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Abstract. We propose to learn a deep neural network for JPEG im-
age compression, which predicts image-specific optimized quantization
tables fully compatible with the standard JPEG encoder and decoder.
Moreover, our approach provides the capability to learn task-specific
quantization tables in a principled way by adjusting the objective func-
tion of the network. The main challenge to realize this idea is that there
exist non-differentiable components in the encoder such as run-length
encoding and Huffman coding and it is not straightforward to predict
the probability distribution of the quantized image representations. We
address these issues by learning a differentiable loss function that approx-
imates bitrates using simple network blocks—two MLPs and an LSTM.
We evaluate the proposed algorithm using multiple task-specific losses—
two for semantic image understanding and another two for conventional
image compression—and demonstrate the effectiveness of our approach
to the individual tasks.

Keywords: JPEG image compression, adaptive quantization, bitrate
approximation.

1 Introduction

Image compression is a classical task to reduce the file size of an input image
while minimizing the loss of visual quality. This task has two categories—lossy
and lossless compression. Lossless compression algorithms preserve the contents
of input images perfectly even after compression, but their compression rates are
typically low. On the other hand, lossy compression techniques allow the degra-
dation of the original images by quantization and reduce the file size significantly
compared to lossless counterparts. Note that the rate-distortion trade-off [6] in
lossy compression characterizes the relationship between image file size and its
visual quality.

JPEG [30] is the most widely accepted image compression standard. The en-
coder and decoder of JPEG have several building blocks for the subtasks includ-
ing transform coding, chroma subsampling, quantization and entropy coding,
where each component provides options for further optimization and customiza-
tion. JPEG2000 [34] and BPG have been proposed after JPEG to improve the
performance of image compression, yet they are not as accepted universally as
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Fig. 1. The application example of the proposed approach incorporated into general
JPEG encoding pipeline. Every componts remain the same apart from that the rec-
ommendable quantization table is inferred by the pretrained quantization network (Q)
before encoded. This quantization table can be specified as coding parameters of JPEG
encoder and reused at decoding process from the header file.

JPEG that benefits from high compatibility and low complexity. Despite the
popularity of JPEG for decades, its standard configuration is rather suboptimal.

Recently, there have been huge advances in learned image compression us-
ing deep neural networks. One of the most common approaches is to use auto-
encoders, where the intermediate bottleneck representation is used as the com-
pressed code for an input image. Some approaches have reached to outperform
the traditional compression algorithms by introducing novel deep neural net-
work architectures with non-linear operations [1, 4, 5, 17, 21, 23, 26, 28, 36, 37].
Although learned image compression algorithms are more flexible to integrate
diverse objective functions to improve image quality and extend to the images in
other domains, their applicability is still limited because they require dedicated
decoders trained with encoders jointly and high-performance hardware.

To address the limitations, we propose a novel framework for JPEG image
compression based on deep neural networks. Fig. 1 illustrates the JPEG image
compression pipeline accompanying with the proposed quantization network.
Our method incorporates a learning-based approach into the JPEG compression
standard and estimates the data-driven quantization tables perfectly compatible
with the off-the-shelf JPEG encoder and decoder. Moreover, contrary to the con-
ventional image compression methods that focus only on low-level image quality
measures, our framework also allows to optimize performance of arbitrary high-
level image understanding tasks, e.g., image classification and image captioning,
by introducing proper loss functions. As the proposed framework requires bitrate
loss calculations which involve non-differentiable coding algorithms, we instead
devise a deep neural network model that directly estimates the code length given
JPEG DCT representations.

The main contributions of the proposed approach are summarized as follows:

• We propose a novel task-aware JPEG image compression framework based on
deep neural networks, which optimizes for performance of high-level target
tasks, e.g., image recognition, in addition to visual quality of a decoded
image.
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• The proposed approach learns a quantization network to estimate image-
specific quantization tables fully compatible with the standard JPEG Codec.

• To simulate the JPEG’s coding algorithm, we design a code length predic-
tion network of JPEG DCT representations, which empowers differentiable
learning and accurate inference on a bitrate.

The rest of the paper is organized as follows. Section 2 and 3 briefly dis-
cuss the related work and the background of JPEG, respectively. The proposed
approach is presented in Section 4. Section 5 describes the modeling of bitrate
prediction in detail. The experimental results with analysis are in Section 6.

2 Related Work

The optimal quantization table may differ image by image and also depend
on bitrate constraints and image quality standards. Since finding an explicit
solution of the optimal quantization table under the exact distribution of images
is infeasible, various techniques with different error metrics have been studied to
find the optimal quantization table.

A rate-distortion (RD) optimization method based on an MSE measure uses
the statistics of DCT coefficients to compute bitrate and distortion for each
frequency [31] and identifies the optimal quantization table. While the distortion
metric based on MSE makes the algorithm efficient, the models driven by human
visual system (HVS) [3,16,41] often show empirically better performance. Note
that the default JPEG quantization tables are also derived by exploiting HVS
properties in an image-agnostic manner. Heuristics such as genetic algorithm
and simulated annealing are also employed to search for improved quantization
tables in [13, 29]. Especially, Hopkins et al. [13] propose new baseline tables for
a subset of chosen quality factors by perturbing standard tables via simulated
annealing with respect to FSIM [43] measure.

Recently, the errors given by deep neural networks have arisen as new metrics
for image quality assessment. Dodge and Karam [7] studied how image quality
affects classification accuracy, where JPEG compression is employed as an image
quality degradation factor. Liu et al. [24] suggested a heuristic image compres-
sion framework that optimizes performance of a target task, by analyzing the
importance of each frequency and the statistics for better quantization.

3 JPEG Compression

This section presents the standard procedure in the JPEG encoder and decoder.
Before processing described in Section 3.1, color components of an image are
transformed to YCbCr color space and chrominace channels are optionally sub-
sampled. Then the image is split into 8 × 8 blocks for each channel. Encoding
and decoding procedures are performed on each 8× 8 block independently.
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3.1 Encoder

Discrete Cosine Transform (DCT) A frequency domain representation in-
cluding DCT has the capability to capture spatial redundancy and represent raw
data with a small number of coefficients. JPEG encoder transforms the pixels
in an 8 × 8 block by DCT [2] (2D DCT Type 2) to a coefficient matrix in the
same size, denoted by f = (fi,j). The coefficient matrix is arranged in the order
of DCT bases, where the first coefficient f0,0 represents the DC component, the
average value of all pixel data within the block, while the rest of 63 coefficients
are the AC components. Note that JPEG DCT coefficients take integers in the
range of [−210, 210).

Quantization The elements in the DCT coefficient matrix are divided by the
corresponding entries in a quantization matrix q = (qi,j) preset in the bitstream
and rounded up to the nearest integers. The quantized DCT is represented by
f̂ = (f̂i,j), where f̂i,j = dfi,j/qi,je. The performance of compression is determined
mostly in this step.

Symbol Coding The quantized DCT coefficients are reordered in a zigzag
manner, forming a vector, and then coded into intermediate symbols. The re-
shaped vector is denoted by f̂ = (f̂0, f̂1, . . . , f̂63), where f̂0 is the quantized DC
coefficient. From this point, DC and AC coefficients are treated separately as
follows. First, the encoder applies differential pulse code modulation (DPCM)
to DC coefficients of a whole image in the raster-scan order. In other words, by
letting f̂ j0 be the DC coefficient in the jth block, the encoded symbol δj is given

by δj = f̂ j0 − f̂
j−1
0 for j 6= 0 while δ0 = f̂00 . Second, it performs run-length encod-

ing (RLE) using AC coefficients, which scans the elements in f̂−0 = (f̂1, . . . , f̂63)

and assigns a tuple symbol (ri, si) to each of nonzero coefficients, f̂i(6= 0). Note

that ri and si denote the run-length of zero that immediately precedes f̂i and
the number of bits needed to encode f̂i, respectively. There is an exception that
symbols are generated for f̂i = 0; when total length of consecutive zeros ex-
ceedes 16 before encountering a nonzero, every succession of 16 zeros are coded
into (ri, si) = (15, 0). If the remaining coefficients are all zeros, we mark a special
symbol, (ri, si) = (0, 0), which denotes end-of-block (EOB). Note that the EOB

symbol is not necessary when f̂63 6= 0 since it is redundant to clarify the case.
Finally, a sequence of generated symbols for f̂−0 after RLE looks like

(ri1 , si1)f̂i1 ; (ri2 , si2)f̂i2 ; · · · ; (riK , siK )f̂iK

where {ik}Kk=1 are the selected indices in an increasing order for which symbols
are generated.

Entropy Coding Each symbol is entropy-coded by the Huffman coding or
the arithmetic coding. Our work adopts the Huffman coding, the most common
method, based on the Huffman tables for DC and AC specified in the bitstream.
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Fig. 2. The overall training framework of our method. The blue dashed lines are for the
loss calculation whose gradients update our quantization network. The blue bold arrows
indicate that the output of the quantization network is used as a quantization table
for encoding/decoding processes. Bitrate loss is drawn from the pretrained network
(colored grey). The grey dashed operations on the right-hand side are not involved in
the training procedure.

3.2 Decoder

The decoding procedure is given by the inverse operations of the encoder. Note
that, as quantization step involves rounding operations, the inverse quantization,
which is given by an element-wise product of the quantized DCT coefficient and
the quantization table, leads to inevitable loss of information within the original
image.

4 Quantization Network

We discuss how to predict a quantization table for task-specific image compres-
sion using the proposed quantization network.

4.1 Framework

Let X and Z be a set of training images and a set of quantized representations,
respectively. Each image x ∈ X is mapped to ẑ ∈ Z by a JPEG encoder, i.e.,
ẑ = Enc(x,q), where q denotes a set of coding parameters. i.e., a quantization
table. The bitrate R(·) of ẑ, which is proportional to the number of bits required
to express ẑ, is predicted by an approximation model and expected to be under
a target value. On the other hand, a JPEG decoder (Dec) reconstructs an image
by x̂ = Dec(ẑ,q) while incurring some distortion due to its lossy properties.
Note that we can bypass symbol coding and entropy coding functions, e.g., the
Huffman encoding and decoding for training because they are performed outside
the pipeline of the network. The objective of the proposed compression algorithm
is to minimize distortion between an input and output pair given a constraint
R ≤ Rtarget by identifying the optimal q for each x. This is reformulated as an
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unconstrained optimization problem by introducing the Lagrange multiplier λ
that depends on the distortion metric D(·, ·) and the regulairzer Rtarget as

min
q
D(x̂,x) + λR(ẑ). (1)

The optimal q is given by learning a quantization network Q(·) that directly
estimates a quantization matrix from DCT coefficients F(= (f j)), i.e., q = Q(F).
Then, for given n training images, {xi}ni=1, the training loss for Q(·) becomes

LQ =

n∑
i=1

D(Dec(ẑi,qi),xi) + λR(Enc(xi,qi)), (2)

where zi = Enc(xi,qi) and qi = Q(Fi). Fig. 2 illustrates the overall scheme
of our algorithm, where the distortion loss can be given by perceptual image
quality or task-specific error.

Although we make a mathematical formulation of the objective function in
(2), there exist multiple non-differentiable components in the loss. In particular,
it is not straightforward to define a differentiable bitrate loss function or its sur-
rogate. To handle this challenge, we design a deep neural network for estimating
a proper bitrate in (2) that is trainable via the standard error backpropaga-
tion. We present the details of our model for bitrate approximation in Section 5.
Before that, we discuss how to make JPEG encoding and decoding procedure
differentiable.

Differentiable JPEG Encoder and Decoder The original JPEG encoder
and decoder contain non-differentiable components such as rounding operations
during DCT transformation and quantization, which hampers training via the
standard backpropagation. This issue is resolved by adopting a differentiable
alternative introduced in [36], which simply replaces the derivative of a rounding
function with an identity. This technique essentially changes only the derivative
of the non-differentiable function without modifying the function itself. In other
words, rounding functions are performed as normal in the forward pass while
the backpropagation simply bypasses them.

4.2 Network Architecture

The quantization network of our framework takes DCT coefficients as an input
and outputs two quantization tables, one for luminance and the other for chromi-
nance, per image. Our base architecture consists of several convolutional layers
and fully-connected (FC) layers. The role expected from the convolutional layers
is to convey useful information in spatial and frequency domains while FC layers
are to predict the appropriate quantization levels considering the absolute val-
ues of input coefficients and relative importance within an entire image for each
frequency. Learning importance map for image compression appears frequently
in recent deep learning based approaches [17,21,23,26]. They typically intend to
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Fig. 3. The network architecture of the quantization network. The notation K ×K,C
in convolutional layers denotes that K×K kernels and C filters are applied. The concat
operation before FC layers means the channel-wise concatenation. Batch normalization
followed by ReLU activation comes right after each convolutional layer, though omitted
in the figure for simplicity. The numbers in FC layers refer to the size of output sample.

allocate different number of bits depending on the complexity and the context
of an image. We also adopt the same concept to control the quantization coeffi-
cients for each frequency using the features from a convolutional neural network
(CNN).

The internal flow of our quantization network is depicted in Fig. 3. Before
being passed to the network, a DCT coefficient matrix obtained from an image
is reshaped to a 3D tensor whose channels represent individual DCT frequency;
this process is similar to a reverse operation of the sub-pixel convolution (pixel
shuffle) [33]. We expect that the salient regions in the informative channels have
higher activations. Fig. 4 visualizes the output of the convolutional layers in the
quantization network, which learns attention-like representations implicitly. The
attention-like features are then augmented with the original DCT representa-
tions after applying the absolute value function. Finally, the FC layers produce
quantization values for each of 64 DCT frequency bases, which forms a 8 × 8
quantization table. We construct two independent quantization tables, one for
luminance and the other for chrominance. Note that the two channels in the
chrominance channels share convolutional parameters and are eventually merged
before the FC layers. Fig. 3 demonstrates the architectural difference between the
two channels. We borrow a bottleneck skip connection block from ResNet50 [11],
with only minor changes in order to match the channel sizes. Our model assumes
no chroma subsampling (4:4:4 mode), which means that luminance and chromi-
nance channels have the same resolution; it is possible to apply various ratios
of chroma subsampling, which is handled merely by adding convolutional layers
that reduce the spatial dimensions of chrominance components.

There are several prior works that learn deep neural networks using DCT
coefficients in recent years [10,25,38]. Gueguen et al. [10] empirically show that
DCT coefficients from JPEG are compatible with the standard convolutional
neural network architectures designed for image classification tasks in RGB
space. Although we have a different goal from those works, they give us an
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Fig. 4. Visualization of the implicit attention learned by convolutional layers with
classification loss. We use the learned representation of luminance components in Fig. 3
to generate the spatial attention map. Each feature map is min-max normalized to be
unit-sized, and then averaged channel-wisely. The original RGB image is overlayed with
the upsampled attention map.

intuition that we can take advantage of the standard convolutional layers for
DCT coefficient inputs to learn the features in the frequency domain.

5 Approximation of Bitrate Measure

Predicting a code length given by the Huffman coding algorithm from DCT
coefficients is complicated task. This is mainly because the length of AC symbols
from RLE are irregular and the behavior of encoder thus becomes difficult to
analyze. Motivated by this fact, we develop an approximate model of the bitrate
measure R(·) using a deep neural network instead of an explicit analytic function.
Since R(·) is exactly proportional to the length of bitstream that results from a
sequence of discrete algorithms in JPEG entropy encoder, we design our network
model to predict the final code length given the quantized vector considering the
mechanism of JPEG encoder.

Several existing works [14, 22, 27] have studied on the approximation capa-
bilities of a neural network theoretically by assuming certain criteria. Recently,
advance of deep learning models based on various structures and components
empower deep neural networks to break through complicated tasks. This direc-
tion is feasible to our case because the input of the bitrate measure R is bounded
and a large number of synthetic examples can be sampled on our own.

Since JPEG operates the same processes over 8 × 8 basic blocks, we reduce
our problem defined on a fixed dimension of domain, an 8×8 matrix. If an image
is divided into nB blocks, the bitrate measure is redefined as R(ẑ) =

∑nB

j=1R(ẑj).
The approximation of R(ẑj) is realized through several networks to embrace the
encoding rules more accurately. The constituent networks are an intermediate
symbol predictor for AC coefficients (Sac) and a code length predictors for DC
and AC coefficients (Hdc and Hac, respectively). The predicted code length,
which is proportional to our bitrate loss of an input image, is given by combining
the three components together as

R(ẑ) =

nB∑
j=1

Hdc(δj) + Hac(Sac(f̂
j
−0)), (3)

where δj is a DC symbol and f̂ j−0 is an AC vector from ẑj . The followings are
design procedures and implementation details of the three networks.
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5.1 Symbol Prediction from RLE Model

Symbol coding process of JPEG encoding involves counting numbers in a serial
order and several exception rules described in Section 3.1. We adopt an RNN
model for the network Sac, which mimics encoding rule during scanning a se-
quence and outputs a logit of symbol labels. The task can be formulated as a
fully supervised classification using randomly generated inputs.

Our model learns the run-length size rik for input coefficient fik in a sym-

bol, (rik , sik)f̂ik . For the coefficients with no corresponding symbol, i.e., i /∈
{i1, . . . , iK}, we assign a dummy symbol rNIL to facilitate training. In this
correspond, an input AC coefficient sequence derives a symbol sequence r =
(r1, . . . , r63) of the same dimension. Since the number of possible symbols are
confined to 16 (integers in [0, 15], see Section 3.1), the network learns to generate
the logit representing the probability of symbols given a sequence of AC coeffi-
cients. We choose a bidirectional LSTM as our RNN model and let g : R 7→ R16

be a function that produces symbol probability vector. Then, our predicted sym-
bol r̂i is given by the result of the following classification task:

`∗ = arg max g(BiLSTM(fi)), (4)

i.e., r̂i = `∗. Now we can train this model by generating a training set, {(f̂−0, r)},
from a random sequence in Z. We adopt a single-layer bidirectional LSTM with
16 hidden states. However, since (4) is non-differentiable, we approximate r̂i to
r̃i using a Gumbel-softmax function as proposed in [15], which results in the
final predicted symbols r̃ = (r̃1, . . . , r̃63), inputs for the next regression step.

5.2 Regression Model for Final Code Length

We train two MLP models for DC and AC to predict the final code length based
on the Huffman tables. We convert each element of DC symbols and AC vectors
into the logarithmic scale, i.e., fi to log2(|fi|+1), since the lengths of codewords
are clustered tightly in that scale. This adjustment makes our training more
efficient and accurate by providing training examples more focused to frequently
observed input patterns.

The networks are trained in a supervised manner based on the Huber loss
using randomly generated vectors whose elements are sampled from [−10, 10].
Modifying the input scale in (3), the approximate code length of an image be-
comes

R(ẑ) =

nB∑
j=1

{Hdc(log2 (|δj |+ 1)) +

63∑
i=1

Hac(log2 (|f ji |+ 1), r̃i
j)}. (5)

Note that all three models in (3) are trained jointly. Our final regression model
achieves 5.30% ± 1.60 on SMAPE (symmetric mean absolute percentage er-
ror) [9] when tested over 5,000 images sampled from the ImageNet validation
set, where each image is JPEG compressed with random quality factor. SMAPE
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is a common evaluation metric for regression problem that provides a reasonable
judgment on relative errors.

In theory, one can further optimize a Huffman coding by using custom
Huffman tables or adaptive Huffman coding algorithms, which dynamically up-
dates code tables according to the change of distributions of input symbols [19].
Lakhani [20] reports that variants of the standard compression algorithm have
limited benefits considering the additional cost in space and time. In this work,
we pursue the method that keeps the standard codec intact and choose to follow
the standard Huffman coding. Meanwhile, the proposed method that approxi-
mates the bitrate is still applicable to any extensions of Huffman coding.

6 Experiments

Dataset We train the quantization network on the ImageNet [32] dataset, which
has 1,000 class labels. We constructed a test set for classification by sampling
5,000 images in 1,000 classes from the ImageNet validation set. We also used
Caltech101 [8] for cross-dataset evaluation, where 406 randomly selected images
are set aside for a test set. Flickr8k [12] and Kodak PhotoCD1 datasets are
additionally used for various assessments of our method.

Training We use the Adam [18] optimizer to learn models in all experiments.
The learning rate starts from 0.001 and decreases by 0.1 for every 2k iterations.
Each model is trained until the objective function converges.

Comparison The baseline dataset is generated by varying the JPEG quality
factor scaled from 1 to 100 with the standard tables for each image. In all cases,
including ours, 4:4:4 chroma subsampling mode is applied to test and evaluation.
We compare two compressed images given by our algorithm and the standard
JPEG by identifying the image in the baseline dataset with the (almost) same
file size as ours. For each rate constraint parameter, we measure average bitrate
and distortion (or performance) on test dataset to obtain a single point on the
rate-distortion curve. To compute bitrate, we compute the actual bpp (bits per
pixel) by applying the symbol coding and Huffman coding to the quantized
representations.

Image Classification Accuracy For classification task, we employed Inception-
v3 [35] for distortion metric. We adopted the pretrained model available in Py-
Torch. Fig. 5(a) presents that our quantization improves classification accuracy
consistently, especially with aggressive compression rates. In our evaluation set-
ting, the classification accuracy drops dramatically from around 0.4bpp and
decent classification accuracy is achieved at higher bitrate. It is therefore nat-
ural that the proposed algorithm has relatively low gain on high bitrate range.

1 http://r0k.us/graphics/kodak/
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Fig. 5. Comparion by rate-distortion(/performance) curves. (a) Experiments with cross
entropy loss of Inception-v3. Ours(CE+att) have the same architecture as ours(CE)
except the attention module at the end of CNN. Classification accuracies(top-1/top-
5) on original datasets are 0.76/0.93 for ImageNet and 0.96/0.99 for Caltech101.
Ours(interp) are interpolated results from the models of ours(CE+att). (b) Experi-
ments with Inception-v3 perceptual loss (ours(P)) for image captioning. Original test
set records 61, 36, 26 and 14 on BLEU-1 to BLEU-4 scores. (c) Experiments with MSE
loss and MS-SSIM loss.

In effect, our quantization network alleviates the failure of the classifier at low
bitrates. Further, the results on Caltech101 imply the promising cross-dataset
generalization performance as well.

Quality of Image Captioning To demonstrate the applicability of our method
to various tasks, we run an experiment for image captioning, which requires
more advanced semantic understanding than image classification. We choose
Inception-v3 perceptual loss as a distortion metric. We train the image cap-
tioning model introduced in [39] on Flickr8k dataset using Inception-v3 feature
extractor. BLEU scores are computed on generated captions as presented in
Fig. 5(b). Our quantization method seems to benefit high-level tasks by preserv-
ing more semantic information in the images.

Percieved Quality We also trained the proposed quantization network using
conventional distortion metrics such as pixel-wise MSE loss and MS-SSIM [40]
loss. We evaluate the results on ImageNet and Kodak test dataset in terms of
PSNR and MS-SSIM index because they are widely used as an approximation
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Original Ours (CE) JPEG baseline
Classification (@1)

Image Ours (CE) JPEG baseline
Classification (@1)

0.291bpp / ‘magpie’ 0.332bpp / ‘book jacket’‘magpie’ 0.376bpp / ‘traffic light’ 0.400bpp / ‘street car’‘traffic light’

0.298bpp / ‘conch’ 0.301bpp / ‘black footed ferret’‘conch’ 0.278bpp / ‘lacewing’ 0.280bpp / ‘walking stick’‘lacewing’

Fig. 6. Examples of classification results on experiment with Inception-v3 loss on Im-
ageNet. Bitrates and predicted classes are shown below the images with CAM visual-
izations.

to human perception of visual quality. Fig. 5(c) shows that our methods surpass
the baseline on both metrics, especially on MS-SSIM.

Effect of Attention Module To examine whether the architecture of our
quantization network can further improve the compression performance, we
added a simple attention module at the end of the original convolution layers
in Fig. 3. Our attention module is identical to CBAM [42] except that we omit
max-pooled features and spatial attention is drawn ahead of channel attention.
Fig. 5(a) illustrates that our quantization network benefits from the attention
module, which implies the potential improvement of our method by introducing
better attention mechanisms or CNN architectures.

Interpolation using Multiple Models We present that the interpolation of
quantization tables from multiple quantization networks is valid for the bitrate
control. As shown in ImageNet plots in Fig. 5(a), interpolated results based on
two models still surpass the baseline and also aligned well to the curve given by
our algorithm without interpolation. This implies that we can realize an arbitrary
bitrate by learning several landmark quantization networks and interpolating the
resulting quantization tables for JPEG encoding.
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(a) When our results have lower bitrates than baselines

(b) When our results have higher bitrates than baselines

Fig. 7. Comparison on the captions generated by the RNN based caption generator
on Flickr8k dataset. (a) Left: Only baseline results commit errors. Right: Both ours
and baselines contain mistakes. (b) Ours outperform the baseline results. Errors are
colored red and extra descriptions captured only by ours are colored blue.

Qualitative Results Fig. 6 presents qualitative comparisons between the JPEG
baseline and our algorithm, where the JPEG baseline predicts wrong labels while
ours approach is correct even with lower bitrates. In addition, we visualize class
activation mappings (CAM) [44] for top-1 class on each image. The localized re-
gions in the images support the proposed method on the classification task. We
provide more examples with CAM localizations in the supplementary document.

Fig. 7 shows the qualitative results of generated captions. We observe that
the captions on our compressed images contain fewer mistakes than those on
baselines and often grasp detailed information of images missed in the baselines.
When our images have a slightly higher bitrate than the baselines, the proposed
approach obtains appealing improvements on captions that are hardly seen in
the counterpart.

Some qualitative results on Kodak dataset are shown in Fig. 8. Generally, our
quantization yields more natural outputs with lower bitrates; color changes are
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0.389bpp / 26.83dB / 0.942 0.391bpp / 26.64dB / 0.900 0.323bpp / 31.24dB / 0.937 0.333bpp / 30.79dB / 0.902

Original Ours (MS-SSIM) JPEG baseline Original Ours (MS-SSIM) JPEG baseline

0.328bpp / 28.30dB / 0.918 0.328bpp / 27.63dB / 0.877 0.314bpp / 22.70dB / 0.840

0.381bpp / 23.01dB / 0.857 0.406bpp / 23.01dB / 0.843 0.366bpp / 25.73dB / 0.922 0.369bpp / 25.57dB / 0.908

0.331bpp / 22.68dB / 0.806

Fig. 8. Comparison on the selectively cropped samples from the Kodak dataset. Bi-
trate, PSNR and MS-SSIM values are notated below each image.

smoother in monotonous regions and complex structures are less blurred. Unlike
the default quantizations, which normally quantize chrominance components
more than luminance components, our approach seems to perform more balanced
bitrate optimization, which, in turn, produces better visual quality.

7 Conclusion

We proposed a framework for data-driven and task-aware JPEG quantization,
which has not been studied intensively. To facilitate our training, we designed a
differentiable code length prediction technique given quantized representations
based on deep neural networks. The proposed quantization network has been
incorporated into the standard JPEG algorithm and improved compression per-
formance substantially. Especially, it is highly effective when the bitrate is very
low, where JPEG suffers from severe degradation. The proposed method is in-
deed practical since it is compatible with any JPEG Codecs with no additional
cost for decoding. We believe that our method can be explored further jointly
with various options of JPEG compression and for more powerful network ar-
chitectures.
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