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Abstract. Semantic segmentation and semantic edge detection can be
seen as two dual problems with close relationships in computer vision.
Despite the fast evolution of learning-based 3D semantic segmentation
methods, little attention has been drawn to the learning of 3D semantic
edge detectors, even less to a joint learning method for the two tasks.
In this paper, we tackle the 3D semantic edge detection task for the
first time and present a new two-stream fully-convolutional network that
jointly performs the two tasks. In particular, we design a joint refinement
module that explicitly wires region information and edge information to
improve the performances of both tasks. Further, we propose a novel
loss function that encourages the network to produce semantic segmen-
tation results with better boundaries. Extensive evaluations on S3DIS
and ScanNet datasets show that our method achieves on par or better
performance than the state-of-the-art methods for semantic segmenta-
tion and outperforms the baseline methods for semantic edge detection.
Code release: https://github.com/hzykent/JSENet
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1 Introduction

Semantic segmentation (SS) and semantic edge detection (SED) are two funda-
mental problems for scene understanding. The former aims to parse a scene and
assign a class label to each pixel in images or each point in 3D point clouds.
The latter focuses on detecting edge pixels or edge points and classifying each
of them to one or more classes. Interestingly, the SS and the SED tasks can be
seen as two dual problems with even interchangeable outputs in an ideal case
(see Fig. 1). While SS has been extensively studied in both 2D and 3D [1–7],
SED has only been explored in 2D [8–11], to our best knowledge.

There are strong motivations to address both problems in a joint learning
framework. On one hand, previous SS models tend to struggle in edge areas since
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Fig. 1: (Left) Point cloud of a real-world scene from S3DIS [12]; (Middle) Seman-
tic segmentation point (SSP) mask; (Right) Semantic edge point (SEP) map. For
visualization, we paint an edge point to the color of one of its class labels.

these areas constitute only a small part of the whole scene and thus have little
effect on the supervision during training [13,14]. Performing the complementary
SED task simultaneously may help the network sharpen the boundaries of the
predicted SS results [15]. On the other hand, existing SED models are easily
affected by non-semantic edges in the scene [8, 11], while a trained SS model is
less sensitive to those edges [16]. Information from the SS model thus may help
SED models suppress network activations on the non-semantic edges. Despite
the close relationships of the two tasks, there is no existing work tackling them
jointly as far as we know.

Although not focusing on the SS and the SED tasks, in 2D, several existing
works have already made fruitful attempts at proposing joint learning meth-
ods for complementary segmentation and edge detection tasks [2, 14, 15, 17–20].
These works often treat the two tasks näıvely by sharing parts of their networks
and limit the interactions between them to the feature domain. Predicted seg-
mentation masks and edge maps are used only for loss calculation and do not
contribute to each other. Strong links between the outputs of the two tasks are
not fully exploited.

In this work, we introduce the task of SED into the 3D field and propose
JSENet, a new 3D fully-convolutional network (FCN) for joint SS and SED.
The proposed network consists of two streams and a joint refinement module
on top of them. Specifically, we use a classical encoder-decoder FCN for SS in
one stream, which outputs semantic segmentation point (SSP) masks, and add
an SED stream outputting semantic edge point (SEP) maps in parallel. The
key to our architecture is the lightweight joint refinement module. It takes the
output SSP masks and SEP maps as inputs and jointly refines them by explicitly
exploiting the duality between them. Moreover, we further propose a novel loss
function to encourage the predicted SSP masks to better align with the ground
truth semantic edges.

To summarize, our contributions are threefold:

1. We introduce the task of SED into the 3D field and design an FCN-based
architecture with enhanced feature extraction and hierarchical supervision
to generate precise semantic edges.
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2. We propose a novel framework for joint learning of SS and SED, named
JSENet, with an effective lightweight joint refinement module that brings
improvements by explicitly exploiting the duality between the two tasks.

3. We propose a dual semantic edge loss, which encourages the network to
produce SS results with finer boundaries.

To build our FCN network in 3D, we resort to KPConv [21], a recently
proposed kernel-based convolution method for point clouds, for its state-of-the-
art performance and ease of implementation. We conduct extensive experiments
to demonstrate the effectiveness of our method. Since there is no existing 3D
SED dataset, we construct a new 3D SED benchmark using S3DIS [12] and
ScanNet [7] datasets. We achieve state-of-the-art performance for the SS task
with IoU scores of 67.7% on S3DIS Area-5 and 69.9% on ScanNet test set. For
the SED task, our method outperforms the baseline methods by a large margin.

2 Related Work

2.1 3D Semantic Segmentation

Based on different data representations, 3D SS methods can be roughly divided
into three categories: multiview image-based, voxel-based, and point-based. Our
method falls into the point-based category.

Although the multiview image-based methods easily benefit from the suc-
cess of 2D CNN [22, 23], for SS, they suffer from occluded surfaces and den-
sity variations, and rely heavily on viewpoint selection. Based on powerful 3D
CNN [24–30], voxel-based methods achieve the best performance on several 3D
SS datasets, but they need intensive computation power.

Compared with the previously mentioned methods, point-based methods suf-
fer less from information loss and thus achieve high point-level accuracy with
less computation power consumption [5,6]. They can be generally classified into
four categories: neighboring feature pooling [31–34], graph construction [35–
38], attention-based aggregation [39], and kernel-based convolution [21, 40–46].
Among all the point-based methods, the recently proposed kernel-based method
KPConv [21] achieves the best performance for efficient 3D convolution. Thus,
we adopt KPConv to build our backbone and refinement network.

2.2 2D Semantic Edge Detection

Learning-based SED dates back to the early work of Prasad et al. [47]. Later,
Hariharan et al. [48] introduced the first Semantic Boundaries Dataset. After
the dawn of deep learning, the HFL method [49] builds a two-stage prediction
process by using two deep CNNs for edge localization and classification, respec-
tively. More recently, CASENet [8] extended the CNN-based class-agnostic edge
detector HED [50] to a class-aware semantic edge detector by combining low-
and high-level features with a multi-label loss function for supervision. Later,
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several follow-up works [9–11, 51] improved CASENet by adding diverse deep
supervision and reducing annotation noises.

In 2D images, semantic edges of different classes are weakly related since
they are essentially occlusion boundaries of projected objects. Based on this
observation, 2D SED methods treat SED of different classes as independent
binary classification problems and utilize structures that limit the interaction
between different classes like group convolution modules. Unlike the ones in 2D,
semantic edges in 3D are physical boundaries of objects and thus are highly
related to each other. In this work, we study the problem of 3D SED for the first
time. We adopt from 2D methods the idea of extracting enhanced features and
construct a network that does not limit the interaction between different classes.

2.3 Joint Learning of Segmentation and Edge Detection

For 2D images, several works have explored the idea of combining networks for
complementary segmentation and edge detection tasks to improve the learning
efficiency, prediction accuracy, and generalization ability [2, 14,15,17–20].

To be more specific, for salient object detection, researchers have exploited
the duality between the binary segmentation and class-agnostic edge detection
tasks [15, 20]. As for SS, such class-agnostic edges are used to build semantic
segmentation masks with finer boundaries [2, 14, 17–19]. In contrast, we tackle
the problem of joint learning for SS and class-aware SED. Furthermore, unlike
previous works, which limit the interactions between segmentation and edge
detection to the sharing of features and network structures, our method exploits
the close relationship between SSP masks and SEP maps.

3 JSENet

In this section, we present our JSENet architecture for the joint learning of
SS and class-aware SED. As depicted in Fig. 2, our architecture consists of
two streams of networks with a shared feature encoder and followed by a joint
refinement module. The first stream of the network, the SS stream, is a standard
encoder-decoder FCN for SS using the same structure as presented in KPConv
[21]. The second stream, the SED stream, is another FCN with enhanced feature
extraction and hierarchical supervision. We then fuse the outputs from the two
streams using our carefully designed joint refinement module to produce refined
SSP masks and refined SEP maps. Next, we will describe each of the modules
in detail and then explain the supervisions used for joint learning.

3.1 Semantic Segmentation Stream

We denote the SS stream as Sθ(P) with parameters θ, taking a point cloud
P ∈ RN×6(x, y, z, r, g, b) with N points as input and outputting an SSP mask.
More specifically, for a segmentation prediction of K semantic classes, it outputs
a categorical distribution s ∈ RN×K : s(p|P, θ) representing the probability of
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Fig. 2: JSENet architecture. Our architecture consists of two main streams. The
SS stream can be any fully-convolutional network for SS. The SED stream ex-
tracts enhanced features through a skip-layer structure and is supervised by
multiple loss functions. A joint refinement module later combines the informa-
tion from the two streams and outputs refined SSP masks and SEP maps.

point p belonging to each of the K classes. We supervise this stream with the
standard multi-class cross-entropy loss (Lseg in Fig. 2). The SS stream can be
any feedforward 3D fully-convolutional SS network such as InterpCNNs [46] and
SSCNs [29]. In this work, we adopt KPConv [21] and use it as our backbone
network for its efficient convolution operation and ability to build complex net-
work structures. There are two types of KPConv: rigid and deformable. We use
the rigid version in this work for its better convergence performance. In order
to demonstrate the improvements introduced by joint learning, we use the same
structure as described in KPConv.

3.2 Semantic Edge Detection Stream

We denote the SED stream as Eφ(P) with parameters φ, taking a point cloud
P with N points as input and outputting SEP maps. For K defined semantic
categories, this stream outputs K SEP maps {e1, ..., eK}, each having the same
size as P with one channel. We denote ek(p|P, φ) as the network output, which
indicates the computed edge probability of the k-th semantic category at point
p. Note that one point may belong to multiple categories.

The SED stream shares the same feature encoder with the SS stream to force
the network to prefer representations with a better generalization ability for both
tasks. Our backbone is an FCN-based structure. However, one major drawback
of an FCN-based structure is the loss in spatial information of the output after
propagating through several alternated convolutional and pooling layers. This
drawback would harm the localization performance, which is essential for our
SED task. Besides, according to the findings of CASENet [8], the low-level fea-
tures of CNN-based encoder are not suitable for semantic classification (due to
the limited receptive fields) but are able to help augment top classifications by
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Fig. 3: Illustration of the joint refinement module, which consists of two branches.

suppressing non-edge activations and providing detailed edge localization infor-
mation. Based on these observations, we propose to extract enhanced features
with hierarchical supervisions to alleviate the problem of spatial information loss
and offer richer semantic cues for final classification.

Enhanced feature extraction. In detail, we extract the feature maps gener-
ated by the layers of the shared encoder (Fig. 2(a)). We then reduce the numbers
of their feature channels and deconvolve them to the size of the input point cloud.
The features of different layers participate and augment the final SED through
a skip-layer architecture, as shown in Fig. 2(b).

Hierarchical supervision. As shown in Fig. 2(c), from the extracted feature
maps of the first three layers, we generate binary edge point maps indicating
the probability of points belonging to the semantic edges of any classes. From
the last two layers, we generate two SSP masks. All binary edge point maps are
supervised by the weighted binary cross-entropy loss (Lbce) using ground-truth
(GT) binary edges obtained from the GT SSP masks. The two SSP masks are
supervised by the standard multi-class cross-entropy loss (Lseg). The output SEP
maps of the SED stream are supervised by a weighted multi-label loss (Ledge)
following the idea from CASENet [8]. We will give details about different loss
functions in Section 3.4.

3.3 Joint Refinement Module

We denote the joint refinement module as Rγ(s, e1, ..., eK) with parameters γ,
taking as input the SSP mask s coming from the SS stream and the SEP maps
{e1, ..., eK} generated by the SED stream. As shown in Fig. 3, we construct a two-
branch structure with simple feature fusion sub-modules (Fig. 3(a)) and novel
edge map generation sub-modules (Fig. 3(b)). The upper branch is responsible
for segmentation refinement, and the lower one is for edge refinement. We feed
different joint features (described in detail below) to the feature fusion sub-
modules of the two branches and generate refined SSP masks and SEP maps.
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Feature fusion sub-module. To fuse the region and edge features, we con-
struct two simple U-Net [52] like feature fusion sub-modules for each refinement
branch. In detail, each feature fusion sub-module consists of five encoding layers
with channel sizes of 32 for all layers. For segmentation refinement, the feature
fusion sub-module takes the concatenated SSP mask s ∈ RN×K and SEP maps
{e1, ..., eK} (ei ∈ RN ) as input and outputs a refined SSP mask directly. As for
edge refinement, we find that adjusting the activation values of the SEP maps
is more effective than asking the neural network to output refined SEP maps
näıvely. Thus, we put the unrefined SEP maps through a sigmoid operation and
concatenate them with the edge activation point maps {a1, ..., aK} (ai ∈ RN )
generated by the edge map generation sub-module. The concatenated features
are then fed to the feature fusion sub-module to generate auxiliary point maps,
which are added to the unrefined SEP maps to adjust the edge activation values.

Edge map generation sub-module. In order to exploit the duality between
two tasks, we design an edge map generation sub-module to convert an SSP mask
to edge activation point maps. More formally, we denote the edge map generation
sub-module as G(s), which takes a categorical distribution s ∈ RN×K as input
and outputs edge activation point maps {a1, ..., aK} (ai ∈ RN ), where ai(p) is a
potential that represents whether a particular point p belongs to the semantic
boundary of the i-th class. It is computed by taking a spatial derivative on the
segmentation output as follows:

ai = coli(|M ∗ Softmax(s)− Softmax(s)|), (1)

where coli denotes the i-th column and M denotes the Mean filter, which takes
neighboring points within a small radius. As illustrated in Fig. 4, the i-th col-
umn of the output tensor of a softmax operation represents an activation point
mask for class i, where a higher value indicates a higher probability of belong-
ing to class i. On this mask, points near to the boundaries of class i will have
neighbors with activation values of significant differences, and points far from
the boundaries will have neighbors with similar activation values. Thus, after
the mean filtering and subtraction, points nearer to the predicted boundaries
will have larger activation values. The converted edge activation point maps are
fed to the edge refinement branch and utilized for loss calculation as well.

Supervisions. For supervision, the output SSP masks are supervised by the
multi-class cross-entropy loss (Lseg), and the output SEP maps are supervised
by the weighted multi-label loss (Ledge). Additionally, we supervise the generated
edge activation point maps with our proposed dual semantic edge loss (Ldual) to
encourage the predicted SS results to align with the GT semantic edges correctly
(see Section 3.4). After refinement, the final output SSP mask is normalized by
a softmax operation. The final output SEP maps are normalized by a sigmoid
operation and added element-wise with the final edge activation point maps.
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Fig. 4: Illustration of the edge map generation process on 2D points. (Left) An ac-
tivation point mask, with dark colors representing high activation values. Three
red points represent three different situations: far from the activated region, near
the boundary, and within the activated region. (Middle) The activation point
mask after the mean filtering; (Right) The generated edge activation point map.

3.4 Joint Multi-task Learning

The key to joint learning of the SS and the SED tasks is to design a proper
supervision signal. The total loss is formulated as:

Ltotal = λ0Lseg + λ1Ledge + λ2Lbce + λ3Ldual. (2)

During training, λ0 is set to the number of semantic classes to balance the
influences of the two tasks. The other weights are set to 1. We describe in detail
all the loss functions used for supervision in our framework below.

Multi-class cross-entropy loss. We use a standard multi-class cross-entropy
loss, which denoted as Lseg, on a predicted SSP mask s:

Lseg(ŝ, s) = −
∑
k

∑
p

ŝk(p) log(sk(p)), (3)

where ŝ ∈ RN×K denotes GT semantic labels in a one-hot form.

Weighted multi-label loss. Following the idea proposed in CASENet [8], we
address the SED problem for a point cloud by a multi-label learning framework
and implement a point-wise weighted multi-label loss Ledge. Suppose an input
point cloud P has K SEP maps {e1, ..., eK} (ei ∈ RN ) predicted by the network
and K label point maps {ê1, ..., êK} (êi ∈ RN ), where êk is a binary point map
indicating the ground truth of the k-th class semantic edges. The point-wise
weighted multi-label loss Ledge is formulated as:

Ledge({ê1, ..., êK}, {e1, ..., eK}) =
∑
k

∑
p

{−βkêk(p) log(ek(p))−

(1− βk)(1− êk(p)) log(1− ek(p))}, (4)

where βk is the percentage of non-edge points in the point cloud of the k-th class
to account for the skewness of sample numbers.
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Weighted binary cross-entropy loss. To supervise the generated binary edge
point maps in the SED stream, we implement a point-wise weighted binary cross-
entropy loss Lbce. Let b denote the predicted binary edge point map, and b̂ the
GT binary edge point map converted from the GT SEP maps. The point-wise
weighted cross-entropy loss is defined as:

Lbce(b̂, b) =
∑
p

{−βb̂(p) log(b(p))− (1− β)(1− b̂(p)) log(1− b(p))}, (5)

where β is the percentage of non-edge points among all classes.

Dual semantic edge loss. As mentioned above, inspired by the duality between
SS and SED, we design an edge map generation sub-module to convert the
predicted SSP mask s ∈ RN×K to edge activation point maps {a1, ..., aK} (ai ∈
RN )(c.f., Equation 1). In a similar way, we can compute GT edge activation
point maps {â1, ..., âK} from the GT semantic labels ŝ:

âi = coli(|M ∗One hot(ŝ)−One hot(ŝ)|). (6)

Note that the softmax operation for predicted SSP mask s is changed to the
one-hot encoding operation for GT semantic labels ŝ. Taking the converted GT
edge activation point maps, we can define the loss function as follows:

Ldual({â1, ..., âK}, {a1, ..., aK}) =
∑
k

∑
p

β(|âk(p)− ak(p)|), (7)

where β is the same weight as above. Intuitively, the network will get penalized
when there are mismatches on edge points. It is worth noting that the loss
function will not be dominated by the non-edge points since the calculated loss
values on these points are zeros or very small numbers. The above dual loss is
naturally differentiable and exploits the duality between SS and SED.

4 Experiments

To demonstrate the effectiveness of our proposed method, we now present various
experiments conducted on the S3DIS [12] and ScanNet [7] datasets, for which GT
SSP masks are available and we can generate GT SEP maps from them easily.
We first introduce the dataset preparation and evaluation metrics in Section 4.1,
and then present the implementation details for reproduction in Section 4.2. We
report the results of our ablation studies in Section 4.3, and the results on the
S3DIS and ScanNet datasets in Sections 4.4.

4.1 Datasets and Metrics

We use S3DIS [12] and ScanNet [7] datasets for our experiments. There are
two reasons for choosing these datasets: 1) they are both of high quality and
2) semantic edges are better defined on indoor data: compared to existing 3D
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outdoor datasets, in indoor scenes, more detailed semantic labels are defined
and objects are more densely connected. The S3DIS dataset consists of 3D point
clouds for six large-scale indoor areas captured from three different buildings. It
has around 273 million points annotated with 13 semantic classes. The ScanNet
dataset includes 1513 training scenes and 100 test scenes in a mesh format, all
annotated with 20 semantic classes, for online benchmarking.

To generate the GT SEP maps, for S3DIS, we directly check the neighbors
within a 2cm radius of each point in the dataset. For a specific point, if it has
neighbors with different semantic labels, we label it as an edge point of all the
semantic classes that appear in its neighborhood. As for the ScanNet dataset,
following the work of KPConv [21], we first rasterize the training meshes by
uniformly sampling points on the faces of meshes and then downsample the
generated point clouds with 1cm grids. We use these point clouds for training
and generate the GT SEP maps using the same way as described for the S3DIS
dataset. During testing, we project the semantic edge labels to the vertices of
the original meshes and test directly on meshes.

To evaluate the performance of SS and SED, we adopt the standard mean
intersection over union (mIoU) for SS and use the mean maximum F-measure
(MF) at the optimal dataset scale (ODS) for SED following the works in 2D
[8–11]. We generate thicker edges for point clouds than for images since a point
cloud is much sparser than an image. Since we have thicker edges, the localization
tolerance used in the 2D case is not introduced to our evaluation.

4.2 Implementation Details

In this section, we discuss the implementation details for our experiments. JSENet
is coded in Python and TensorFlow. All the experiments are conducted on a PC
with 8 Intel(R) i7-7700 CPUs and a single GeForce GTX 1080Ti GPU.

Training. Since the 3D scenes in both datasets are of huge size, we randomly
sample spheres with 2m radius in the training set and augment them with Gaus-
sian noise, random scaling, and random rotation. Following the settings in KP-
Conv, the input point clouds are downsampled with a grid size of 4cm. In all
our experiments, unless explicitly stated otherwise, we use a Momentum gradi-
ent descent optimizer with a momentum of 0.98 and an initial learning rate of
0.01. The learning rate is scheduled to decrease exponentially. In particular, it is
divided by 10 for every 100 epochs. Although the framework is end-to-end train-
able, in order to clearly demonstrate the efficacy of the proposed joint refinement
module, we first train our network without the joint refinement module for 350
epochs and then optimize the joint refinement module alone with the other parts
fixed for 150 epochs.

Testing. Similar to the training process, during testing, we sample spheres with
2m radius from the testing set regularly and ensure each point to be sampled for
multiple times. The predicted probabilities for each point are averaged through
a voting scheme [21]. All predicted values are projected to the original point
clouds (S3DIS) or meshes (ScanNet) for evaluation.
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Table 1: Ablation experiments of network structures on S3DIS Area-5. SEDS:
semantic edge detection stream; EFE: enhanced feature extraction; HS: hierar-
chical supervision; SSS: semantic segmentation stream; JRM: joint refinement
module. The results in some cells (with ‘-’) are not available, since the corre-
sponding models perform either SS or SED.

0 SEDS EFE HS SSS JRM mIoU (%) mMF (ODS)(%)

1 X X X X X 67.7 31.0

2 X X X X 66.2 30.5

3 X 64.7 -

4 X X X - 30.2

5 X X - 29.9

6 X - 29.4

4.3 Ablation Study

In this section, we compare the performances of JSENet under different settings
on the S3DIS dataset since it is originally presented in a point cloud format and
all semantic labels are available. Following the common setting [3, 5, 21, 30, 37,
53,54], we use Area-5 as a test scene and train our network on the other scenes.
All experiments are conducted keeping all hyperparameters the same.

Network structures. In Table 1, we evaluate the effectiveness of each com-
ponent of our method. For the SS task, as shown in the table (Row 3), the
performance of training our SS stream alone is 64.7% in terms of mIoU. Our SS
stream shares the same architecture with KPConv and the reported score of KP-
Conv is 65.4% in their paper. By näıvely combining the SS stream and the SED
stream, we can improve the SS task by 1.5% (Row 2). From the joint refinement
module, we further gain about 1.5% (Row 1) improvement in performance. We
achieve about 3% improvement comparing to training our SS stream alone and
still more than 2% improvement comparing to the result reported in KPConv.

For the SED task, it can be seen from the table that the performance of
training the SED stream alone without the enhanced feature extraction and
hierarchical supervision is 29.4% (Row 6) in terms of mMF (ODS). We gain
about 0.5% and 0.3% improvements in performance from the enhanced feature
extraction (Row 5) and hierarchical supervision (Row 4), respectively. Näıvely
combining the SS stream and the SED stream brings a further improvement of
0.3% (Row 2) in terms of mMF. By adding the joint refinement module, we can
further improve the SED task by 0.5% (Row 1).

Choice of loss functions for hierarchical supervision. To justify our choices
of the loss functions in the SED stream for hierarchical supervision, we test the
performances of SED using different settings of supervision. As shown in Ta-
ble 2a, if all hierarchical supervisions are removed, the performance of our SED
model will decrease by 0.3%. Among all the choices listed in the table, the one
used in our network achieves the best result.
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Table 2: (a) Comparison of different supervision choices for SED. (b) Effects of
the dual semantic edge loss in terms of boundary quality (F-score).

(a)

Method mMF (ODS) (%)

Lbce for all five layers 30.1

Lseg for all five layers 30.1

No hierarchical supervision 29.9

Lbce for first three, Lseg for last two 30.2

(b)

Method F-score (%)

JSENet w/o dual loss 22.7

JSENet 23.1

Efficacy of dual semantic edge loss. We further showcase the effects of the
dual semantic edge loss in terms of F-score for edge alignment of the predicted
SSP masks in Table 2b. We train our network without the dual semantic edge
losses for the edge map generation sub-modules as the baseline. It is shown that
the dual semantic edge losses bring an improvement of 0.4% in terms of F-score.

Point Cloud GT-SSP Mask Pred-SSP Mask GT-SEP Map Pred-SEP Map

Fig. 5: Qualitative results on S3DIS Area-5. For better visualization, we thick-
ened all the semantic edges.

4.4 Results on S3DIS & ScanNet Datasets

To compare JSENet with the state-of-the-arts, for SS, we choose the latest meth-
ods [3–5,29,30,37,42,53–64] with reported results on the S3DIS or the ScanNet
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Table 3: mIoU scores (%) of semantic segmentation task.
Method S3DIS ScanNet
TangentConv [54] 52.6 43.8
RNN Fusion [55] 53.4 -
SPGraph [56] 58.0 -
FCPN [57] - 44.7
PointCNN [3] 57.3 45.8
ParamConv [58] 58.3 -
PanopticFusion [59] - 52.9
TextureNet [60] - 56.6
SPH3D-GCN [61] 59.5 61.0
HPEIN [37] 61.9 61.8
MCCNN [62] - 63.3
MVPNet [4] 62.4 64.1
PointConv [42] - 66.6
KPConv rigid [21] 65.4 68.6
KPConv deform [21] 67.1 68.4
SparseConvNet [29] - 72.5
MinkowskiNet [30] 65.4 73.6
JSENet (ours) 67.7 69.9

datasets as our baselines. For SED, since we cannot find any existing solutions in
3D, we extend CASENet [8], which is the state-of-the-art method for 2D SED to
3D for comparison. Besides, we build another baseline network using the same
structure as the one presented in KPConv with a changed output layer.

For the S3DIS dataset, we use the same train-test splitting setting as in
Section 4.3. For the ScanNet dataset, since it is built for online benchmarking,
the GT semantic labels for its test set are not available. Thus, for the SS task, we
train our network using the 1513 training scenes and report the testing results on
the 100 test scenes following the common setting. To evaluate the task of SED, as
explained in Section 4.1, we obtain semantic edge labels from the training set and
divide the 1513 training scenes into a new training set with 1201 scenes and a new
test set with 312 scenes following the train-val splitting file offered by ScanNet.
All the compared networks for SED are trained on the new training set and
tested on the new test set. Qualitative results are shown in Fig. 5. Complexity
comparison and more qualitative results can be found in supplementary.

Results of SS task. The results for the SS task are reported in Table 3. The
detailed IoU scores of each class for the S3DIS dataset can be found in the
supplementary. The details for the ScanNet dataset can be found on the Scan-
Net benchmarking website3. For the S3DIS dataset, JSENet achieves a 67.7%
mIoU score and outperforms all the baseline methods. For the ScanNet dataset,
JSENet ranks third with a 69.9% mIoU score. The first two (i.e., SparseConvNet
and MinkowskiNet) are two voxel-based methods that require intense computa-
tion power. Compared to other point-based methods, JSENet achieves the best
performance and consistently outperforms the results of KPConv.

Results of SED task. We present the results for the SED task in Tables 4
and 5. It can be seen that our method outperforms the two baseline methods

3 http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_3d
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Table 4: MF (ODS) scores (%) of semantic edge detection on S3DIS Area-5.
Method mean ceil. floor wall beam col. wind. door chair table book. sofa board clut.

CASENet [8] 27.1 46.5 49.0 33.3 0.2 21.9 12.6 22.6 36.9 33.6 21.8 25.1 22.6 26.1

KPConv [21] 29.4 43.7 41.8 36.4 0.2 23.6 13.4 29.7 39.8 37.3 26.6 29.4 29.2 31.3

JSENet (ours) 31.0 44.5 43.2 38.8 0.2 24.1 13.2 36.7 37.7 36.3 29.1 34.0 33.3 32.4

on both datasets. We find that the extended CASENet architecture performs
worse than KPConv with the changed output layer. This result supports our
previous argument (Section 2.2) that 3D semantic edges have stronger relevance
between different classes (since they are physical boundaries of objects and the
2D semantic edges are occlusion boundaries of projected objects), and thus the
network designs that enforce limitations between interactions of different classes
would harm the edge detection performance.

Table 5: MF (ODS) scores (%) of semantic edge detection on ScanNet val set.
Method mean bath bed bksf cab chair cntr curt desk door floor othr pic ref show sink sofa tab toil wall wind

CASENet [8] 32.3 38.2 55.9 29.9 36.0 36.0 36.8 28.1 28.5 19.1 26.6 25.1 32.2 28.6 26.6 23.9 19.0 45.7 27.1 54.6 27.4

KPConv [21] 34.8 40.5 55.9 33.6 38.5 39.3 38.0 32.9 31.2 22.0 25.1 28.5 36.2 30.8 30.9 22.7 22.8 46.5 33.3 55.2 32.3

JSENet (ours) 37.3 43.8 55.8 35.9 38.2 41.0 40.8 34.5 35.9 25.5 28.7 29.5 37.3 36.2 31.7 28.1 28.3 48.5 35.6 53.2 37.8

5 Conclusions

In this paper, we proposed a joint semantic segmentation and semantic edge
detection network (JSENet), which is a new two-stream fully-convolutional ar-
chitecture with a lightweight joint refinement module that explicitly wires re-
gion information and edge information for output refinement. We constructed
a two-branch structure with simple feature fusion sub-modules and novel edge
map generation sub-modules for the joint refinement module and designed the
dual semantic edge loss that encourages the network to produce sharper pre-
dictions around object boundaries. Our experiments show that JSENet is an
effective architecture that produces SSP masks and SEP maps of high qualities.
JSENet achieves the state-of-the-art results on the challenging S3DIS and Scan-
Net datasets, significantly improving over strong baselines. For future works,
one straightforward direction is to explore the potential of joint improvement
of these two tasks in the 2D field. Moreover, we notice that our SED method
is easily affected by the noises in the GT labels introduced by human annota-
tion. We believe that future works with special treatments on the misaligned GT
semantic edges will further improve the performance of the SED task.
Acknowledgements. This work is supported by Hong Kong RGC GRF 16206819,
16203518 and Centre for Applied Computing and Interactive Media (ACIM) of
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