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Abstract. Microscopy is a powerful visualization tool in biology, en-
abling the study of cells, tissues, and the fundamental biological pro-
cesses; yet, the observed images typically suffer from blur and background
noise. In this work, we propose a unifying framework of algorithms for
Gaussian image deblurring and denoising. These algorithms are based
on deep learning techniques for the design of learnable regularizers inte-
grated into the Wiener-Kolmogorov filter. Our extensive experimentation
line showcases that the proposed approach achieves a superior quality of
image reconstruction and surpasses the solutions that rely either on deep
learning or on optimization schemes alone. Augmented with the variance
stabilizing transformation, the proposed reconstruction pipeline can also
be successfully applied to the problem of Poisson image deblurring, sur-
passing the state-of-the-art methods. Moreover, several variants of the
proposed framework demonstrate competitive performance at low com-
putational complexity, which is of high importance for real-time imaging
applications.

Keywords: deblurring, denoising, learnable regularizers, microscopy de-
blurring, Wiener filter.

1 Introduction

Microscopes are widely used in biological and medical research, allowing the
study of organic and inorganic substances at the minuscule scale. The observed
microscopy images, however, suffer from the following two inherent distortions:
a blur of detail caused by the resolution limit of a microscope, and a background
noise introduced by the imperfections of the imaging system as a whole and by
the image-recording sensor in particular. Both of these traits not only distort the
perception of the detail in the image but also influence the quantitative analysis
of its content [14,33].

Mathematically, the image formation process can be described by the oper-
ation of convolution, where the underlying image is convolved with the point
spread function of the microscope [17,39]. Two fluorescence microscopy imaging
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systems – widefield and confocal – are very popular among biologists. In the
case of widefield microscopy, the entire specimen is exposed to a uniform light
source. Here, the intensity of the illuminating light is high and the noise statistics
of the recorded image can be approximated by the Gaussian distribution [47].
On the contrary, the confocal microscopes rely on point-by-point imaging of the
specimen thanks to an aperture (pin-hole) installed in the microscope’s optical
system to block the out-of-focus signal. This improves the resolution but limits
the numerical aperture of the microscope, effectively reducing the number of
photons captured by the imaging detector. A more appropriate approximation
for the noise in such low-photon images is the Poisson distribution [47].

While general deconvolution problems require estimation of a blurring kernel,
in microscopy, the precise PSF measurement is a simpler problem since it can
be accomplished using nano-scale beads that act as a Dirac input [38]. For this
reason, in our work we do not address the problem of PSF estimation.

Restoration of microscopy images is an ill-posed inverse problem where a
unique solution does not exist [17]. One, therefore, needs to constrain the space
of solutions in order to obtain a statistically or a physically meaningful one.
A popular approach for doing that follows the variational formulation of the
problem, where the restored image is obtained as the minimizer of an objective
function [12] with the aid of calculus of variations. This objective function com-
prises two terms: the data fidelity term that measures the proximity between the
obtained measurements and the solution, and the regularization term that inte-
grates prior information about the expected solution. There are several methods
focused on the development of an effective regularization scheme for the image
restoration, e.g., the Hyper-Laplacian priors [22], the non-local means [10], the
shrinkage fields [37], and others.

With the advent of deep learning, many inverse problems have been success-
fully approached with Fully Convolutional Neural Networks (FCNNs) [32,41]
which can learn a mapping between the measured image and its expected re-
construction. Furthermore, a series of works have incorporated deep learning
for the regularization purposes in a wide range of image restoration problems
[49,25,24,50,23,20]. Such a regularization paradigm, in turn, has allowed to sur-
pass the performance of the one-shot methods relying on FCNN; however, none
of these techniques have been tested on microscopy related deblurring problems.

In this work, we present a joint denoising and deblurring framework for mi-
croscopy images, which comprises a collection of methods that leverage the ad-
vantages of both the classical schemes for optimization, and the deep learning
approaches for regularization. We develop an extensive set of techniques for han-
dling the image prior information, by using both shallow and deep learning for
parametrization. The proposed framework entails the following steps:

- First, a regularizer is formed as a group of learnable kernels and is deployed
to every image identically.

- Second, an intuitive extension is further examined with the group of kernels
being predicted per image using a compact FCNN as a Kernel Prediction
Network (KPN).
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- The same kernel-predicting approach is then probed in per pixel evaluation,
with the KPN predicting the appropriate regularizer for each spatial location
in the image.

- The last step consists of approximating the entire regularization function with
a neural network, which is then employed in an iterative manner.
The developed methods outperform solutions based either on optimization

schemes alone or the solutions based merely on deep learning techniques. Ex-
ploiting both the classical optimization and the deep learning methodologies, the
proposed approaches are intrinsically ready for fine-tuning the trade-off between
the computational efficiency and the accuracy of image reconstruction.

2 Related Work

Deconvolution in the presence of noise is generally considered a challenging task,
and it has attracted significant attention by the research community. The sim-
plest deconvolution approach consists in estimation of the maximum likelihood
under the assumption of the statistical model of the observed data. The main
drawback of this approach is the amplification of the measurement noise. One
common way to avoid this hurdle is to add the regularization term to penalize
the values of the solution.

One of the well-known classical methods for image deblurring and denoising,
the Wiener-Kolmogorov filter, or Wiener filter [46,43], is derived as a maxi-
mum likelihood estimator under the assumption of Gaussian noise. It uses the
Tikhonov regularization functional to incorporate prior knowledge about the ex-
pected solution. Wiener filter also retrieves the minimum mean squared error
estimate and it has established itself as a fast deconvolution algorithm [4,9,51]
due to its closed-form solution in the Fourier domain. Recently, the Wiener filter
became a part of methods such as PURE-LET [27] and SURE-LET [51], per-
forming deconvolution with a piece-wise thresholding under wavelet coefficients
regularization.

Another well-known method for image deblurring is the Richardson-Lucy al-
gorithm, which is derived as a maximum-likelihood estimator under the assump-
tion of Poisson noise [35,29]. Richardson-Lucy algorithm is a common method
for tackling problems of image deblurring and denoising in microscopy and it is
mostly used with Tikhonov and total-variation regularization [15].

In order to drive the solution of the optimization problem towards a subset
of physically plausible image reconstructions, many researchers have resorted to
hand-crafted regularization schemes. For example, Krishnan et al. in [22] propose
to use hyper-Laplacian penalty functions, while in [7] a method using non-local
regularization constraint is proposed for image deblurring and denoising.

With the advent of deep learning, nearly all image restoration methods were
revisited from a learnable perspective with great success. Being widely used in
many research areas, including the biomedical field, a plethora of neural network
approaches have been proposed for denoising [32], demosaicking [21], and super-
resolution [41]. Deep learning methods are also applied in image deblurring, e.g.,
in [16], where a CNN is used for restoring images corrupted with various visual
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artifacts, and in [13], where a parametric CNN model was used to enhance a
shape-based artifact elimination. Xu et al. in [48] proposed a CNN that learns
the deconvolution operation for natural images in a supervised manner. A step
into combining traditional optimization schemes with deep learning is made
in [37] by using iterative FFT-based deconvolution with learnable regulariza-
tion filters, weights and shrinkage functions. A similar approach was introduced
by [49], where the authors proposed to learn horizontal and vertical image gra-
dient filters. Zhang et al. in [50] developed a trainable denoiser prior that is
then integrated into a model-based optimization method. Finally, in [6] the au-
thors propose to learn a prior that represents a Gaussian-smoothed version of
the natural image distribution.

3 Problem Formulation

3.1 Image Formation in Microscopy

The image formation process can be described by the observation model

y = Kx + n, (1)

where y ∈ RN corresponds to the observed image, K ∈ RN×N is the matrix
corresponding to the point spread function (PSF), x ∈ RN is the underlying
image that we aim to restore and n ∼ N (0, σ2) denotes noise, which is assumed
to follow i.i.d Gaussian distribution. While x and y are two dimensional im-
ages, for the sake of mathematical derivations, we assume that they have been
raster scanned using a lexicographical order, and they correspond to vectors of
N dimensions.

3.2 Regularization

Deconvolution being an image restoration task is an ill-posed inverse problem,
which implies that a unique solution does not exist. In general, such problems
can be addressed following a variational approach. Note that the name of this
approach comes from the field of calculus of variations, where the basic problem
is to find minima or maxima of a functional using the variations – small changes
in functions or functionals (variational derivatives). In our case, the solution of
the variational approach x̂ is obtained by minimizing the objective function

x̂ = argmin
x

1

2
||y −Kx||22 + λr(x)︸ ︷︷ ︸

J(x)

. (2)

Here the first term corresponds to the data fidelity term, which measures the
proximity of the solution to the observation, while the second one corresponds
to the regularizer that models any prior knowledge one might have about the
ground-truth image. The parameter λ is a trade-off coefficient that determines
the contribution of the regularizer into the estimation of the solution. A list
of popular regularizers contains Tikhonov [42] and TV functionals [36] which
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have been widely used in a plethora of image restoration tasks, including decon-
volution problems [15]. However, in this work we attempt to incorporate prior
information learned directly from available training data in a supervised manner
with the inclusion of deep learning strategies.

4 Proposed Approach

4.1 Learnable Regularization Kernels

First, we start from the observation that in most of the modern methods for
image restoration the regularization term is formed as

r(x) =

D∑
d=1

ρd(gd ∗ x), (3)

where gd are typically linear filters and ρd(·) is a set of penalty functions, acting
on the filters outputs [22]. In this work, we explicitly set the penalty function to
be the squared `2 norm, leading to a Tikhonov regularizer [42]

r(x) =

D∑
d=1

||gd ∗ x||22 =

D∑
d=1

||Gdx||22, (4)

where gd are learnable convolution kernels and Gd ∈ RN×N are convolution ma-
trices, corresponding to these kernels. This specific choice of the penalty function
allows us to obtain the solution of (2) in the closed-form

x̂ = (K>K + λ

D∑
d=1

G>d Gd)
−1K>y, (5)

which corresponds to the Wiener-Kolmogorov filter. Here K> and G>d are the
adjoint matrices of K and Gd, respectively. To obtain the solution of Eq. (5)
one has first to perform the inversion of a huge matrix which can be very slow in
practice or even intractable. However, the supremacy of the Wiener filter lies in
its FFT-based inference, which renders it a fast and efficient method and allows
to restore the underlying signal at a low computational complexity. Specifically,
under the assumption of periodic image boundary conditions, the degradation
matrix K and convolution matrix Gd are circulant real matrices and thus, they
can be diagonalized in the Fourier domain as

K = FHDKF, DK = FSKPKk; Gd = FHDGd
F, DGd

= FSGdPGdgd. (6)

Here F ∈ CN×N is the Fourier (DFT) matrix, FH ∈ CN×N is its inverse, DK,
DGd

∈ CN×N are diagonal matrices, SK,SGd ∈ RN×N are the corresponding
circulant shift operators, PK ∈ RN×M ,PGd ∈ RN×Ld are the corresponding
zero-padding operators, k ∈ RM is the blurring kernel and gd ∈ RLd is a reg-
ularization convolution kernel. We also consider the trade-off coefficient λ to
be equal to eα in all experiments to ensure the positivity of the regularization
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(a) WF-K (b) WF-KPN

(c) WF-KPN-SA (d) WF-UNet

Fig. 1. Overview of the four proposed prior parametrization models. In Fig. 1a the
one-shot Wiener filter with learnable kernels is depicted, while in 1b the same filter
with predictable kernels is presented. In 1c the scheme incorporating prediction of per-
pixel regularization kernels into Wiener filter is shown. The proposed iterative scheme
which combines Wiener filtering with the approximation of regularization with a CNN
is visualized in 1d.

weight. Based on the above, the one-shot solution of Eq. (5) is

x̂ = FH

(
D∗KFy

|DK|2 + eα
∑D
d=1 |DGd|2

)
, (7)

where D∗K is the Hermitian transpose of DK and the division is applied in
an element-wise fashion. The method is depicted in Fig. 1a and hereafter we
refer to it as WF-K. To obtain the solution in this form, we firstly employ a
group of D learnable kernels gd of size K ×K which are initialized using a two-
dimensional discrete cosine transform (DCT) frequency basis; a common choice
in image processing since it has shown the ability to extract useful prior image
information. We also consider α to be a learnable parameter in all proposed
regularization schemes in order for the trade-off coefficient value to be tuned
alongside the learnable kernels during the training process.
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4.2 Prediction of Regularization Kernels

A critical drawback of the standard Wiener method lies in the way the group of
kernels is formulated. In detail, the learnable group is global which means that
all kernels are applied on every image identically without any dependency on
the underlying content. To remedy this situation, we propose the content-driven
WF-KPN method that predicts per image the group of kernels that need to be
used for regularization. In this framework, the solution of a Wiener filter yields
the same form as presented in Eq. (7), but unlike the previous approach, the
convolution kernels gd, that form the diagonal matrix DGd in Eq. (6), are now
predicted from a Kernel Prediction Network (KPN) [32] as shown in Fig. 1b.

For the Kernel Prediction Network we select a compact customized UNet
architecture with nearly 470k parameters that receives the distorted input y
and produces an output with K2D channels and the same spatial resolution as
the input. Unlike the traditional UNet, we perform global average pooling in the
spatial dimension on the output of the last layer, which is then reshaped into a
stack of D×K ×K regularization kernels. Here D is the number of kernels and
K ×K is the support size. In all our experiments, we set D = 8 and K = 3. We
also use instance normalization [44] after each convolutional layer to normalize
weights for each image independently. In this way, the KPN predicts D content
dependent regularization kernels of size K ×K for each image, that then under
the assumption of periodic boundary conditions form the diagonal matrix DGd

in Eq. (6). After that, the resulting diagonal matrices DGd
are incorporated into

the solution of the Wiener filter according to Eq. (7).
The proposed models WF-K and WF-KPN involve learning of the trade-off

coefficient α and regularization kernels gd in a supervised manner via means of
back-propagation of a loss function. While the loss function we are minimizing
during training is real-valued, the solution in Eq. (7) involves complex quan-
tities and therefore we cannot perform back-propagation by solely relying on
layers currently available in existing deep-learning libraries. For this reason we
have implemented our own customized layers which depend on the analytical
derivations of the gradients of the solution x̂ w.r.t. the trainable parameters. All
analytical derivations of the necessary gradients are provided in the supplemen-
tary material.

4.3 Prediction of Spatially Adaptive Regularization Kernels

While the prediction of global regularization kernels per image provides the
appealing property of content adaptation, we further extend WF-KPN to be
both spatially and content adaptive. This is achieved by predicting for each image
a different regularization kernel per-pixel and hence the method is dubbed as
WF-KPN-SA. For this extension, we modify the UNet of Section 4.2 to predict
a kernel per spatial location of an image. Unlike WF-KPN, the output of the
network has K2 channels and the same size as the input. We empirically found
that normalization of the network hinders the performance and therefore it was
removed in all WF-KPN-SA related experiments. Furthermore, the output of the
network is reshaped into spatially adaptive regularization kernels of size K ×K
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for each pixel of an input image. These kernels are then unfolded into a matrix
G which now does not correspond to a circulant matrix, and, thus, the FFT-
based inference of the Wiener-Kolmogorov filter is not feasible. The solution of
the restoration problem has now the form of

x̂ = (K>K + eαG>G)−1K>y (8)

and the calculation of x̂ is done using the conjugate gradient algorithm [40].
To the best of our knowledge, WF-KPN-SA is the first method that predicts a
spatially varying regularizer per image for inverse imaging related tasks.

4.4 Prediction of the Gradient of the Regularizer

Finally, with the desire to fully exploit deep learning capabilities, we employ
a CNN for parametrizing a prior that would be specific for each image and,
thus, completely content adaptive. This way we do not make assumptions about
the form of the regularization term as we did above, and thus, the solution of
Eq. (2) cannot be derived anymore in a closed-form expression. One common
way to solve Eq. (2) in this case is to apply a gradient descent [8] optimization
algorithm to find a minimizer of the objective function J(x),

x̂k+1 = x̂k − β∇J(x). (9)

Here x̂k+1 is the solution of Eq. (2) that is updated after each iteration k of
the gradient descent scheme and β is the learning rate defining the speed of the
algorithm. Introducing the objective function J(x), defined according to Eq. (2),
into Eq. (9), we obtain the solution of the gradient descent scheme,

x̂k+1 = x̂k − β
[
K>(Kx̂k − y) + eαfCNN(x̂k)

]
. (10)

Here we parametrize the gradient of the regularizer with the CNN, ∇r(x̂k) =
fCNN(x̂k). For the prediction of the gradient of a regularizer we employ the
UNet architecture that was defined in Section 4.2. Unlike WF-KPN and WF-
KPN-SA, we do not modify the original UNet architecture, and in this case the
network receives a distorted image y as an input and maps it to an output with
the same resolution and number of channels as the input. We also use instance
normalization after each convolutional layer to normalize weights for each im-
age independently. Although this method does not exactly fit into the family
of Wiener-Kolmogorov filters, it belongs to the general idea of reconstruction
by regularization. Thus, to remain consistent across all the methods starting
from Eq.(2), this method is hereafter referred to as WF-UNet and it is depicted
in Fig. 1d. The number of gradient descent iterations for WF-UNet is set to be
equal to 10. We also consider the step size β to be a learnable parameter in order
for the gradient descent speed to be tuned during the training process.

We stress that the proposed methods, WF-KPN, WF-KPN-SA and WF-UNet,
share a UNet with almost identical architecture to have approximately the same
number of trainable parameters that allows for fair comparison between the
models. Furthermore, the selected network architecture is relatively compact,
which in return allows the development of methods capable of deblurring an
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Fig. 2. Restoration of microscopy images degraded by PSF and Gaussian noise with
standard deviation equal to 0.005, 0.01, 0.05, 0.1, respectively, from top to bottom. All
images are originally grayscale but a different colormap is used to better highlight the
differences among the various reconstructions.

image in milliseconds. The architecture of the implemented UNet is described in
the supplementary material.

Further, we apply the edge tapering technique [34] to mitigate the boundary
issues that arise from the Wiener filter due to the periodic boundary assumption.

5 Network Training

5.1 Dataset

Since there is a lack of a deconvolution dataset, comprising of microscopy images
perturbed by Gaussian noise, we create training pairs of ground-truth and dis-
torted with blur and noise images using the Fluorescence Microscopy Denoising
(FMD) dataset [52] and a dataset that is used in cell segmentation of microscopy
images [3]. To create a large set of reference images, we take the ground-truth
images from both datasets and crop each image into patches of size 256 × 256.
After, all patches that contain no information about cells are discarded by com-
paring the mean value of a patch with the mean value of the original image. Note
that all ground-truth images as well as resulting distorted images are grayscale.

To produce blurred versions of the ground-truth images we create 35 different
2D PSFs of sizes 7×7, 9×9, 11×11 and 13×13 by altering the index of refraction
of the media, the numerical aperture, the pixel size and the excitation wavelength
using the ImageJ plugins Diffraction PSF 3D [2] and PSF Generator [1] with the
Richards & Wolf optical model. In detail, 25 PSFs are reserved for training, 5 for
validation and the rest for testing purposes. Notably, all PSFs k are normalized
such that

∑
i ki = 1, which is a realistic assumption in optics [15].

To assess the performance of our algorithms on a wide range of Gaussian
noise levels, all images are scaled in the range of [0, 1], then blurred with a PSF
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Table 1. PSNR and SSIM comparisons on Gaussian image deblurring for five noise
levels. In all tables, we highlight the best result in bold and underline the second best
result.

STD

0.001 0.005 0.01 0.05 0.1
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 36.23 .8955 35.37 .8791 33.93 .8339 26.03 .3858 21.14 .1718
IRCNN [50] 33.33 .8604 36.88 .8972 36.80 .9013 32.44 .7932 28.95 .6835
FDN [23] 40.31 .9424 38.61 .9239 37.33 .9086 33.50 .8406 30.49 .7550
DMSP-NA [6] 40.44 .9402 39.16 .9290 37.73 .9123 34.31 .8589 32.19 .8312
DMSP-NB [6] 40.27 .9411 37.23 .9027 36.59 .8930 34.29 .8582 32.20 .8313

UNet 37.73 .9177 37.27 .9136 36.64 .9064 34.04 .8556 32.40 .8187
WF-K 35.66 .8849 35.61 .8834 35.45 .8787 32.74 .7950 29.27 .6835
WF-KPN 38.72 .9253 37.98 .9176 36.80 .9028 32.33 .8022 29.20 .7259
WF-KPN-SA 39.86 .9390 38.76 .9275 37.81 .9157 34.58 .8688 32.60 .8363
WF-UNet 38.08 .9102 37.55 .9053 36.77 .8966 33.89 .8442 32.01 .8096

and finally perturbed with i.i.d. Gaussian noise with standard deviation from
the set (0.001, 0.005, 0.01, 0.05, 0.1).

The resulting dataset, which contains 1405 pairs of ground-truth and dis-
torted images, is split into 975 training, 200 validation and 230 testing samples.
During training, a ground-truth sample is convolved with a randomly chosen
blur kernel from the 25 training PSFs, and subsequently Gaussian noise with a
randomly selected standard deviation from the set presented above is added to
the blurred image.

5.2 Training Details

All proposed methods are trained in an end-to-end fashion to minimize the `1
loss function between the output and the ground-truth image as well as the
gradients of the aforementioned entities

L = ||x̂− x||1 + ||∇x̂−∇x||1. (11)

It has been reported that training with the `1 loss function yields images with
sharper edges [53]. Also, by incorporating a gradient based loss alongside the
pixel-wise loss, we obtain models that are capable of reconstructing the sharp
details of the underlying images. All proposed methods are optimized using
Adam [19] with a learning rate 10−3. For all methods, except the WF-KPN-SA,
we use batch size equal to 25 and train the models for 300 epochs. For the WF-
KPN-SA network, due to memory-related limitations, we set the batch size to
be equal to 3.

5.3 Evaluation

To evaluate the performance of all algorithms on each noise level, we use 230
ground-truth images that are convolved with the 5 PSFs reserved for testing
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purposes. Note that the held-out PSFs were not seen during training to explore
the generalization ability of the methods to unknown blurring kernels. Finally,
the noisy observation of a blurry image is produced by adding Gaussian noise
with each standard deviation from the set (0.001, 0.005, 0.01, 0.05, 0.1). In
detail, we get 1150 test samples in total, combined into 5 test sets of different
noise levels which allows the thorough comparison of the performance of our
algorithms on each noise level separately.

We compare our proposed algorithms with three state-of-the-art algorithms
for deblurring images distorted by Gaussian noise: IRCNN [50], FDN [23] and
DMSP [6]. The latter was considered in two implementations – noise-blind, or
noise-adaptive (NA), and noise-aware, or non-blind (NB). We also provide a
CNN baseline which is a UNet with almost the same architecture and number
of parameters as the one used for the parametrization of the regularization gra-
dient. For this instance of UNet we use batch normalization layers instead of
instance normalization. This way we get a valid comparison and we are able
to investigate if the combination of a standard optimization scheme and a deep
learning approach will help to achieve good restoration results and surpass those
obtained by employing solely a deep learning based algorithm. For assessing the
methods performance we use the standard peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM [45]) metrics. Comparisons of all the
methods runtime was conducted on a computer with an Intel Core i7-8750H
CPU and a NVIDIA GeForce GTX 1080Ti GPU.

6 Results

We evaluate all methods on the developed test set across all different noise
ranges, as described in Section 5.3. The results presented in Table 1 show that
our proposed spatially adaptive method WF-KPN-SA surpasses in performance
all competing state-of-the-art methods except in the very low noise cases. The
performance over the deep learning based competing methods FDN [23], IR-
CNN [50] and DMSP [6] ranges from nearly 0.1 in the low noise regime to 0.4
dB for high noise. Only in the case of very low noise the previous state-of-the-art
methods provide better reconstruction quality than WF-KPN-SA. However, we
stress that, as well as DMSP-NA, our methods are noise-blind, while IRCNN,
FDN and DMSP-NB are noise-aware, with the oracle noise standard deviation
being explicitly provided as an input.

Furthermore, we find that Wiener Filter (WF-K) with the learnable regular-
ization filters yields satisfactory reconstruction quality and perform only slightly
worse than several deep learning methods for a fraction of its computational com-
plexity. A detailed benchmark of computational time for all methods presented
in our work can be found in Table 2. As presented in Fig. 2, WF-K and WF-KPN
methods tend to miss sharp details in the restored images, while WF-KPN-SA
and WF-UNet allow the restoration of fine image details.
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Table 2. Runtime of several deconvolution algorithms for processing an image with the
spatial dimensions of 256 × 256. All times were calculated using the publicly available
implementations and the reported benchmarks are the average of 10 runs.

CPU, ms GPU, ms CPU, ms GPU, ms CPU, ms GPU, ms

GILAM [11] 4155.9 – DMSP [6] 79656.0 19707.7 WF-KPN 45.4 7.7
HSPIRAL [26] 5828.8 – IRCNN [50] 7890.7 – WF-KPN-SA 1382.9 187.2
PURE-LET [27] 211.3 – UNet 32.4 2.8 WF-UNet 354.1 39.8
FDN [23] 34542.1 36.6 WF-K 5.6 4.6

7 Poisson Image Deblurring

As an extension, all developed methods are applied in the case of confocal mi-
croscopy, where as it was mentioned in Section 1 the intensity of the light illu-
minating the sample is very small and thus the noise statistics obey the Poisson
distribution. One notable property of the Poisson distribution is that the mean
and variance of the random variable are not independent, i.e. mean(y) = var(y).
As such, the image formation model is formulated as y = P(Kx) where P de-
notes the Poisson noise distorting the image. One successful way to perform
deconvolution and denoising in the presence of Poisson noise is to first apply a
variance stabilizing transformation (VST) [31] which transforms a variable from
the Poisson distribution into one from the Gaussian. This allows to borrow the
ample apparatus of the well-studied methods derived for Gaussian statistics.
This approach has been successfully applied in the literature [31,18,52,28] to
solve the Poissonian restoration problem using Gaussian denoising algorithms.

In our work we explore a similar approach and make use of the widely known
VST, the Anscombe transform [5], which is applied on the distorted observation

y→ 2

√
y +

3

8
. (12)

The Anscombe transform aims to stabilize the data variance to be approximately
unity. After the transformation, the data can be viewed as a signal-independent
Gaussian process with unit variance, and therefore the Wiener filter, which is
derived from Gaussian statistics, can be directly applied. Once the deconvolved
solution, denoted as x̂, is obtained, an inverse Anscombe transform is applied
to return the data to its original domain. Applying the simple algebraic inverse
usually results in a biased estimate of the output. To mitigate the bias in the
case of photon-limited imaging the exact unbiased inverse transformation should
be used, whose closed-form approximation [30] is

x̂→
( x̂

2

)2
− 1

8
+

1

4

√
3

2
x̂−1 − 11

8
x̂−2 +

5

8

√
3

2
x̂−3. (13)

Data Preparation and Results To assess the performance of our algorithms
on the task of Poisson image deblurring, we retrain our models using the VST
and the exact unbiased inverse transformation included into the pipeline. The
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Table 3. PSNR and SSIM comparisons on Poisson image deblurring for six different
noise levels. Methods that were not able to produce meaningful results due to numerical
instability issues are marked with N/A.

PEAK

1 2 5 10 25 50
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 10.93 .0981 13.22 .1105 16.67 .1639 19.45 .2425 23.21 .3930 26.00 .5247
GILAM [11] 24.57 .4977 25.66 .6350 26.64 .5451 28.24 .6304 29.92 .6975 30.97 .7463
HSPIRAL [26] 23.18 .4101 26.54 .5809 30.18 .7576 31.94 .8229 33.39 .8578 34.38 .8729
PURE-LET [27] 26.18 .7318 26.44 .7494 26.77 .7612 27.67 .7799 28.77 .0.8065 28.77 .8114
FDN [23] N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 31.16 .8176
DMSP-NA [6] 16.07 0.4243 18.86 .5648 23.80 .7126 27.76 .7880 31.74 .8490 33.65 .8770
DMSP-NB [6] 10.86 .2079 12.97 .2761 20.49 .5691 26.12 .7356 30.25 .8136 33.01 .8633
IRCNN [50] 6.81 .0902 11.67 .1809 17.37 .3695 22.14 .5323 29.46 .8038 33.10 .8660

UNet 28.50 .7916 29.79 .8143 31.47 .8428 32.72 .8633 34.20 .8871 35.17 .9008
WF-K 25.81 .5821 27.85 .6947 29.94 .7888 31.13 .8288 32.06 .8557 32.43 .8654
WF-KPN 27.09 .7503 28.19 .7811 29.89 .8177 31.34 .8460 33.22 .8770 34.50 .8945
WF-KPN-SA 28.80 .7949 30.12 .8185 31.72 .8468 32.92 .8672 34.48 .8909 35.60 .9056
WF-UNet 29.04 .8005 30.27 .8220 31.83 .8492 33.06 .8694 34.59 .8928 35.67 .9069

Anscombe transform is applied on the input image y as described in Eq. (12)
before being fed into any of the proposed models of Section 4. Accordingly, the
restored signal x̂ from any of the proposed models is transformed back using
the exact unbiased version of the inverse transformation, presented in Eq. (13),
in order to recover the final solution. For this task we use the same dataset as
the one used for the evaluation of the Gaussian deblurring. We create 35 2D
PSFs of size 5 × 5 to simulate confocal microscope pinhole with the ImageJ
Diffraction PSF 3D plugin [1]. We again use 25 PSFs for training purposes, 5 for
validation and 5 for test. To simulate various SNR values of Poisson noise, we
use the prior art approach [11,26] and scale the ground-truth images to have a
maximum intensity of (1, 2, 5, 10, 25, 50). Poisson noise is signal dependent with
local SNR =

√
yi, where yi denotes the underlying image intensity at position

i, therefore by increasing the maximum intensity of an image, the amount of
noise decreases and vice versa. Furthermore, it is long known fact that images
with large mean value and perturbed with Poisson noise follow approximately
a normal, or Gaussian distribution, and therefore methods based on Gaussian
statistics might work equally well. Scaling the ground-truth images to have var-
ious ranges of maximum intensities aims to cover a wide gamut of noise levels,
including the ones that belong to approximately a Gaussian distribution.

During training, a ground-truth sample is rescaled to a randomly chosen maxi-
mum intensity from the range mentioned above. Then the sample is convolved
with a randomly chosen blur kernel from the 25 training PSFs, and after that
the noisy observation is produced from the blurred image. We follow the same
strategy as in Section 5.3 to produce blurred and noisy images for the test set.

We compare the proposed algorithms with the non-blind deblurring algo-
rithms, developed for Poisson distribution: GILAM [11], HSPIRAL [26] and
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Fig. 3. Restoration of microscopy images scaled to have peak intensities equal to 1, 5,
10, 25, respectively from top to bottom and degraded by PSF and Poisson noise. All
images are originally grayscale, but a different colormap is used to better highlight the
differences among the various reconstructions.

PURE-LET [27]. We also include the aforementioned state-of-the-art methods
for Gaussian image deblurring into the comparison by applying the VST to the
distorted data and the exact unbiased transformation to the result of the restora-
tions. Table 3 and Fig. 3 clearly show that WF-UNet outperforms the other
approaches at most of the noise levels, which is especially important on the low
intensity peak values where the Poisson noise is stronger. WF-KPN-SA shows
comparable to WF-UNet performance being only marginaly inferior. Overall,
WF-UNet and WF-KPN-SA show good quantitative improvement from nearly
2.6dB to 5.8dB over the previous state-of-the-art methods on the low intensity
peaks and from nearly 1.2dB to 7dB on the high intensity peaks. Moreover,
Fig. 3 demonstrates that, despite the good quantitative improvement, WF-K
and WF-KPN struggle to reconstruct the fine details in the images, while the
reconstructions generated by WF-KPN-SA and WF-UNet are very accurate.

8 Conclusion

In this work, we proposed a series of methods based on the Wiener-Kolmogorov
filtering technique for dealing with the problem of Gaussian and Poisson image
deblurring. We introduced three novel ways to parametrize the image priors,
including a new approach of regularization with kernel predictions obtained by a
neural network. Our extensive experimentation line showcased that our proposed
framework based on the prediction of a regularizer achieves superior quality of
image reconstruction and surpasses the solutions that rely either on deep learning
or on optimization schemes alone. Finally, several of our proposed algorithms
demonstrate low computational complexity, without sacrificing the accuracy of
image restoration. Being fast and accurate, the proposed framework paves the
way towards real-time microscopy image restoration.
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