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Abstract. While deep learning-based classification is generally tackled
using standardized approaches, a wide variety of techniques are employed
for regression. In computer vision, one particularly popular such tech-
nique is that of confidence-based regression, which entails predicting a
confidence value for each input-target pair (x, y). While this approach has
demonstrated impressive results, it requires important task-dependent
design choices, and the predicted confidences lack a natural probabilistic
meaning. We address these issues by proposing a general and conceptu-
ally simple regression method with a clear probabilistic interpretation.
In our proposed approach, we create an energy-based model of the con-
ditional target density p(y|x), using a deep neural network to predict
the un-normalized density from (x, y). This model of p(y|x) is trained by
directly minimizing the associated negative log-likelihood, approximated
using Monte Carlo sampling. We perform comprehensive experiments on
four computer vision regression tasks. Our approach outperforms direct
regression, as well as other probabilistic and confidence-based methods.
Notably, our model achieves a 2.2% AP improvement over Faster-RCNN
for object detection on the COCO dataset, and sets a new state-of-the-art
on visual tracking when applied for bounding box estimation. In contrast
to confidence-based methods, our approach is also shown to be directly
applicable to more general tasks such as age and head-pose estimation.
Code is available at https://github.com/fregu856/ebms_regression.

1 Introduction

Supervised regression entails learning a model capable of predicting a continu-
ous target value y from an input x, given a set of paired training examples. It
is a fundamental machine learning problem with many important applications
within computer vision and other domains. Common regression tasks within
computer vision include object detection [47, 23, 28, 63], head- and body-pose
estimation [5, 57, 52, 59], age estimation [48, 42, 4], visual tracking [38, 64, 31, 8]
and medical image registration [39, 6], just to mention a few. Today, such re-
gression problems are commonly tackled using Deep Neural Networks (DNNs),
due to their ability to learn powerful feature representations directly from data.

https://github.com/fregu856/ebms_regression
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Fig. 1. An overview of the proposed regression method (top). We train an energy-
based model p(y|x; θ) ∝ efθ(x,y) of the conditional target density p(y|x), using a DNN
fθ to predict the un-normalized density directly from the input-target pair (x, y). Our
approach is capable of predicting highly flexible densities and produce highly accurate
estimates. This is demonstrated for the problem of bounding box regression (bottom),
visualizing the marginal density for the top right box corner as a heatmap.

While classification is generally addressed using standardized losses and out-
put representations, a wide variety of different techniques are employed for re-
gression. The most conventional strategy is to train a DNN to directly pre-
dict a target y given an input x [27]. In such direct regression approaches,
the model parameters of the DNN are learned by minimizing a loss function,
for example the L2 or L1 loss, penalizing discrepancy between the predicted
and ground truth target values. From a probabilistic perspective, this approach
corresponds to creating a simple parametric model of the conditional target
density p(y|x), and minimizing the associated negative log-likelihood. The L2

loss, for example, corresponds to a fixed-variance Gaussian model. More recent
work [24, 26, 7, 15, 54, 45] has also explored learning more expressive models of
p(y|x), by letting a DNN instead output the full set of parameters of a certain
family of probability distributions. To allow for straightforward implementation
and training, many of these probabilistic regression approaches however restrict
the parametric model to unimodal distributions such as Gaussian [26, 7] or
Laplace [24, 15, 22], still severely limiting the expressiveness of the learned con-
ditional target density. While these methods benefit from a clear probabilistic
interpretation, they thus fail to fully exploit the predictive power of the DNN.

The quest for improved regression accuracy has also led to the development of
more specialized methods, designed for a specific set of tasks. In computer vision,
one particularly popular approach is that of confidence-based regression. Here,
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Fig. 2. An illustrative 1D regression problem. The training data D = {(xi, yi)}2000i=1

is generated by the ground truth conditional target density p(y|x). Our energy-based
model p(y|x; θ) ∝ efθ(x,y) of p(y|x) is trained by directly minimizing the associated
negative log-likelihood, approximated using Monte Carlo importance sampling. In con-
trast to the Gaussian model p(y|x; θ) = N (y;µθ(x), σ2

θ(x)), our energy-based model
can learn multimodal and complex conditional target densities directly from data.

a DNN instead predicts a scalar confidence value for input-target pairs (x, y).
The confidence can then be maximized w.r.t. y to obtain a target prediction
for a given input x. This approach is commonly employed for image-coordinate
regression tasks within e.g. human pose estimation [5, 57, 52] and object detec-
tion [28, 63], where a 2D heatmap over image pixel coordinates y is predicted. Re-
cently, the approach was also applied to the problem of bounding box regression
by Jiang et al. [23]. Their proposed method, IoU-Net, obtained state-of-the-art
accuracy on object detection, and was later also successfully applied to the task
of visual tracking [8]. The training of such confidence-based regression methods
does however entail generating additional pseudo ground truth labels, e.g. by
employing a Gaussian kernel [55, 57], and selecting an appropriate loss function.
This both requires numerous design choices to be made, and limits the general
applicability of the methods. Moreover, confidence-based regression methods do
not allow for a natural probabilistic interpretation in terms of the conditional
target density p(y|x). In this work, we therefore set out to develop a method
combining the general applicability and the clear interpretation of probabilistic
regression with the predictive power of the confidence-based approaches.

Contributions We propose a general and conceptually simple regression
method with a clear probabilistic interpretation. Our method employs an energy-
based model [30] to predict the un-normalized conditional target density p(y|x)
from the input-target pair (x, y). It is trained by directly minimizing the asso-
ciated negative log-likelihood, exploiting tailored Monte Carlo approximations.
At test time, targets are predicted by maximizing the conditional target density
p(y|x) through gradient-based refinement. Our energy-based model is straightfor-
ward both to implement and train. Unlike commonly used probabilistic models,
it can however still learn highly flexible target densities directly from data, as
visualized in Figure 2. Compared to confidence-based approaches, our method
requires no pseudo labels, benefits from a clear probabilistic interpretation, and
is directly applicable to a variety of computer vision applications. We evaluate
the proposed method on four diverse computer vision regression tasks: object
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detection, visual tracking, age estimation and head-pose estimation. Our method
is found to significantly outperform both direct regression baselines, and popu-
lar probabilistic and confidence-based alternatives, including the state-of-the-art
IoU-Net [23]. Notably, our method achieves a 2.2% AP improvement over FPN
Faster-RCNN [32] when applied for object detection on COCO [33], and sets a
new state-of-the-art on standard benchmarks [37, 36] when applied for bound-
ing box estimation in the recent ATOM [8] visual tracker. Our method is also
shown to be directly applicable to the more general tasks of age and head-pose
estimation, consistently improving performance of a variety of baselines.

2 Background & Related Work

In supervised regression, the task is to learn to predict a target value y? ∈ Y
from a corresponding input x? ∈ X , given a training set of i.i.d. input-target
examples, D = {(xi, yi)}Ni=1, (xi, yi) ∼ p(x, y). As opposed to classification, the
target space Y is a continuous set, e.g. Y = RK . In computer vision, the input
space X often corresponds to the space of images, whereas the output space
Y depends on the task at hand. Common examples include Y = R2 in image-
coordinate regression [57, 28], Y = R+ in age estimation [48, 42], and Y = R4 in
object bounding box regression [47, 23]. A variety of techniques have previously
been applied to supervised regression tasks. In order to motivate and provide
intuition for our proposed method, we here describe a few popular approaches.
Direct Regression Over the last decade, DNNs have been shown to excel at a
wide variety of regression problems. Here, a DNN is viewed as a function fθ : U →
O, parameterized by a set of learnable weights θ ∈ RP . The most conventional
regression approach is to train a DNN to directly predict the targets, y? = fθ(x

?),
called direct regression. The model parameters θ are learned by minimizing a
loss `(fθ(xi), yi) that penalizes discrepancy between the prediction fθ(xi) and
the ground truth target value yi on training examples (xi, yi). Common choices
include the L2 loss, `(ŷ, y) = ‖ŷ − y‖22, the L1 loss, `(ŷ, y) = ‖ŷ − y‖1, and
their close relatives [21, 27]. From a probabilistic perspective, the choice of loss
corresponds to minimizing the negative log-likelihood − log p(y|x; θ) for a specific
model p(y|x; θ) of the conditional target density. For example, the L2 loss is
derived from a fixed-variance Gaussian model, p(y|x; θ) = N (y; fθ(x), σ2).
Probabilistic Regression More recent work [24, 26, 7, 15, 22, 34, 54] has ex-
plicitly taken advantage of this probabilistic perspective to achieve more flexible
parametric models p(y|x; θ) = p(y;φθ(x)), by letting the DNN output the pa-
rameters φ of a family of probability distributions p(y;φ). For example, a general
1D Gaussian model can be realized as p(y|x; θ) = N

(
y;µθ(x), σ2

θ(x)
)
, where the

DNN outputs the mean and log-variance as fθ(x) = φθ(x) = [µθ(x) log σ2
θ(x) ]T ∈

R2. The model parameters θ are learned by minimizing the negative log-likelihood
−∑N

i=1 log p(yi|xi; θ) over the training set D. At test time, a target estimate y?

is obtained by first predicting the density parameter values φθ(x
?) and then,

for instance, taking the expected value of p(y;φθ(x)). Previous work has applied
simple Gaussian and Laplace models on computer vision tasks such as object
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detection [13, 19] and optical flow estimation [15, 22], usually aiming to not only
achieve accurate predictions, but also to provide an estimate of aleatoric un-
certainty [24, 17]. To allow for multimodal models p(y;φθ(x)), mixture density
networks (MDNs) [3] have also been applied [34, 54]. The DNN then outputs
weights for K mixture components along with K sets of parameters, e.g. K sets
of means and log-variances for a mixture of Gaussians. Previous work has also
applied infinite mixture models by utilizing the conditional VAE (cVAE) frame-
work [51, 45]. A latent variable model p(y|x; θ) =

∫
p(y;φθ(x, z))p(z;φθ(x))dz

is then employed, where p(y;φθ(x, z)) and p(z;φθ(x) typically are Gaussian dis-
tributions. Our proposed method also entails predicting a conditional target
density p(y|x; θ) and minimizing the associated negative log-likelihood. How-
ever, our energy-based model p(y|x; θ) is not limited to the functional form of
any specific probability density (e.g. Gaussian or Laplace), but is instead di-
rectly defined via a learned scalar function of (x, y). In contrast to MDNs and
cVAEs, our model p(y|x; θ) is not even limited to densities which are simple to
generate samples from. This puts minimal restricting assumptions on the true
p(y|x), allowing it to be efficiently learned directly from data.

Confidence-Based Regression Another category of approaches reformulates
the regression problem as y? = arg maxy fθ(x, y), where fθ(x, y) ∈ R is a scalar
confidence value predicted by the DNN. The idea is thus to predict a quantity
fθ(x, y), depending on both input x and target y, that can be maximized over y to
obtain the final prediction y?. This maximization-based formulation is inherent
in Structural SVMs [53], but has also been adopted for DNNs. We term this
family of approaches confidence-based regression. Compared to direct regression,
the predicted confidence fθ(x, y) can encapsulate multiple hypotheses and other
ambiguities. Confidence-based regression has been shown particularly suitable
for image-coordinate regression tasks, such as hand keypoint localization [50]
and body-part detection [55, 44, 57]. In these cases, a CNN is trained to output a
2D heatmap over the image pixel coordinates y, thus taking full advantage of the
translational invariance of the problem. In computer vision, confidence prediction
has also been successfully employed for tasks other than pure image-coordinate
regression. Jiang et al. [23] proposed the IoU-Net for bounding box regression in
object detection, where a bounding box y ∈ R4 and image x are both input to the
DNN to predict a confidence fθ(x, y). It employs a pooling-based architecture
that is differentiable w.r.t. the bounding box y, allowing efficient gradient-based
maximization to obtain the final estimate y? = arg maxy fθ(x, y). IoU-Net was
later also successfully applied to target object estimation in visual tracking [8].

In general, confidence-based approaches are trained using a set of pseudo la-
bel confidences c(xi, yi, y) generated for each training example (xi, yi), and by
employing a loss `

(
fθ(xi, y), c(xi, yi, y)

)
. One strategy [44, 28] is to treat the con-

fidence prediction as a binary classification problem, where c(xi, yi, y) represents
either the class, c ∈ {0, 1}, or its probability, c ∈ [0, 1], and employ cross-entropy
based losses `. The other approach is to treat the confidence prediction as a
direct regression problem itself by applying standard regression losses, such as
L2 [50, 8, 55] or the Huber loss [23]. In these cases, the pseudo label confi-



6 F.K. Gustafsson et al.

dences c can be constructed using a similarity measure S in the target space,
c(xi, yi, y) = S(y, yi), for example defined as the Intersection over Union (IoU)
between two bounding boxes [23] or simply by a Gaussian kernel [55, 57, 52].

While these methods have demonstrated impressive results, confidence-based
approaches thus require important design choices. In particular, the strategy for
constructing the pseudo labels c and the choice of loss ` are often crucial for
performance and highly task-dependent, limiting general applicability. Moreover,
the predicted confidence fθ(x, y) can be difficult to interpret, since it has no
natural connection to the conditional target density p(y|x). In contrast, our
approach is directly trained to predict p(y|x) itself, and importantly it does not
require generation of pseudo label confidences or choosing a specific loss.
Regression-by-Classification A regression problem can also be treated as
a classification problem by first discretizing the target space Y into a finite
set of C classes. Standard techniques from classification, such as softmax and
the cross-entropy loss, can then be employed. This approach has previously been
applied to both age estimation [48, 42, 60] and head-pose estimation [49, 59]. The
discretization of the target space Y however complicates exploiting its inherent
neighborhood structure, an issue that has been addressed by exploring ordinal
regression methods for 1D problems [4, 10]. While our energy-based approach
can be seen as a generalization of the softmax model for classification to the
continuous target space Y, it does not suffer from the aforementioned drawbacks
of regression-by-classification. On the contrary, our model naturally allows the
network to exploit the full structure of the continuous target space Y.
Energy-Based Models Our approach is of course also related to the theo-
retical framework of energy-based models, which often has been employed for
machine learning problems in the past [35, 20, 30]. It involves learning an energy
function Eθ(x) ∈ R that assigns low energy to observed data xi and high energy
to other values of x. Recently, energy-based models have been used primarily
for unsupervised learning problems within computer vision [58, 14, 11, 29, 40],
where DNNs are directly used to predict Eθ(x). These models are commonly
trained by minimizing the negative log-likelihood, stemming from the probabilis-
tic model p(x; θ) = e−Eθ(x)/

∫
e−Eθ(x)dx, for example by generating approximate

image samples from p(x; θ) using Markov Chain Monte Carlo [14, 11, 40]. In con-
trast, we study the application of energy-based models for p(y|x) in supervised
regression, a mostly overlooked research direction in recent years, and obtain
state-of-the-art performance on four diverse computer vision regression tasks.

3 Proposed Regression Method

We propose a general and conceptually simple regression method with a clear
probabilistic interpretation. Our method employs an energy-based model within
a probabilistic regression formulation, defined in Section 3.1. In Section 3.2, we
introduce our training strategy which is designed to be simple, yet highly effective
and applicable to a wide variety of regression tasks within computer vision.
Lastly, we describe our prediction strategy for high accuracy in Section 3.3.
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3.1 Formulation

We take the probabilistic view of regression by creating a model p(y|x; θ) of the
conditional target density p(y|x), in which θ is learned by minimizing the as-
sociated negative log-likelihood. Instead of defining p(y|x; θ) by letting a DNN
predict the parameters of a certain family of probability distributions (e.g. Gaus-
sian or Laplace), we construct a versatile energy-based model that can better
leverage the predictive power of DNNs. To that end, we take inspiration from
confidence-based regression approaches and let a DNN directly predict a scalar
value for any input-target pair (x, y). Unlike confidence-based methods however,
this prediction has a clear probabilistic interpretation. Specifically, we view a
DNN as a function fθ : X × Y → R, parameterized by θ ∈ RP , that maps
an input-target pair (x, y) ∈ X × Y to a scalar value fθ(x, y) ∈ R. Our model
p(y|x; θ) of the conditional target density p(y|x) is then defined according to,

p(y|x; θ) =
efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫
efθ(x,ỹ)dỹ , (1)

where Z(x, θ) is the input-dependent normalizing partition function. We train
this energy-based model (1) by directly minimizing the negative log-likelihood

− log p({yi}i|{xi}i; θ) =
∑N
i=1− log p(yi|xi; θ), where each term is given by,

− log p(yi|xi; θ) = log

(∫
efθ(xi,y)dy

)
− fθ(xi, yi). (2)

This direct and straightforward training approach thus requires the evaluation
of the generally intractable Z(x, θ) =

∫
efθ(x,y)dy. Many fundamental computer

vision tasks, such as object detection, keypoint estimation and pose estimation,
however rely on regression problems with a low-dimensional target space Y. In
such cases, effective finite approximations of Z(x, θ) can be applied. In some
tasks, such as image-coordinate regression, this is naturally performed by a grid
approximation, utilizing the dense prediction obtained by fully-convolutional
networks. In this work, we however investigate a more generally applicable tech-
nique, namely Monte Carlo approximations with importance sampling. This pro-
cedure, when employed for training the network, is detailed in Section 3.2.

At test time, given an input x?, our model in (1) allows evaluating the condi-
tional target density p(y|x?; θ) for any target y by first approximating Z(x?, θ),
and then predicting the scalar fθ(x

?, y) using the DNN. This enables the compu-
tation of, e.g., the mean and variance of the target value y. In this work, we take
inspiration from confidence-based regression and focus on finding the most likely
prediction, y? = arg maxy p(y|x?; θ) = arg maxy fθ(x

?, y), which does not require
the evaluation of Z(x?, θ) during inference. Thanks to the auto-differentiation
capabilities of modern deep learning frameworks, we can apply gradient-based
techniques to find the final prediction by simply maximizing the network output
fθ(x

?, y) w.r.t. y. We elaborate on this procedure for prediction in Section 3.3.
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3.2 Training

Our model p(y|x; θ) = efθ(x,y)/Z(x, θ) of the conditional target density is trained

by directly minimizing the negative log-likelihood
∑N
i=1− log p(yi|xi; θ). To eval-

uate the integral in (2), we employ Monte Carlo importance sampling. Each term
− log p(yi|xi; θ) is therefore approximated by sampling values {y(k)}Mk=1 from a
proposal distribution q(y|yi) that depends on the ground truth target value yi,

− log p(yi|xi; θ) ≈ log

(
1

M

M∑
k=1

efθ(xi,y
(k))

q(y(k)|yi)

)
− fθ(xi, yi). (3)

The final loss J(θ) used to train the DNN fθ is then obtained by averaging over
all training examples {(xi, yi)}ni=1 in the current mini-batch,

J(θ) =
1

n

n∑
i=1

log

(
1

M

M∑
m=1

efθ(xi,y
(i,m))

q(y(i,m)|yi)

)
− fθ(xi, yi), (4)

where {y(i,m)}Mm=1 are M samples drawn from q(y|yi). Qualitatively, minimizing
J(θ) encourages the DNN to output large values fθ(xi, yi) for the ground truth
target yi, while minimizing the predicted value fθ(xi, y) at all other targets y.
In ambiguous or uncertain cases, the DNN can output small values everywhere
or large values at multiple hypotheses, but at the cost of a higher loss.

As can be seen in (4), the DNN fθ is applied both to the input-target pair
(xi, yi), and all input-sample pairs {(xi, y(i,m))}Mm=1 during training. While this
can seem inefficient, most applications in computer vision employ network ar-
chitectures that first extract a deep feature representation for the input xi. The
DNN fθ can thus be designed to combine this input feature with the target y
at a late stage, as visualized in Figure 1. The input feature extraction process,
which becomes the main computational bottleneck, therefore needs to be per-
formed only once for each xi. In practice, we found our training strategy to not
add any significant overhead compared to the direct regression baselines, and
the computational cost to be identical to that of the confidence-based methods.

Compared to confidence-based regression, a significant advantage of our ap-
proach is however that there is no need for generating task-dependent pseudo
label confidences or choosing between different losses. The only design choice of
our training method is the proposal distribution q(y|yi). Note however that since
the loss J(θ) in (4) explicitly adapts to q(y|yi), this choice has no effect on the
overall behaviour of the loss, only on the quality of the sampled approximation.
We found a mixture of a few equally weighted Gaussian components, all centered
at the target label yi, to consistently perform well in our experiments across all
four diverse computer vision applications. Specifically, q(y|yi) is set to,

q(y|yi) =
1

L

L∑
l=1

N (y; yi, σ
2
l I), (5)

where the standard deviations {σl}Ll=1 are hyperparameters selected based on
a validation set for each experiment. We only considered the simple Gaussian
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proposal in (5), as this was found sufficient to obtain state-of-the-art experimen-
tal results. Full ablation studies for the number of components L and {σl}Ll=1

are provided in the supplementary material. Figure 2 illustrates that our model
p(y|x; θ) can learn complex conditional target densities, containing both multi-
modalities and asymmetry, directly from data using the described training proce-
dure. In this illustrative example, we use (5) with L = 2 and σ1 = 0.1, σ2 = 0.8.

3.3 Prediction

Given an input x? at test time, the trained DNN fθ can be used to evaluate the
full conditional target density p(y|x?; θ) = efθ(x

?,y)/Z(x?, θ), by employing the
aforementioned techniques to approximate the constant Z(x?, θ). In many appli-
cations, the most likely prediction y? = arg maxy p(y|x?; θ) is however the single
desired output. For our energy-based model, this is obtained by directly maxi-
mizing the DNN output, y? = arg maxy fθ(x

?, y), thus not requiring Z(x?, θ) to
be evaluated. By taking inspiration from IoU-Net [23] and designing the DNN
fθ to be differentiable w.r.t. the target y, the gradient ∇yfθ(x?, y) can be ef-
ficiently evaluated using the auto-differentiation tools implemented in modern
deep learning frameworks. An estimate of y? = arg maxy fθ(x

?, y) can therefore
be obtained by performing gradient ascent to find a local maximum of fθ(x

?, y).
The gradient ascent refinement is performed either on a single initial esti-

mate ŷ, or on a set of random initializations {ŷk}Kk=1 to obtain a final accurate
prediction y?. Starting at y = ŷk, we thus run T gradient ascent iterations,
y ← y + λ∇yfθ(x?, y), with step-length λ. In our experiments, we fix T (typ-
ically, T = 10) and select λ using grid search on a validation set. As noted in
Section 3.2, this prediction procedure can be made highly efficient by extracting
the feature representation for x? only once. Back-propagation is then performed
only through a few final layers of the DNN to evaluate the gradient ∇yfθ(x?, y).
The gradient computation for a set of candidates {ŷk}Kk=1 can also be parallelized
on the GPU by simple batching, requiring no significant overhead. Overall, the
inference speed is somewhat decreased compared to direct regression baselines,
but is identical to confidence-based methods such as IoU-Net [23]. An algorithm
detailing this prediction procedure is found in the supplementary material.

4 Experiments

We perform comprehensive experiments on four different computer vision regres-
sion tasks: object detection, visual tracking, age estimation and head-pose esti-
mation. Our proposed approach is compared both to baseline regression methods
and to state-of-the-art models. Notably, our method significantly outperforms
the confidence-based IoU-Net [23] method for bounding box regression in direct
comparisons, both when applied for object detection on the COCO dataset [33]
and for target object estimation in the recent ATOM [8] visual tracker. On age
and head-pose estimation, our approach is shown to consistently improve perfor-
mance of a variety of baselines. All experiments are implemented in PyTorch [43].
For all tasks, further details are also provided in the supplementary material.



10 F.K. Gustafsson et al.

Table 1. Impact of L and {σl}Ll=1 in the proposal distribution q(y|yi) (5), for the object
detection task on the 2017 val split of the COCO [33] dataset. For L = 2, σ1 = σ2/4.
For L = 3, σ1 = σ3/4 and σ2 = σ3/2. L = 3 with σL = 0.15 is selected.

Number of components L 1 2 3
Base proposal st. dev. σL 0.02 0.04 0.08 0.1 0.15 0.2 0.1 0.15 0.2

AP (%) 38.1 38.5 37.5 39.0 39.1 39.0 39.0 39.1 38.8

Table 2. Results for the object detection task on the 2017 test-dev split of the
COCO [33] dataset. Our proposed method significantly outperforms the baseline FPN
Faster-RCNN [32] and the state-of-the-art confidence-based IoU-Net [23].

Formulation Direct Gaussian Gaussian Gaussian Gaussian Gaussian Laplace Confidence Confidence
Approach Faster-RCNN Mixt. 2 Mixt. 4 Mixt. 8 cVAE IoU-Net IoU-Net∗ Ours

AP (%) 37.2 36.7 37.1 37.0 36.8 37.2 37.1 38.3 38.2 39.4
AP50(%) 59.2 58.7 59.1 59.1 59.1 59.2 59.1 58.3 58.4 58.6
AP75(%) 40.3 39.6 40.0 39.9 39.7 40.0 40.2 41.4 41.4 42.1
FPS 12.2 12.2 12.2 12.1 12.1 9.6 12.2 5.3 5.3 5.3

4.1 Object Detection

We first perform experiments on object detection, the task of classifying and
estimating a bounding box for each object in a given image. Specifically, we
compare our regression method to other techniques for the task of bounding
box regression, by integrating them into an existing object detection pipeline.
To this end, we use the Faster-RCNN [47] framework, which serves as a popular
baseline in the object detection field due to its strong state-of-the-art perfor-
mance. It employs one network head for classification and one head for regressing
the bounding box using the direct regression approach. We also include various
probabilistic regression baselines and compare with simple Gaussian and Laplace
models, by modifying the Faster-RCNN regression head to predict both the mean
and log-variance of the distribution, and adopting the associated negative log-
likelihood loss. Similarly, we compare with mixtures of K = {2, 4, 8} Gaussians
by duplicating the modified regression head K times and adding a network head
for predicting K component weights. Moreover, we compare with an infinite mix-
ture of Gaussians by training a cVAE. Finally, we also compare our approach to
the state-of-the-art confidence-based IoU-Net [23]. It extends Faster-RCNN with
an additional branch that predicts the IoU overlap between a target bounding
box y and the ground truth. The IoU prediction branch uses differentiable region
pooling [23], allowing the initial bounding box predicted by the Faster-RCNN to
be refined using gradient-based maximization of the predicted IoU confidence.

For our approach, we employ an identical architecture as used in IoU-Net for
a fair comparison. Instead of training the network to output the IoU, we predict
the exponent fθ(x, y) in (1), trained by minimizing the negative log-likelihood in
(4). We parametrize the bounding box as y = (cx/w0, cy/h0, logw, log h) ∈ R4,
where (cx, cy) and (w, h) denote the center coordinate and size, respectively. The
reference size (w0, h0) is set to that of the ground truth during training and the
initial box during prediction. Based on the ablation study found in Table 1, we
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Table 3. Results for the visual tracking task on the two common datasets Track-
ingNet [37] and UAV123 [36]. The symbol † indicates an approximate value (±1),
taken from the plot in the corresponding paper. Our proposed method significantly
outperforms the baseline ATOM and other recent state-of-the-art trackers.

Dataset Metric
ECO SiamFC MDNet UPDT DaSiamRPN SiamRPN++ ATOM ATOM∗ Ours

[9] [1] [38] [2] [64] [31] [8]

TrackingNet
Precision (%) 49.2 53.3 56.5 55.7 59.1 69.4 64.8 66.6 69.7
Norm. Prec. (%) 61.8 66.6 70.5 70.2 73.3 80.0 77.1 78.4 80.1
Success (%) 55.4 57.1 60.6 61.1 63.8 73.3 70.3 72.0 74.5

UAV123
OP0.50 (%) 64.0 - - 66.8 73.6 75† 78.9 79.0 80.8

OP0.75 (%) 32.8 - - 32.9 41.1 56† 55.7 56.5 60.2
AUC (%) 53.7 - 52.8 55.0 58.4 61.3 65.0 64.9 67.2

employ L = 3 isotropic Gaussians with standard deviation σl = 0.0375 · 2l−1 for
the proposal distribution (5). In addition to the standard IoU-Net, we compare
with a version (denoted IoU-Net∗) employing the same proposal distribution and
inference settings as in our approach. For both our method and IoU-Net∗, we
set the refinement step-length λ using grid search on a separate validation set.

Our experiments are performed on the large-scale COCO benchmark [33].
We use the 2017 train split (≈ 118 000 images) for training and the 2017 val
split (≈ 5 000 images) for setting our hyperparameters. The results are reported
on the 2017 test-dev split (≈ 20 000 images), in terms of the standard COCO
metrics AP, AP50 and AP75. We also report the inference speed in terms of
frames-per-second (FPS) on a single NVIDIA TITAN Xp GPU. We initialize all
networks in our comparison with the pre-trained Faster-RCNN weights, using
the ResNet50-FPN [32] backbone, and re-train only the newly added layers for
a fair comparison. The results are shown in Table 2. Our proposed method ob-
tains the best results, significantly outperforming Faster-RCNN and IoU-Net by
2.2% and 1.1% in AP, respectively. The Gaussian model is outperformed by the
mixture of 2 Gaussians, but note that adding more components does not further
improve the performance. In comparison, the cVAE achieves somewhat improved
performance, but is still clearly outperformed by our method. Compared to the
probabilistic baselines, we believe that our energy-based model offers a more
direct and effective representation of the underlying density via the scalar DNN
output fθ(x, y). The inference speed of our method is somewhat lower than that
of Faster-RCNN, but identical to IoU-Net. How the number of iterations T in the
gradient-based refinement affects inference speed and performance is analyzed
in Figure 3a, showing that our choice T = 10 provides a reasonable trade-off.

4.2 Visual Tracking

Next, we evaluate our approach on the problem of generic visual object tracking.
The task is to estimate the bounding box of a target object in every frame of
a video. The target object is defined by a given box in the first video frame.
We employ the recently introduced ATOM [8] tracker as our baseline. Given
the first-frame annotation, ATOM trains a classifier to first roughly localize
the target in a new frame. The target bounding box is then determined using
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Fig. 3. (a) Impact of the number of gradient ascent iterations T on performance (AP)
and inference speed (FPS), for the object detection task on the 2017 val split of the
COCO [33] dataset. (b) Success plot on the UAV123 [36] visual tracking dataset,
showing the overlap precision OPH as a function of the overlap threshold H.

an IoU-Net-based module, which is also conditioned on the first-frame target
appearance using a modulation-based architecture. We train our network to
predict the conditional target density through fθ(x, y) in (1), using a network
architecture identical to the baseline ATOM tracker. In particular, we employ
the same bounding box parameterization as for object detection (Section 4.1)
and sample M = 128 boxes during training from a proposal distribution (5)
generated by L = 2 Gaussians with standard deviations σ1 = 0.05, σ2 = 0.5.
During tracking, we follow the same procedure as in ATOM, sampling 10 boxes
in each frame followed by gradient ascent to refine the estimate generated by
the classification module. The inference speed of our approach is thus identical
to ATOM, running at over 30 FPS on a single NVIDIA GT-1080 GPU.

We demonstrate results on two standard tracking benchmarks: TrackingNet
[37] and UAV123 [36]. TrackingNet contains challenging videos sampled from
YouTube, with a test set of 511 videos. The main metric is the Success, defined
as the average IoU overlap with the ground truth. UAV123 contains 123 videos
captured from a UAV, and includes small and fast-moving objects. We report
the overlap precision metric (OPH), defined as the percentage of frames having
bounding box IoU overlap larger than a threshold H. The final AUC score is
computed as the average OP over all thresholds H ∈ [0, 1]. Hyperparameters
are set on the OTB [56] and NFS [25] datasets, containing 100 videos each. Due
to the significant challenges imposed by the limited supervision and generic na-
ture of the tracking problem, there are no competitive baselines employing direct
bounding box regression. Current state-of-the-art employ either confidence-based
regression, as in ATOM, or anchor-based bounding box regression techniques
[64, 31]. We therefore only compare with the ATOM baseline and include other
recent state-of-the-art methods in the comparison. As in Section 4.1, we also
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Table 4. Results for the age estimation task on the UTKFace [62] dataset. Gradient-
based refinement using our proposed method consistently improves MAE (lower is
better) for the age predictions produced by a variety of different baselines.

+Refine Niu et al. [41] Cao et al. [4] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

5.74 ± 0.05 5.47 ± 0.01 4.81 ± 0.02 4.79 ± 0.06 4.85 ± 0.04 4.78 ± 0.05 4.81 ± 0.03
X - - 4.65 ± 0.02 4.66 ± 0.04 4.81 ± 0.04 4.65 ± 0.04 4.69 ± 0.03

compare with a version (denoted ATOM∗) of the IoU-Net-based ATOM employ-
ing the same training and inference settings as our final approach. The results
are shown in Table 3, and the success plot on UAV123 is shown in Figure 3b.
Our approach achieves a significant 2.5% and 2.2% absolute improvement over
ATOM on the overall metric on TrackingNet and UAV123, respectively. Note
that the improvements are most prominent for high-accuracy boxes, as indicated
by OP0.75. Our approach also outperforms the recent SiamRPN++ [31], which
employs anchor-based bounding box regression [47, 46] and a much deeper back-
bone network (ResNet50) compared to ours (ResNet18). Figure 1 (bottom) visu-
alizes an illustrative example of the target density p(y|x; θ) ∝ efθ(x,y) predicted
by our approach during tracking. As illustrated, it predicts flexible densities
which qualitatively capture meaningful uncertainty in challenging cases.

4.3 Age Estimation

To demonstrate the general applicability of our proposed method, we also per-
form experiments on regression tasks not involving bounding boxes. In age esti-
mation, we are given a cropped image x ∈ Rh×w×3 of a person’s face, and the
task is to predict his/her age y ∈ R+. We utilize the UTKFace [62] dataset,
specifically the subset of 16 434 images used by Cao et al. [4]. We also utilize the
dataset split employed in [4], with 3 287 test images and 11 503 images for train-
ing. Additionally, we use 1 644 of the training images for validation. Methods are
evaluated in terms of the Mean Absolute Error (MAE). The DNN architecture
fθ(x, y) of our model first extracts ResNet50 [18] features gx ∈ R2048 from the
input image x. The age y is processed by four fully-connected layers, generating
gy ∈ R128. The two feature vectors are then concatenated and processed by two
fully-connected layers, outputting fθ(x, y) ∈ R. We apply our proposed method
to refine the age predicted by baseline models, using the gradient ascent maxi-
mization of fθ(x, y) detailed in Section 3.3. All baseline DNN models employ a
similar architecture, including an identical ResNet50 for feature extraction and
the same number of fully-connected layers to output either the age y ∈ R (Di-
rect), mean and variance parameters for Gaussian and Laplace distributions, or
to output logits for C discretized classes (Softmax ). The results are found in
Table 4. We observe that age refinement provided by our method consistently
improves the accuracy of the predictions generated by the baselines. For Direct,
e.g., this refinement marginally decreases inference speed from 49 to 36 FPS.
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Table 5. Results for the head-pose estimation task on the BIWI [12] dataset. Gradient-
based refinement using our proposed method consistently improves the average MAE
(lower is better) for yaw, pitch and roll for the predicted pose produced by our baselines.

+Refine Gu et al. [16] Yang et al. [59] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

3.66 3.60 3.09 ± 0.07 3.12 ± 0.08 3.21 ± 0.06 3.04 ± 0.08 3.15 ± 0.07
X - - 3.07 ± 0.07 3.11 ± 0.07 3.19 ± 0.06 3.01 ± 0.07 3.11 ± 0.06

4.4 Head-Pose Estimation

Lastly, we evaluate our method on the task of head-pose estimation. In this case,
we are given an image x ∈ Rh×w×3 of a person, and the aim is to predict the
orientation y ∈ R3 of his/her head, where y is the yaw, pitch and roll angles.
We utilize the BIWI [12] dataset, specifically the processed dataset provided by
Yang et al. [59], in which the images have been cropped to faces detected using
MTCNN [61]. We also employ protocol 2 as defined in [59], with 10 613 images
for training and 5 065 images for testing. Additionally, we use 1 010 training
images for validation. The methods are evaluated in terms of the average MAE
for yaw, pitch and roll. The network architecture of the DNN fθ(x, y) defining
our model takes the image x ∈ Rh×w×3 and orientation y ∈ R3 as inputs, but is
otherwise identical to the age estimation case (Section 4.3). Our model is again
evaluated by applying the gradient-based refinement to the predicted orientation
y ∈ R3 produced by a number of baseline models. We use the same baselines
as for age estimation, and apart from minor changes required to increase the
output dimension from 1 to 3, identical network architectures are also used. The
results are found in Table 5, and also in this case we observe that refinement
using our proposed method consistently improves upon the baselines.

5 Conclusion

We proposed a general and conceptually simple regression method with a clear
probabilistic interpretation. It models the conditional target density p(y|x) by
predicting the un-normalized density through a DNN fθ(x, y), taking the input-
target pair (x, y) as input. This energy-based model p(y|x; θ) = efθ(x,y)/Z(x, θ)
of p(y|x) is trained by directly minimizing the associated negative log-likelihood,
employing Monte Carlo importance sampling to approximate the partition func-
tion Z(x, θ). At test time, targets are predicted by maximizing the DNN output
fθ(x, y) w.r.t. y via gradient-based refinement. Extensive experiments performed
on four diverse computer vision tasks demonstrate the high accuracy and wide
applicability of our method. Future directions include exploring improved archi-
tectural designs, studying other regression applications, and investigating our
proposed method’s potential for aleatoric uncertainty estimation.
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