonal elements of the diagonal matrix
in the denominator.
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1.3 Gradient w.r.t. y

Finally, we derive the expression for the gradient of f(α,y,gd) w.r.t. the input
y. Although this formula is not used in the training routine presented herein,
we include the derivation to cover a general case of a larger pipeline which
would comprise our network, e.g., when several Wiener filters are stacked into a
sequence. For this derivation, we use the original non FFT-based formulation of
the Wiener filter:

f(α,y,gd) = (K>K + eα
D∑
d=1

G>d Gd)
−1K>y. (21)

Here we denote K>K+eα
∑D
d=1 G>d Gd = B. This way, Eq. (21) can be rewritten

as (K>K + eα
∑D
d=1 G>d Gd)

−1K>y = B−1K>y, and the expression for the
gradient of f(α,y,gd) w.r.t. the input y can be simplified as

∂f(α,y,gd)

∂y
=
∂B−1K>y

∂y
= KB−> = KB−1. (22)

As it was stated above, the matrices K and Gd are decomposed in the Fourier
domain as

K = FHDKF, Gd = FHDGd
F, (23)

where F ∈ CN×N is the Fourier (DFT) matrix, FH ∈ CN×N is its inverse,
DK, DGd

∈ CN×N are diagonal matrices. Using the FFT-based inference of
the Wiener filter and the notation defined in Eq. (4), the gradient of f(α,y,gd)
w.r.t. the input y in Eq. (22) can be rewritten as

∂f(α,y,gd)

∂y
= FHDK(|DK|2 + eα

D∑
d=1

|DGd|2)−1F = FHΩ−1DKF. (24)

2 UNet architecture

UNet implemented in the proposed methods WF-KPN, WF-KPN-SA and WF-
UNet, has almost identical architecture in all cases with some modifications for
each proposed algorithm. Overall, the architecture of the UNet consists of a con-
tracting path and an expansive path. Each step of the contracting path involves
application of 2 convolutional layers of 3 × 3 kernels each followed by a 2 × 2
max pooling operation for downsampling. The number of feature channels starts
from 12 and increases at each downsampling except the last one by a factor of
2 reaching a value of 96. Each step of the expanding path of the network con-
sists of an upsampling, concatenation with the feature map from the contracting
path and 2 convolutional layers of 3× 3 kernels each. Respectively, the number
of channels decreases at each upsampling except the last one by a factor of 2.
The rectified linear unit is applied after each convolutional layer except the final
convolutional layer that produces the output of the network.
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3 Variation of kernels number and size for WF-K and
WF-KPN

The proposed models WF-K and WF-KPN employ a group of D regularization
kernels of size K ×K to obtain the solution in the form of

x̂ = FH

(
D∗KFy

|DK|2 + eα
∑D
d=1 |DGd|2

)
. (25)

We performed an ablation study to understand the influence of the number and
the size of the regularization kernels on the image restoration quality. Specifically,
we trained both models, WF-K and WF-KPN, implementing D = 8, K = 3
and D = 24, K = 5 regularization kernels. For the ablation study, we used
the same dataset and the training pipeline as in the main case. Namely, we
implemented a Gaussian deblurring dataset, that was created by taking the
ground-truth samples from the FMD [2] and the dataset described in [1] and
by cropping them into the tiles of size 256 × 256. All images were rescaled to
the range [0,1]. During the training process, a ground-truth sample from 975
training samples is convolved with a randomly chosen blur kernel from a set of
25 training PSFs, followed by a perturbationn with i.i.d. Gaussian noise with
standard deviation from the set (0.001, 0.005, 0.01, 0.05, 0.1). To evaluate the
performance of the algorithms, we used 5 test sets of images distorted with
the Gaussian noise of different levels. In particular, we used 230 ground-truth
images and convolved them with a fixed blur kernel from a sub-set of 5 PSFs
reserved for testing. Finally, the noisy observation of a blurry image is produced
by adding the Gaussian noise, with standard deviations being taken from the
set (0.001, 0.005, 0.01, 0.05, 0.1). Note that all ground-truth and the resulting
distorted images are grayscale in all experiments (the false color Figures in the
main paper were produced to emphasize fine details in the background).

Results in the Table 1 show that increasing the number and the size of kernels
in WF-K method leads to improvement in PSNR of nearly 0.15dB (in the low
noise regime). Yet, at high noise levels, an increase of the size and the number
of regularization kernels results in a marginal PSNR drop of 0.06dB. For WF-
KPN, increasing the number and the size of kernels improves the results for all
noise levels, from nearly 0.4dB in the high noise regime to nearly 1.25dB at
the low noise levels. Table 1 shows that the increase of the parameters of the
network expectedly leads to improvement of the results. In particular, increasing
the number and the size of the kernels yields better performance at the low noise
levels.

Regularization kernels, predicted with the models WF-K and WF-KPN with
D = 8, K = 3, are shown in Figure 1 along with the results of the restoration
with both models. The images show that WF-K provides a group of learnable
kernels which are identical for all images, whereas WF-KPN predicts a group of
regularization kernels per image. Results of the restoration with both models,
presented in the Figure 1, demonstrate that WF-KPN tends to restore images
better than WF-K.
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Table 1. PSNR and SSIM comparisons on Gaussian image deblurring for five different
noise levels for different number and size of the regularization kernels

STD

0.001 0.005 0.01 0.05 0.1
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 36.23 .8955 35.37 .8791 33.93 .8339 26.03 .3858 21.14 .1718

D = 8, K = 3
WF-K 35.66 .8849 35.61 .8834 35.45 .8787 32.74 .7950 29.27 .6835
WF-KPN 38.72 .9253 37.98 .9176 36.80 .9028 32.33 .8022 29.20 .7259

D = 24, K = 5
WF-K 35.81 .8861 35.75 .8846 35.58 .8798 32.75 .7945 29.21 .6807
WF-KPN 39.95 .9368 38.41 .9218 37.20 .9057 32.69 .8095 29.20 .7386

4 Visualization of PSFs

In microscopy, blurring kernels usually do not exhibit great deviations. Never-
theless, to ensure fair comparison we varied our kernels both in terms of genera-
tion of hyper-parameters for kernels implemented both in Poisson and Gaussian
noise cases and the support sizes for the kernels implemented only in Gaussian
noise case. PSFs used for image blurring during inference in cases of Poisson and
Gaussian noise are shown in Fig. 4 along with the examples of the corresponding
ground truth and distorted images. Fig. 5 and Fig. 6 show PSFs used for blurring
during training and inference respectively in case of Gaussian noise; Fig. 8 and
Fig. 7 show PSFs used for blurring during training and inference respectively in
case of Poisson noise.

5 Additional Results

Additional results for deblurring of images corrupted with the Gaussian noise
of different levels are presented in Fig. 2. We observe that our methods are
marginally inferior to the DMSP-NA and FDN on the lowest noise levels, how-
ever, our method WF-KPN-SA outperforms the other methods in the higher
noise regimes, allowing the restoration of the finest image details.

Additional study of the Poisson image deblurring, presented in Fig. 3, further
proves that our methods WF-KPN-SA and WF-UNet allow to reconstruct the
smallest image details with excellent values of the metrics.
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Ground
truth Degraded WF-K kernels WF-KPN kernels WF-K WF-KPN

Fig. 1. Predicted kernels in WF-K and WF-KPN methods for different images and the
corresponding restorations.
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Fig. 2. Restoration of microscopy images degraded by PSF and Gaussian noise with
the standard deviations (σ) from the set (0.001, 0.005, 0.01, 0.05, 0.1). The metrics
shown beneath each image are PSNR/SSIM. All images are originally grayscale, but
are shown in pseudo-color to stress the details in different structures, textures, and in
the background.
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Fig. 3. Restoration of microscopy images scaled to the maximum intensity peaks (p)
from the range (1, 2, 5, 10, 25, 50) and degraded by PSF and the Poisson noise.
The metrics shown beneath each image are PSNR/SSIM. The images are originally
grayscale, but are shown in a pseudo-color to stress the details in different structures,
textures, and in the background.
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Fig. 4. Top row. Examples of the five ground truth images. Middle row. Five PSFs
used for blurring in the Gaussian noise case during inference with the corresponding
blurred images. Bottom row. Five PSFs used for blurring in the Poisson noise case
during inference with the corresponding blurred images.
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Fig. 5. Twenty five PSFs used for blurring in the Gaussian noise during training.

Fig. 6. Five PSFs used for blurring in the Gaussian noise case during inference.
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Fig. 7. Five PSF used for blurring in the Poisson noise case during inference.

  

Fig. 8. Twenty five PSFs used for blurring in the Poisson noise during training.
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