
Energy-Based Models for
Deep Probabilistic Regression

Supplementary Material

In this supplementary material, we provide additional details and results. It
consists of Appendix A - Appendix F. Appendix A contains a detailed algorithm
for our employed prediction procedure. Appendix B contains details on the il-
lustrative 1D regression problem in Figure 2 in the main paper. Further details
on the employed training and inference procedures are provided in Appendix C
for the object detection experiments, and in Appendix D for the visual tracking
experiments. Lastly, Appendix E and Appendix F contain details and full results
for the experiments on age estimation and head-pose estimation, respectively.
Note that equations, tables, figures and algorithms in this supplementary doc-
ument are numbered with the prefix ”S”. Numbers without this prefix refer to
the main paper.

Appendix A Prediction Algorithm

Our prediction procedure (Section 3.3) is detailed in Algorithm S1, where λ
denotes the gradient ascent step-length, η is a decay of the step-length and T is
the number of iterations. In our experiments, we fix T (typically, T = 10) and
select {λ, η} using grid search on a validation set.

Algorithm S1 Prediction via gradient-based refinement.

Input: x?, ŷ, T , λ, η.

1: y ← ŷ.
2: for t = 1, . . . , T do
3: PrevValue ← fθ(x

?, y).
4: ỹ ← y + λ∇yfθ(x?, y).
5: NewValue ← fθ(x

?, ỹ).
6: if NewValue > PrevValue then
7: y ← ỹ.
8: else
9: λ← ηλ.

10: Return y.

Appendix B Illustrative Example

The ground truth conditional target density p(y|x) in Figure 2 is defined by a
mixture of two Gaussian components (with weights 0.2 and 0.8) for x < 0, and
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a log-normal distribution (with µ = 0.0, σ = 0.25) for x ≥ 0. The training data
{(xi, yi)}2000i=1 was generated by uniform random sampling of x, xi ∼ U(−3, 3).
Both models were trained for 75 epochs with a batch size of 32 using the
ADAM [14] optimizer.

The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x; θ) = N
(
y;µθ(x), σ2

θ(x)
)
,

fθ(x) = [µθ(x) log σ2
θ(x) ]T ∈ R2.

(S1)

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

n

n∑
i=1

(yi − µθ(xi))2

σ2
θ(xi)

+ log σ2
θ(xi). (S2)

The DNN fθ is a simple feed-forward neural network, containing two shared
fully-connected layers (dimensions: 1 → 10, 10 → 10) and two identical heads
for µ and log σ2 of three fully-connected layers (10→ 10, 10→ 10, 10→ 1).

Our proposed model p(y|x; θ) = efθ(x,y)/Z(x, θ) (Eq. 1 in the paper) is de-
fined using a feed-forward neural network fθ(x, y) containing two fully-connected
layers (1 → 10, 10 → 10) for both x and y, and three fully-connected layers
(20 → 10, 10 → 10, 10 → 1) processing the concatenated (x, y) feature vector.
It is trained using M = 1024 samples from a proposal distribution q(y|yi) (Eq. 5
in the paper) with L = 2 and variances σ2

1 = 0.12, σ2
2 = 0.82.

Appendix C Object Detection

Here, we provide further details about the network architectures, training pro-
cedure, and hyperparameters used for our experiments on object detection (Sec-
tion 4.1 in the paper).

C.1 Network Architecture

We use the Faster-RCNN [21] detector with ResNet50-FPN [15] as our base-
line. As visualized in Figure S1a, Faster-RCNN generates object proposals using
a region proposal network (RPN). The features from the proposal regions are
then pooled to a fixed-sized feature map using the RoiPool layer [7]. The pooled
features are then passed through a feature extractor (denoted Feat-Box) con-
sisting of two fully-connected (FC) layers. The output feature vector is then
passed through two parallel FC layers, one which predicts the class label (de-
noted FC-Cls), and another which regresses the offsets between the proposal
and the ground truth box (denoted FC-BB). We use the PyTorch implementa-
tion for Faster-RCNN from [17]. Note that we use the RoiAlign [9] layer instead
of RoiPool in our experiments as it has been shown to achieve better perfor-
mance [9].

For the Gaussian and Laplace probabilistic models (Gaussian and Laplace
in Table 2 in the paper), we replace the FC-BB layer in Faster-RCNN with
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Fig. S1: Network architectures for the different object detection networks used
in our experiments (Section 4.1 in the paper). The backbone feature extractor
(ResNet50-FPN), and the region proposal network (RPN) is not shown for clar-
ity. We do not train the blocks in blue color, using the pre-trained Faster-RCNN
weights from [17] instead. The blocks in red are initialized with the pre-trained
Faster-RCNN weights and fine-tuned. The blocks in green on the other hand are
trained from scratch.

two parallel FC layers, denoted FC-BBMean and FC-BBVar, which predict the
mean and the log-variance of the distribution modeling the offset between the
proposal and the ground truth box for each coordinate. This architecture is
shown in Figure S1b. For the mixtures of K = {2, 4, 8} Gaussians, we duplicate
FC-BBMean and FC-BBVar K times, and add an FC layer for predicting the K
component weights. For the cVAE, FC-BBMean and FC-BBVar instead outputs
the mean and log-variance of a Gaussian distribution for the latent variable z ∈
R10. Duplicates of FC-BBMean and FC-BBVar, modified to also take sampled
z values as input, then predicts the mean and log-variance of the distribution
modeling the bounding box offset.

For our confidence-based IoU-Net [12] models (IoU-Net and IoU-Net∗ in Ta-
ble 2), we use the same network architecture as employed in the original paper,
shown in Figure S1c. That is, we add an additional branch to predict the IoU
overlap between the proposal box and the ground truth. This branch uses the
PrRoiPool [12] layer to pool the features from the proposal regions. The pooled
features are passed through a feature extractor (denoted Feat-Conf) consist-
ing of two FC layers. The output feature vector is passed through another FC
layer, FC-Conf, which predicts the IoU. We use an identical architecture for our
approach, but train it to output fθ(x, y) in p(y|x; θ) = efθ(x,y)/Z(x, θ) instead.

C.2 Training

We use the pre-trained weights for Faster-RCNN from [17]. Note that the bound-
ing box regression in Faster-RCNN is trained using a direct method, with an Hu-
ber loss [11]. We trained the other networks in Table 2 in the paper (Gaussian,
Gaussian Mixt. 2, Gaussian Mixt. 4, Gaussian Mixt. 8, Gaussian cVAE, Laplace,
IoU-Net, IoU-Net∗ and Ours) on the MS-COCO [16] training split (2017 train)
using stochastic gradient descent (SGD) with a batch size of 16 for 60k itera-
tions. The base learning rate lrbase is reduced by a factor of 10 after 40k and
50k iterations, for all the networks. We also warm up the training by linearly
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increasing the learning rate from 1
3 lrbase to lrbase during the first 500 iterations.

We use a weight decay of 0.0001 and a momentum of 0.9. For all the networks,
we only trained the newly added layers, while keeping the backbone and the
region proposal network fixed.

For the Gaussian, mixture of Gaussians, cVAE and Laplace models, we only
train the final predictors (FC-BBMean and FC-BBVar), while keeping the class
predictor (FC-Cls) and the box feature extractor (Feat-Box) fixed. We also tried
fine-tuning the FC-Cls and Feat-Box weights for the Gaussian model, with differ-
ent learning rate settings, but obtained worse performance on the validation set.
The weights for both FC-BBMean and FC-BBVar were initialized with zero mean
Gaussian with standard deviation of 0.001. All these models were trained with a
base learning rate lrbase = 0.005 by minimizing the negative log-likelihood, ex-
cept for the cVAE which is trained by maximizing the ELBO (using 128 sampled
z values to approximate the expectation).

For the IoU-Net, IoU-Net∗ and our proposed model, we only trained the
newly added confidence branch. We found it beneficial to initialize the feature
extractor block (Feat-Conf) with the corresponding weights from Faster-RCNN,
i.e. the Feat-Box block. The weights for the predictor FC-Conf were initialized
with zero mean Gaussian with standard deviation of 0.001. As in the original
paper [12], we used a base learning rate lrbase = 0.01 for the IoU-Net and IoU-
Net∗ networks. For our proposed model, we used lrbase = 0.001 due to the
different scaling of the loss. Note that we did not perform any parameter tuning
for setting the learning rates. We generate 128 proposals for each ground truth
box during training. For the IoU-Net, we use the proposal generation strategy
mentioned in the original paper [12]. That is, for each ground truth box, we
generate a large set of candidate boxes which have an IoU overlap of at least 0.5
with the ground truth, and uniformly sample 128 proposals from this candidate
set w.r.t. the IoU. For IoU-Net∗ and our model, we sample boxes from a proposal
distribution (Eq. 5 in the paper) generated by L = 3 Gaussians with standard
deviations of 0.0375, 0.075 and 0.15. The IoU-Net and IoU-Net∗ are trained by
minimizing the Huber loss between the predicted IoU and the ground truth, while
our model is trained by minimizing the negative log likelihood of the training
data (Eq. 4 in the paper).

C.3 Analysis of Proposal Distribution

An extensive ablation study for the number of components L and standard
deviations {σl}Ll=1 in the proposal distribution q(y|yi) = 1

L

∑L
l=1N (y; yi, σ

2
l )

(Eq. 5 in the paper) is provided in Table S1, which is an extended version of
Table 1 in the paper. We find that L = 1 downgrades performance, while there
is no significant difference between L = 2 and L = 3. For L ∈ {2, 3}, the results
are not particularly sensitive to the specific choice of {σl}Ll=1, but benefits from
including both small and relatively large values in {σl}Ll=1.
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Table S1: Impact of L and {σl}Ll=1 in the proposal distribution q(y|yi) (Eq. 5 in
the paper), for the object detection task on the 2017 val split of COCO [16].

L {σl}Ll=1 AP (%)

1 {0.01875} 38.07
1 {0.0375} 38.47
1 {0.075} 37.52
1 {0.15} 35.05

2 {0.025, 0.1} 38.97
2 {0.0375, 0.15} 39.05
2 {0.04375, 0.175} 39.07
2 {0.05, 0.2} 39.02

2 {0.0125, 0.025} 38.19
2 {0.025, 0.05} 38.65
2 {0.075, 0.15} 37.14

3 {0.0125, 0.025, 0.05} 38.61
3 {0.025, 0.05, 0.1} 38.95
3 {0.0375, 0.075, 0.15} 39.11
3 {0.04375, 0.0875, 0.175} 39.00
3 {0.05, 0.1, 0.2} 38.76
3 {0.0625, 0.125, 0.25} 37.96
3 {0.075, 0.15, 0.3} 37.42

C.4 Inference

The inference in both the Gaussian and Laplace models is identical to the one
employed by Faster-RCNN, except the output mean is taken as the prediction.
Thus, we do not utilize the output variances during inference. For the mixture of
K = {2, 4, 8} Gaussians, we compute the mean of the distribution and take that
as our prediction. Instead picking the component with the largest weight and
taking its mean as the prediction resulted in somewhat worse validation perfor-
mance. For cVAE, we approximately compute the mean (using 128 samples) of
the distribution and take that as our prediction.

For IoU-Net and IoU-Net∗, we perform IoU-Guided NMS as described in
[12], followed by gradient-based refinement (Algorithm S1). For our proposed
approach we adopt the same NMS technique, but guide it with the values
fθ(x, y) predicted by our network instead. We use a step-length λ = 0.5 and
step-length decay η = 0.1 for IoU-Net. For IoU-Net∗ and our approach we per-
form the gradient-based refinement in the relative bounding box parametrization
y = (cx/w0, cy/h0, logw, log h) (see Section 4.1 in the paper). Here, we employ
different step-lengths for position and size. For IoU-Net∗, we use λ = 0.002 and
λ = 0.008 respectively, with a decay of η = 0.2. For our proposed approach, we
use λ = 0.0001 and λ = 0.0004 with η = 0.5. For all methods, these hyperpa-
rameters (λ and η) were set using a grid search on the COCO validation split
(2017 val). We used T = 10 refinement iterations for each of the three models.
Note that since a given image x can have multiple ground truth instances, mul-
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Table S2: Impact of L and {σl}Ll=1 in the proposal distribution q(y|yi) (Eq. 5 in
the paper), for the visual tracking task on the combined OTB [22] and NFS [13]
datasets.

L {σl}Ll=1 OP0.50 (%) OP0.75 (%) AUC (%)

1 {0.05} 75.77 45.72 63.37

2 {0.01, 0.1} 77.25 46.09 61.48
2 {0.03, 0.3} 79.27 48.59 63.65
2 {0.05, 0.5} 79.90 48.71 64.10
2 {0.07, 0.7} 78.41 47.72 62.75

tiple bounding boxes are usually refined. The gradient-based refinement then
moves each individual box y towards the maximum of a local mode in fθ(x, y).
Thus, they will not converge to a single solution. Also note that fθ(x, y) is
class-conditional (as in the IoU-Net baseline), eliminating the risk of confusing
neighboring objects of different classes.

Appendix D Visual Tracking

Here, we provide further details about the training procedure and hyperparame-
ters used for our experiments on visual object tracking (Section 4.2 in the paper).

D.1 Training

We adopt the ATOM [3] tracker as our baseline, and use the PyTorch imple-
mentation and pre-trained weights from [2]. ATOM trains an IoU-Net-based
module to predict the IoU overlap between a candidate box and the ground
truth, conditioned on the first-frame target appearance. The IoU predictor is
trained by generating 16 candidates for each ground truth box. The candidates
are generated by adding a Gaussian noise for each ground truth box coordinate,
while ensuring a minimum IoU overlap of 0.1 between the candidate box and
the ground truth. The network is trained by minimizing the squared error (L2

loss) between the predicted and ground truth IoU.
Our proposed model is instead trained by sampling 128 candidate boxes from

a proposal distribution (Eq. 5 in the paper) generated by L = 2 Gaussians with
standard deviations of 0.05 and 0.5, and minimizing the negative log likelihood
of the training data. An ablation study for the proposal distribution is found
in Table S2. We use the training splits of the TrackingNet [18], LaSOT [4],
GOT10k [10], and COCO datasets for our training. Our network is trained for
50 epochs, using the ADAM optimizer with a base learning rate of 0.001 which is
reduced by a factor of 5 after every 15 epochs. The rest of the training parameters
are exactly the same is in ATOM. The ATOM∗ model is trained by using the
exact same proposal distribution, datasets and settings. It only differs by the
loss, which is the same squared error between the predicted and ground truth
IoU as in the original ATOM.
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Fig. S2: Visualization of the conditional target density p(y|x; θ) ∝ efθ(x,y) pre-
dicted by our network for the task of bounding box estimation in visual tracking.
Since the target space y ∈ R4 is 4-dimensional, we visualize the density for differ-
ent locations of the top-right corner as a heatmap, while the bottom-left is kept
fixed at the tracker output (red box). Our network predicts flexible densities
which qualitatively capture meaningful uncertainty in challenging cases.

D.2 Inference

During tracking, the ATOM tracker first applies the classification head network,
which is trained online, to coarsely localize the target object. 10 random boxes
are then sampled around this prediction, to be refined by the IoU prediction
network. We only alter the final bounding box refinement step of the 10 given
random initial boxes, and preserve all other settings as in the original ATOM
tracker. The original version performs T = 5 gradient ascent iterations with a
step length of λ = 1.0. For our proposed model and the ATOM∗ version, we
use T = 10 iterations, employing the bounding box parameterization described
in Section 4.1. For our approach, we set the step length to λ = 2 · 10−4 for
position and λ = 10−3 for size dimensions. For ATOM∗, we use λ = 10−2 for
position and λ = 5 · 10−2 for size dimensions. These parameters were set on
the separate validation set. For simplicity, we adopt the vanilla gradient ascent
strategy employed in ATOM for the two other methods as well. That is, we have
no decay (η = 1) and do not perform checks whether the confidence score is
increasing in each iteration.

D.3 Qualitative Results

Illustrative examples of the target density p(y|x; θ) ∝ efθ(x,y) predicted by our
approach during tracking are visualized in Figure S2.

Appendix E Age Estimation

In this appendix, further details on the age estimation experiments (Section 4.3
in the paper) are provided.

E.1 Network Architecture

The DNN architecture fθ(x, y) of our proposed model first extracts ResNet50
features gx ∈ R2048 from the input image x. The age y is processed by four fully-
connected layers (dimensions: 1→ 16, 16→ 32, 32→ 64, 64→ 128), generating
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Table S3: Impact of {σl}2l=1 in the proposal distribution q(y|yi) (Eq. 5 in the
paper), for the age estimation task on our validation split of the UTKFace [25]
dataset.

{σl}2l=1 MAE

{0.1, 10} 7.62
{0.1, 20} 5.12
{0.01, 20} 5.36
{0.1, 40} 5.24

gy ∈ R128. The two feature vectors gx, gy are then concatenated to form gx,y ∈
R2048+128, which is processed by two fully-connected layers (2048 + 128→ 2048,
2048→ 1), outputting fθ(x, y) ∈ R.

E.2 Training

Our model is trained using M = 1024 samples from a proposal distribution
q(y|yi) (Eq. 5 in the paper) with L = 2 and variances σ2

1 = 0.12, σ2
2 = 202.

An ablation study for the variances is found in Table S3. The model is trained
for 75 epochs with a batch size of 32, using the ADAM optimizer with weight
decay of 0.001. The images x are of size 200×200. For data augmentation, we use
random flipping along the vertical axis and random scaling in the range [0.7, 1.4].
After random flipping and scaling, a random image crop of size 200× 200 is also
selected. The ResNet50 is imported from torchvision.models in PyTorch with
the pretrained option set to true, all other network parameters are randomly
initialized using the default initializer in PyTorch.

E.3 Prediction

For this experiment, we use a slight variation of Algorithm S1, which is found
in Algorithm S2. There, T is the number of gradient ascent iterations, λ is the
stepsize, Ω1 is an early-stopping threshold and Ω2 is a degeneration tolerance.
Following IoU-Net, we set T = 5, Ω1 = 0.001 and Ω2 = −0.01. Based on the
validation set, we select λ = 3. We refine a single estimate ŷ, predicted by each
baseline model.

E.4 Baselines

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. Identical data augmentation and parameter
initialization as for our proposed model is used.

Direct The DNN architecture of Direct first extracts ResNet50 features gx ∈
R2048 from the input image x. The feature vector gx is then processed by two
fully-connected layers (2048 → 2048, 2048 → 1), outputting the prediction ŷ ∈
R. It is trained by minimizing either the Huber or L2 loss.



Energy-Based Models for Deep Probabilistic Regression 9

Algorithm S2 Prediction via gradient-based refinement (variation).

Input: x?, ŷ, T , λ, Ω1, Ω2.

1: y ← ŷ.
2: for t = 1, . . . , T do
3: PrevValue ← fθ(x

?, y).
4: y ← y + λ∇yfθ(x?, y).
5: NewValue ← fθ(x

?, y).
6: if |PrevValue − NewValue| < Ω1 or (NewValue − PrevValue) < Ω2 then
7: Return y.

8: Return y.

Table S4: Full results for the age estimation experiments. Gradient-based refine-
ment using our proposed method consistently improves MAE (lower is better)
for the age predictions outputted by a number of baselines.

Method MAE

Niu et al. [19] 5.74 ± 0.05
Cao et al. [1] 5.47 ± 0.01

Direct - Huber 4.80 ± 0.06
Direct - Huber + Refinement 4.74 ± 0.06

Direct - L2 4.81 ± 0.02
Direct - L2 + Refinement 4.65 ± 0.02

Gaussian 4.79 ± 0.06
Gaussian + Refinement 4.66 ± 0.04

Laplace 4.85 ± 0.04
Laplace + Refinement 4.81 ± 0.04

Softmax - CE & L2 4.78 ± 0.05
Softmax - CE & L2 + Refinement 4.65 ± 0.04

Softmax - CE, L2 & Var 4.81 ± 0.03
Softmax - CE, L2 & Var + Refinement 4.69 ± 0.03

Gaussian The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x; θ) = N
(
y;µθ(x), σ2

θ(x)
)
,

fθ(x) = [µθ(x) log σ2
θ(x) ]T ∈ R2.

(S3)

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

n

n∑
i=1

(yi − µθ(xi))2

σ2
θ(xi)

+ log σ2
θ(xi). (S4)

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from
the input image x. The feature vector gx is then processed by two heads of two
fully-connected layers (2048 → 2048, 2048 → 1) to output µθ(x) and log σ2

θ(x).
The mean µθ(x) is taken as the prediction ŷ.
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Laplace The Laplace model is defined using a DNN fθ(x) according to,

p(y|x; θ) =
1

2βθ(x)
exp

{
− |y − µθ(x)|

βθ(x)

}
,

fθ(x) = [µθ(x) log βθ(x) ]T ∈ R2.

(S5)

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

n

n∑
i=1

|yi − µθ(xi)|
βθ(xi)

+ log βθ(xi). (S6)

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from
the input image x. The feature vector gx is then processed by two heads of two
fully-connected layers (2048 → 2048, 2048 → 1) to output µθ(x) and log βθ(x).
The mean µθ(x) is taken as the prediction ŷ.

Softmax The DNN architecture of Softmax first extracts ResNet50 features
gx ∈ R2048 from the input image x. The feature vector gx is then processed
by two fully-connected layers (2048 → 2048, 2048 → C), outputting logits for
C = 101 discretized classes {0, 1, . . . , 100}. It is trained by minimizing either
the cross-entropy (CE) and L2 losses, J = JCE + 0.1JL2 , or the CE, L2 and
variance [20] losses, J = JCE + 0.1JL2 + 0.05JV ar. The prediction ŷ is computed
as the softmax expected value.

E.5 Full Results

Full experiment results, extending the results found in Table 4 (Section 4.3 in
the paper), are provided in Table S4.

Appendix F Head-Pose Estimation

In this appendix, further details on the head-pose estimation experiments (Sec-
tion 4.4 in the paper) are provided.

F.1 Network Architecture

The DNN architecture fθ(x, y) of our proposed model first extracts ResNet50
features gx ∈ R2048 from the input image x. The pose y ∈ R3 is processed by
four fully-connected layers (dimensions: 3 → 16, 16 → 32, 32 → 64, 64 → 128),
generating gy ∈ R128. The two feature vectors gx, gy are then concatenated to
form gx,y ∈ R2048+128, which is processed by two fully-connected layers (2048 +
128→ 2048, 2048→ 1), outputting fθ(x, y) ∈ R.
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Table S5: Impact of {σl}2l=1 in the proposal distribution q(y|yi) (Eq. 5 in the
paper), for the head-pose estimation task on our validation split of the BIWI [5]
dataset.

{σl}2l=1 Average MAE

{0.1, 20} 6.96
{1, 20} 5.08
{1, 30} 5.24
{2, 20} 7.02
{1, 10} 7.56

F.2 Training

Our model is trained using M = 1024 samples from a proposal distribution
q(y|yi) (Eq. 5 in the paper) with L = 2 and variances σ2

1 = 12, σ2
2 = 202 for

yaw, pitch and roll. An ablation study for the variances is found in Table S5.
The model is trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. The images x are of size 64× 64. For data
augmentation, we use random flipping along the vertical axis and random scaling
in the range [0.7, 1.4]. After random flipping and scaling, a random image crop of
size 64×64 is also selected. The ResNet50 is imported from torchvision.models

in PyTorch with the pretrained option set to true, all other network parameters
are randomly initialized using the default initializer in PyTorch.

F.3 Prediction

For this experiment, we also use the prediction procedure detailed in Algo-
rithm S2. Again following IoU-Net, we set T = 5, Ω1 = 0.001 and Ω2 = −0.01.
Based on the validation set, we select λ = 0.1. We refine a single estimate ŷ,
predicted by each baseline model.

F.4 Baselines

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. Identical data augmentation and parameter
initialization as for our proposed model is used.

Direct The DNN architecture of Direct first extracts ResNet50 features gx ∈
R2048 from the input image x. The feature vector gx is then processed by two
fully-connected layers (2048 → 2048, 2048 → 3), outputting the prediction ŷ ∈
R3. It is trained by minimizing either the Huber or L2 loss.
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Table S6: Full results for the head-pose estimation experiments. Gradient-based
refinement using our proposed method consistently improves the average MAE
for yaw, pitch, roll (lower is better) for the predicted poses outputted by a
number of baselines.

Method Yaw MAE Pitch MAE Roll MAE Avg. MAE

Yang et al. [24] 4.24 4.35 4.19 4.26
Gu et al. [8] 3.91 4.03 3.03 3.66
Yang et al. [23] 2.89 4.29 3.60 3.60

Direct - Huber 2.78 ± 0.09 3.73 ± 0.13 2.90 ± 0.09 3.14 ± 0.07
Direct - Huber + Refine. 2.75 ± 0.08 3.70 ± 0.11 2.87 ± 0.09 3.11 ± 0.06

Direct - L2 2.81 ± 0.08 3.60 ± 0.14 2.85 ± 0.08 3.09 ± 0.07
Direct - L2 + Refine. 2.78 ± 0.08 3.62 ± 0.13 2.81 ± 0.08 3.07 ± 0.07

Gaussian 2.89 ± 0.09 3.64 ± 0.13 2.83 ± 0.09 3.12 ± 0.08
Gaussian + Refine. 2.84 ± 0.08 3.67 ± 0.12 2.81 ± 0.08 3.11 ± 0.07

Laplace 2.93 ± 0.08 3.80 ± 0.15 2.90 ± 0.07 3.21 ± 0.06
Laplace + Refine. 2.89 ± 0.07 3.81 ± 0.13 2.88 ± 0.06 3.19 ± 0.06

Softmax - CE & L2 2.73 ± 0.09 3.63 ± 0.13 2.77 ± 0.11 3.04 ± 0.08
Softmax - CE & L2 + Refine. 2.67 ± 0.08 3.61 ± 0.12 2.75 ± 0.10 3.01 ± 0.07

Softmax - CE, L2 & Var 2.83 ± 0.12 3.79 ± 0.10 2.84 ± 0.11 3.15 ± 0.07
Softmax - CE, L2 & Var + Refine. 2.76 ± 0.10 3.74 ± 0.09 2.83 ± 0.10 3.11 ± 0.06

Gaussian The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x; θ) = N
(
y;µθ(x), Σθ(x)

)
, Σθ(x) = diag

(
σ2
θ(x)

)
,

y = [ y1 y2 y3 ]T ∈ R3,

µθ(x) = [µ1,θ(x) µ2,θ(x) µ3,θ(x) ]T ∈ R3,

σ2
θ(x) = [σ2

1,θ(x) σ2
2,θ(x) σ2

3,θ(x) ]T ∈ R3,

fθ(x) = [µθ(x)T log σ2
θ(x)T ]T ∈ R6.

(S7)

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

n

n∑
i=1

( 3∑
k=1

(yk,i − µk,θ(xi))2

σ2
k,θ(xi)

+ log σ2
k,θ(xi)

)
. (S8)

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from
the input image x. The feature vector gx is then processed by two heads of
two fully-connected layers (2048 → 2048, 2048 → 3) to output µθ(x) ∈ R3 and
log σ2

θ(x) ∈ R3. The mean µθ(x) is taken as the prediction ŷ.
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Laplace Following [6], the Laplace model is defined using a DNN fθ(x) ac-
cording to,

p(y|x;θ)=

3∏
k=1

βk,θ(x)−
1
2 exp

{
− 1

2

( 3∑
k=1

(yk−µk,θ(x))2

βk,θ(x)

) 1
2}
,

y = [ y1 y2 y3 ]T ∈ R3,

µθ(x) = [µ1,θ(x) µ2,θ(x) µ3,θ(x) ]T ∈ R3,

βθ(x) = [β1,θ(x) β2,θ(x) β3,θ(x) ]T ∈ R3,

fθ(x) = [µθ(x)T log βθ(x)T ]T ∈ R6.

(S9)

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ)=
1

n

n∑
i=1

{( 3∑
k=1

(yk,i−µk,θ(xi))2

βk,θ(xi)

) 1
2

+

3∑
k=1

log βk,θ(xi)

}
. (S10)

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from
the input image x. The feature vector gx is then processed by two heads of
two fully-connected layers (2048 → 2048, 2048 → 3) to output µθ(x) ∈ R3 and
log βθ(x) ∈ R3. The mean µθ(x) is taken as the prediction ŷ.

Softmax The DNN architecture of Softmax first extracts ResNet50 features
gx ∈ R2048 from the input image x. The feature vector gx is then processed by
three heads of two fully-connected layers (2048→ 2048, 2048→ C), outputting
logits for C = 151 discretized classes {−75,−74, . . . , 75} for the yaw, pitch and
roll angles (in degrees). It is trained by minimizing either the cross-entropy
(CE) and L2 losses, J = JCE + 0.1JL2 , or the CE, L2 and variance [20] losses,
J = JCE + 0.1JL2 + 0.05JV ar. The prediction ŷ is obtained by computing the
softmax expected value for yaw, pitch and roll.

F.5 Full Results

Full experiment results, extending the results found in Table 5 (Section 4.4 in
the paper), are provided in Table S6.
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