
Supplementary Material for
JSENet: Joint Semantic Segmentation and Edge

Detection Network for 3D Point Clouds

Abstract. This supplementary document is organized as follows:

– Section A explains in more detail about the dataset selection and
preparation.

– Section B compares the model sizes and speeds of our network with
others.

– Section C provides some qualitative comparison examples and more
visualization results on the ScanNet [1] dataset.

– Section D enumerates detailed semantic segmentation results with
class scores.

A Dataset selection and preparation.

In the main paper, we conduct all the experiments on two indoor-scene datasets:
S3DIS [2] and ScanNet [1]. The main reason for choosing no outdoor-scene
dataset is that we find semantic edges are not well defined in existing outdoor-
scene datasets. As shown in Fig. 1, compared to the indoor-scene datasets,
existing outdoor-scene datasets suffer more from incompletion. Objects in an
outdoor-scene are often not densely connected due to the missing parts in the
point cloud. Therefore, it is hard to define meaningful semantic edges on these
point clouds for our evaluation.

Fig. 1: (Left) An outdoor scene from Semantic3D [3]; (Right) An indoor scene
from ScanNet [1]
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We generate 3D semantic edges following the idea from 2D works [4, 5] with
slight differences. In 2D, thin semantic edges of one or two pixels width are gener-
ated. In contrast, we generate thick semantic edges in 3D since points in a point
cloud are much sparser than pixels in an image. Moreover, boundaries between
an object and the background are considered as semantic edges in 2D images.
However, these boundaries are meaningless in the 3D case. Thus, in 3D, we only
consider semantic edges between different objects. In general, all semantic edge
points will have two or more than two class labels. Since there are unconsidered
classes in the ScanNet dataset, semantic edges between a considered class and
an unconsidered class might have only one class label.

B Complexity of the network, in comparison with other
works.

In this section, we present the comparison on the complexity of our network
against state-of-the-art methods. All the experiments have been conducted on a
PC with 8 Intel(R) i7-7700 CPUs and a single GeForce GTX 1080Ti GPU.

Training. We train KPConv and JSENet on the ScanNet dataset. Using the
setting presented in their paper, KPConv takes about 0.7s for one training it-
eration and converges in 160K iterations, taking about 31h in total. Using the
setting presented in our paper, in the first step, JSENet takes about 0.9s for one
training iteration and converges in 170K iterations. In the second step, JSENet
takes about 0.6s for one training iteration and converges in 40K iterations. The
whole training takes about 49h.

Table 1: Comparison on runtime complexity of JSENet against state-of-the-art
methods.

Method Average time (s) Parameters (m)

KPConv [6] 0.044 14.1

PointConv [7] 0.307 21.7

MinkowskiNet [8] 0.185 37.9

JSENet 0.097 16.2

Inference. We compare KPConv, PointConv, MinkowskiNet, and JSENet for
their runtime complexity given the same sets of points extracted from the Scan-
Net dataset (13000 points each). Results are shown in Table. 1. It can be seen
that for both the inference time and the parameter size, JSENet is largely com-
parable to KPConv and is both more efficient and compact than PointConv
(another recent point-based method) and MinkowskiNet (the SOTA voxel-based
method).
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C Qualitative Visualization.

In this section, we present more visualization results. More visualization results of
our method on the ScanNet dataset are shown in Fig. 2. Qualitative comparison
on the effects of joint refinement are shown in Fig. 3 and Fig. 4. Black points in
the GT SSP masks are unlabeled points or points of unconsidered classes. All
semantic edges are thickened for visualization.

Point Cloud GT-SSP Mask Pred-SSP Mask GT-SEP Map Pred-SEP Map

Fig. 2: Qualitative results on ScanNet val set.
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Fig. 3: Some visualization comparison examples for semantic segmentation before
and after joint refinement (best viewed in color).

Fig. 4: Some visualization comparison examples for semantic edge detection be-
fore and after joint refinement (best viewed in color). For better visualization,
we thickened all the semantic edges.
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D Detailed semantic segmentation results.

In this section, we provide more details on our semantic segmentation exper-
iments, for benchmarking purpose with future works. Detailed class scores for
the S3DIS dataset and the ScanNet dataset are presented in Table 2 and Table
3, respectively.

Table 2: Detailed mIoU scores (%) of semantic segmentation on S3DIS Area-5.
Method mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [9] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SegCloud [10] 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6
Eff 3D Conv [11] 51.8 79.8 93.9 69.0 0.2 28.3 38.5 48.3 71.1 73.6 48.7 59.2 29.3 33.1
TangentConv [12] 52.6 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8
RNN Fusion [13] 53.4 95.2 98.6 77.4 0.8 9.8 52.7 27.9 78.3 76.8 27.4 58.6 39.1 51.0
PointCNN [14] 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPGraph [15] 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
ParamConv [16] 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
SPH3D-GCN [17] 59.5 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7
HPEIN [18] 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
MinkowskiNet [8] 65.4 91.8 98.7 86.2 0.0 34.1 48.9 62.4 89.8 81.6 74.9 47.2 74.4 58.6
KPConv rigid [6] 65.4 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1

JSENet (ours) 67.7 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60.4

Table 3: Detailed mIoU scores (%) of semantic segmentation on ScanNet test
set.
Method mIoU bath bed bksf cab chair cntr curt desk door floor othr pic ref show sink sofa tab toil wall wind

ScanNet [1] 30.6 20.3 36.6 50.1 31.1 52.4 21.1 0.2 34.2 18.9 78.6 14.5 10.2 24.5 15.2 31.8 34.8 30.0 46.0 43.7 18.2
PointNet++ [19] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
SPLATNet [20] 39.3 47.2 51.1 60.6 31.1 65.6 24.5 40.5 32.8 19.7 92.7 22.7 0 0 0.1 24.9 27.1 51.0 38.3 59.3 69.9 26.7
TangentConv [12] 43.8 43.7 64.6 47.4 36.9 64.5 35.3 25.8 28.2 27.9 91.8 29.8 14.7 28.3 29.4 48.7 56.2 42.7 61.9 63.3 35.2
PointCNN [14] 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5
PanopticFusion [21] 52.9 49.1 68.8 60.4 38.6 63.2 22.5 70.5 43.4 29.3 81.5 34.8 24.1 49.9 66.9 50.7 64.9 44.2 79.6 60.2 56.1
TextureNet [22] 56.6 67.2 66.4 67.1 49.4 71.9 44.5 67.8 41.1 39.6 93.5 35.6 22.5 41.2 53.5 56.5 63.6 46.4 79.4 68.0 56.8
SPH3D-GCN [17] 61.0 85.8 77.2 48.9 53.2 79.2 40.4 64.3 57.0 50.7 93.5 41.4 4.6 51.0 70.2 60.2 70.5 54.9 85.9 77.3 53.4
HPEIN [18] 61.8 72.9 66.8 64.7 59.7 76.6 41.4 68.0 52.0 52.5 94.6 43.2 21.5 49.3 59.9 63.8 61.7 57.0 89.7 80.6 60.5
KP-FCNN [6] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
SparseCOnvNet [23] 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4 95.5 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
MinkowskiNet [8] 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7

JSENet (ours) 69.9 88.1 76.2 82.1 66.7 80.0 52.2 79.2 61.3 60.7 93.5 49.2 20.5 57.6 85.3 69.1 75.8 65.2 87.2 82.8 64.9
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