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Abstract. Anomaly detection in retinal image refers to the identifica-
tion of abnormality caused by various retinal diseases/lesions, by only
leveraging normal images in training phase. Normal images from healthy
subjects often have regular structures (e.g., the structured blood vessels
in the fundus image, or structured anatomy in optical coherence tomog-
raphy image). On the contrary, the diseases and lesions often destroy
these structures. Motivated by this, we propose to leverage the relation
between the image texture and structure to design a deep neural net-
work for anomaly detection. Specifically, we first extract the structure of
the retinal images, then we combine both the structure features and the
last layer features extracted from original health image to reconstruct
the original input healthy image. The image feature provides the texture
information and guarantees the uniqueness of the image recovered from
the structure. In the end, we further utilize the reconstructed image to
extract the structure and measure the difference between structure ex-
tracted from original and the reconstructed image. On the one hand,
minimizing the reconstruction difference behaves like a regularizer to
guarantee that the image is corrected reconstructed. On the other hand,
such structure difference can also be used as a metric for normality mea-
surement. The whole network is termed as P-Net because it has a “P”
shape. Extensive experiments on RESC dataset and iSee dataset vali-
date the effectiveness of our approach for anomaly detection in retinal
images. Further, our method also generalizes well to novel class discovery
in retinal images and anomaly detection in real-world images.
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1 Introduction

(a) Vasculature and histology in retina (b) Fundus modality (c) OCT modality

Fig. 1. The motivation of leveraging structure information for anomaly detection. The
normal medical images are highly structured, while the regular structure is broken in
abnormal images. For example, the lesions (denoted by black bounding box and red ar-
row in (a) of diabetic retinopathy destroy the blood vessel and histology layer in retina.
Thus, in the abnormal retinal fundus image and optical coherence tomography (OCT)
image, the lesions (denoted by red color in (b) and (c)) broke the structure. Moreover,
this phenomenon agrees with the cognition of doctors. Motivated by this clinical obser-
vation, we suggest utilizing the structure information in anomaly detection. The figure
(a) is adopted from the website of American Academy of Ophthalmology [1].

Deep convolutional neural networks (CNNs) have achieved many breakthrough-
s in medical image analysis [2][3][4][5][6][7]. However, these methods usually de-
pend on large-scale balanced data in medical image domain, and the data ac-
quisition of diseased images is extremely expensive because of the privacy issues
of patients. Furthermore, sometimes the incidence of some diseases is extremely
rare. In contrast, it is relatively easier to collect the normal (healthy) data. Hu-
man can distinguish those images with diseases from normal healthy data, and
it is important for an intelligent system to mimic the behavior of the human
for detecting those images with diseases by only leveraging the normal training
data, and such task is defined as anomaly detection [8] in medical image analysis
domain.

Typical anomaly detection methods are usually based on image reconstruc-
tion [9][10][11][12][13][14] which means given an image, an encoder maps the im-
age to feature space and a decoder reconstructs the image based on the feature.
By minimizing the reconstruction error between the input image and the recon-
structed image on the normal training data, the encoder and decoder are trained
for image reconstruction. In the testing phase, an image can be classified as nor-
mal or abnormal by measuring the reconstruction error [12][13]. To guarantee
the fidelity of the reconstructed image on the normal training data, generative
adversarial networks (GAN) [15] based solutions have been introduced [9][10],
which guide the generator to synthesize more realistic images with a discrimina-
tor. Further, GANomaly [16] and f-AnoGAN [11] are proposed, which append an
additional encoder to the generator to further encode the reconstructed image.
Then the reconstruction errors corresponding both images and features to mea-
sure the anomaly. However, all these existing methods directly feed the image
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Fig. 2. The pipeline of our P-Net, which consists of three modules. Firstly, the structure
extraction network Gs is trained for extracting structure S from the original image I,
and then the extracted S and feature encoded from I are fused for reconstruction.
Finally, we further utilize the reconstructed image Î to extract the Ŝ and measure the
difference between S and Ŝ. Our P-Net encodes the relation between image texture
and structure by enforcing the consistency of the image and structure between original
and reconstructed ones.

into the CNNs for anomaly detection without leveraging any prior information.
When doctors make diagnosis, besides the textures of the organ in the image,
the structures (here we treat the semantically meaningful edges in an
image as the structure, e.g., vessel topological structure in fundus images,
the anatomic layer structure in OCT images, etc.) also help them to make the
decision [17][18][19]. As shown in Fig. 1, for eye images with diseases, the nor-
mal structures are destroyed. For normal (healthy) images, the structure can be
extracted, and the extracted structure also provides a cue about texture distribu-
tion. Since both texture and structure helps anomaly detection, then a question
is naturally raised: How to encode the structure-texture relation with CNNs for
anomaly detection? Towards this end, we propose to leverage the dependencies
between structure and image texture for image and structure reconstruction cir-
cularly, and use use the reconstruction error for both structure and image as
normality measurement.

Specifically, we first propose to extract the structure from the original image,
then we map the structure to the reconstructed image. However, the mapping
from the structure to the reconstructed image is ill-posed. Thus we propose to
fuse the last layer image feature with structure feature to reconstruct the image.
We further use the reconstructed image to extract the structure, which also
serves as a regularizer and helps improve the image reconstruction in previous
stage. Meanwhile, the structure difference between the structure extracted from
original image and that from the reconstructed image also helps us to measure
the anomaly score. As shown in Fig. 2, since the whole network architecture is
like a “P”, we term it as P-Net.

In the training phase, since the structure of retinal image are usually not
given for anomaly detection, we propose to use the vessel segmentation datasets
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and OCT layer segmentation datasets to train the structure extraction module
of our network with a domain adaption method [20]. By minimizing the error
between the input image and its reconstructed version (referred to as contents
error), and the error between the structure extracted from original image and
that extracted from the reconstructed image (referred to as structure error), our
P-Net can be trained. In the inference stage, by measuring the contents error and
structure error, each image can be classified as normal/abnormal accordingly. It
is worth noting that our retinal image anomaly detection approach is a general
framework, it can be readily applied to anomaly detection for general object
images and novel class discovery for retinal images where testing data contains
data falling out of the distribution of the training data 1. For example, training
data contains some given types of diseases while testing data contains a new
type of disease. The reason for the success of our P-Net in these cases is that our
network can capture the consistency between the structure and image contents,
and the structure and image contents relation is different from the training ones
for those new diseases.

The main contributions of this work are summarized as follows: i) we pro-
pose to utilize the structure information for anomaly detection in the retinal
image. Our solution agrees with the cognition of clinicians that the normal reti-
nal images usually have regular structures, and the irregular structure hints the
incidence of some diseases. To the best of our knowledge, this is the first work
that infuses structure information into CNNs for anomaly detection; ii) we pro-
pose a novel P-Net that encodes the relation between structure and textures
for anomaly detection by using the cycle reconstruction between the image con-
tents and structure. In the inference stage, both image reconstruction error and
structure difference are utilized for anomaly score measurement; iii) since the
structures are not given on almost all anomaly detection datasets for retinal im-
ages, we employ a domain adaptation method to extract structure by leveraging
other datasets annotated with structure; iv) extensive experiments validate the
effectiveness of our method for anomaly detection in both fundus modality and
OCT modality for retinal images. Further, our method can be well generalized to
novel class discovery for retinal images and anomaly detection for general object
images.

2 Related Work

2.1 Anomaly Detection

Anomaly detection is a vital field in the machine learning. An intuitive assump-
tion is that the anomalies are out of the distribution of normal samples. Based
on this hypothesis, it is natural to learn a discriminative hyperplane to separate
the abnormal samples from the normal ones. One-class support vector machine
(OCSVM) [21] was one of the classical methods, and its derived deep one-class
SVDD [22] constrained the normal samples in a hypersphere so that the poten-
tial anomalies are the outliers being far away from the center of the hypersphere.

1 These tasks are also termed as general anomaly detection in computer vision
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Besides, Gaussian Mixture Models (GMM) tends to model the distribution of
normal samples, and the outliers out of the distribution might result in a high
probability of being abnormal.

Schlegl et al. [8] initially introduced Generative Adversarial Networks (GAN-
s) [15] for anomaly detection that termed AnoGAN. The AnoGAN generates im-
ages from a Gaussian latent space, and samples are recognized as anomalies when
the corresponding latent code is out of the distribution. Similar to AnoGAN,
GANomaly [16] also involved representation learning in latent space. Compared
with AnoGAN, GANomaly does not seek the latent code in the manifold by gra-
dient descent in the test phase. David et al. [13] proposed the context-encoding
Variational Auto-Encoder in brain MRI images, which combines reconstruction
with density-based anomaly scoring. Schlegl et al. [11] proposed to utilize a gen-
erator [15] to map latent space to normal retinal OCT image, and use an encoder
to learn the mapping from retinal OCT image to latent space. Pramuditha et al.
[23] proposed OCGAN to make all the samples in a closed latent space. It recon-
structs all samples to the normal ones. Also, the memory-augmented network
such as [24] provided a fascinating idea to map the latent code of each sample
to the nearest item in a learned dictionary with only normal patterns.

As discussed before, for normal healthy images, the structure and image
texture are closely related. However, these existing methods fail to encode the
structure-texture relation.

2.2 Structure-Texture Relation Encoding Networks

The texture and structure in an image are complementary to each other [25], and
image structure has been successful used for image inpainting [26][27]. Nazeri et
al. [27] proposed a two-stage network, which took the edge information as the
structure. The model [27] first predicts the full edge map of incomplete image
by the edge generator. Then the predicted edge map and incomplete image are
passed to an image completion network to compute the full image. Since the
distribution of edge map is significantly different from the distribution of the
color image, Ren et al. [26] proposed to employ edge-preserved smooth images
to represents the structure of the color images. The network proposed in [26]
consists of a structure reconstructor to predict the image structure and a tex-
ture generator to complete the image texture. The relation of structure-texture
can be encoded in the ‘image-structure-image’ pipeline, and this motivates us to
infuse the normal structure into deep neural networks for anomaly detection. In
our work, we further encode the relation between normal image and structure
by enforcing the consistency of normal image, and the consistency between the
structure extracted from normal image and that extracted from the reconstruct-
ed image.

3 Method

For healthy populations, the distribution of vasculature and histology of the
retinal layers is regular. On the contrary, for subjects with diseases, the lesion
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of diseases will destroy the regularity of vasculature and histology. For exam-
ple, the blood vessel and histology layer in retina will be destroyed by diabetic
retinopathy (DR). The layer-wise structure in OCT will also be destroyed by
various lesions such as pigment epithelium detachment (PED), subretinal fluid
(SRF) [28], etc.

Based on these clinical observations, we define the retinal blood vessels in
fundus images and the retinal layers in OCT as structure. Besides the anoma-
lies in texture, the anomalies of structure would also help ophthalmologists and
clinicians to make the diagnosis decision [17][19]. Motivated by the functionality
of structure in retinal disease diagnosis, we propose to leverage the structure as
an additional cue for anomaly detection. Further, for healthy images, structure
extracted from the image provides a cue about texture distribution. By lever-
aging the relation between structure and texture in retinal images, we propose
a P-Net for anomaly detection, and P-Net encodes the dependencies between
structure and relation.

Specifically, our network architecture consists of three modules: 1) structure
extraction from original image module, denoted as Gs, which extracts structure
S from original image I; 2) image reconstruction module, denoted as Gr, which
leverages the last layer image encoder feature and structure to reconstruct the
input image. We denote the reconstructed image as Î. By minimizing the differ-
ence between I and Î, the relation between texture and structure is encoded into
the network. Thus we use image reconstruction error (‖I − Î‖1) as a normality
measurement; 3) structure extraction from reconstructed image module, which
further extracts structure from the reconstructed image Î. We denote the struc-
ture extracted from Î as Ŝ. By minimizing the difference between S and Ŝ, this
module enforces the original image to be correctly reconstructed by Gr. Further,
the structure difference ‖S− Ŝ‖1) can also be used to measure the normality of
the image. The network architecture of P-Net is shown in Fig. 2. The detailed
architecture of each module can be found in the supplementary (Section S1).

3.1 Structure Extraction From Original Image Module
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Fig. 3. (a) Structure extraction network with domain adaptation (DA). (b) The quali-
tative results of DA for OCT images. The structure of target image cannot be extracted
well without DA.
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The datasets used in previous retinal image anomaly detection work [8][11]
are not publicly available, therefore we propose to use the Retinal Edema Seg-
mentation Challenge Dataset (RESC, a OCT image dataset) [28], and a fundus
multi-disease diagnosis dataset (iSee dataset [29]) collected in a local hospital
for performance evaluation. However, the structure in both datasets are not
provided. Manually annotating the structure, including vessels in fundus and
layer segmentation in OCT, is extremely time consuming. Fortunately, there are
many publicly available datasets for vessel segmentation in fundus images and
layer segmentation in OCT images [30][31]. To get structure without tedious
manual annotation, we utilize existing datasets to train a network for structure
extraction. However, retinal images in different datasets are captured by various
devices, consequently, different datasets have different noises and data distri-
bution. To tackle this problem, we leverage AdaSeg [32], a domain adaptation
based image segmentation method to learn the structure extractor Gs. Specifi-
cally, we map images in different datasets but with the same modality to their
corresponding structures with a U-Net [33], and add a discriminator to make
the segmentation results from source and target datasets indistinguishable. The
network architecture is shown in Fig. 3(a). For RESC, we use the Topcon dataset
[34] as the source; while for iSee, we use the DRIVE dataset [31] as the source.
The training loss in this module is as follows:

Lseg(Isrc) = −
∑

Ssrc log(Gs(Isrc)) (1)

Lseg(Itar) = E[log(1−D(Gs(Itar))] + E[logD(Gs(Isrc))] (2)

where Isrc and Ssrc denote the source image and its ground truth, respectively.
Itar denotes the target image, and D denotes the discriminator. Once the struc-
ture extraction module is trained, we fix the module to simplify the optimization
of the other modules in our P-Net.

3.2 Image Reconstruction Module

Since the structure is represented by vessels in fundus or layer section in OC-
T, and the ambiguity exists for the direct mapping from structure to original
image [26][35], we propose to combine structure information and image texture
information to reconstruct the original image. We define the texture as comple-
mentary information of the structure, and the texture provides the details over
the local regions.

Specifically, we encode the original image and its structure with En1 and
En2, respectively. Then we concatenate the two features and feed them into a
decoder (De) to reconstruct the original image. Skip connections are introduced
between the structure encoder and decoder for features at the same level, which
avoid the information loss caused by downsampling pooling in structures, while
there is no skip connection between the image encoder and decoder. The reason
is that if we introduce the skip connection between them, then it is possible
that we learn an identity mapping between the image and reconstructed image,
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which leads that there is no information flowed from structure to the original
image, which is not desirable because identity mapping also makes abnormal
images well reconstructed in the testing phase [36], where anomaly detection is
impossible. It is expected that only information related to texture is encoded
in the original encoder and passed to decoder to help the image reconstruction,
therefore probably the last layer feature in the image encoder is enough for this
purpose.

Following [16][35], we use L1 norm to measure the difference between the
reconstructed image and the original image.

Lrec(I) = ‖I− Î‖1 (3)

To improve the quality of the reconstructed image, we apply PatchGAN [35]
to penalize the reconstruction error for the reconstructed image Î. Formally,
let D be the discriminator, the adversarial loss Ladv for training reconstruction
network is shown as follows:

Ladv(I) = E[log(1−D(Gr(I,S)))] + E[logD(I)] (4)

3.3 Structure Extraction From Reconstructed Image Module

We further append the structure extractor Gr to the reconstructed image. There
are two purposes: 1) by enforcing the structure extracted from original image
and that from reconstructed image to be the same, the original image can bet-
ter reconstructed. In this sense, image reconstruction from reconstructed image
module behaves like a regularizer; 2) some lesions are more discriminative in
structure, then we extract structure from original image and reconstructed im-
age, respectively, and use their difference for normality measurement. The loss
function in this module is defined as follows:

Lstr(I) = ‖S− Ŝ‖1 (5)

3.4 Objective Function

We fix the structure extractor Gs in the training of image reconstruction module
Gr. Therefore, we arrive at the the objective function of our P-Net:

L = λ1Ladv + λ2Lrec + λsLstr (6)

where λ1, λ2, λs are the hyper-parameters. Empirically, we set λ1 = 0.1, λ2 =
1, λs = 0.5 on all datasets in our experiments.

3.5 Anomaly Detection for Testing Data

We combine image reconstruction error with structure difference for anomaly
score (A(I)) measurement:

A(I) = (1− λf )‖I− Î‖1 + λf‖S− Ŝ‖1 (7)
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where λf is a weight used to balance the image difference and structure dif-
ference. A higher anomaly score indicates that the image is more likely to be
abnormal.

4 Experiments

4.1 Implementation

To train the network, the input image size is 224 × 224, and the batch size is 8.
The optimizer for the generator and the discriminator are both Adam, and the
learning rate is 0.001. We train our model for 800 epochs. We implement our
method with the PyTorch on a NVIDIA TITAN V GPU. The codes are released
in https://github.com/ClancyZhou/P_Net_Anomaly_Detection.

4.2 Evaluation Metric

Following previous work [14][37][38], we calculate the Area Under Receiver Op-
eration Characteristic (AUC) by gradually changing the threshold of A(I) for
normal/abnormal classification. A higher AUC indicates that the performance
of the method is better.

4.3 Anomaly Detection in Retinal Images

A. Datasets. Since the datasets used in previous retinal image anomaly de-
tection work [11][8] are not released, we evaluate our proposed method with a
publicly available dataset [28] and a local hospital dataset [29].
Retinal Edema Segmentation Challenge Dataset (RESC)[28]. Retinal
edema is a retinal disease, which causes blurry vision and affects the patient’s
life quality. Optical coherence tomography (OCT) images can be used to assist
clinicians in diagnosing retinal edema. Thus the RESC dataset is proposed for
OCT based retinal edema segmentation. As discussed previously, retinal edema
damages the normal layer structure in OCT, thus we leverage this dataset for
performance evaluation. This dataset contains the standard training/validating
split. We use the normal images in the original training set as our training images
to train the model, and use all testing images for performance evaluation.
Fundus Multi-disease Diagnosis Dataset (iSee)[29]. Previous retinal fun-
dus datasets usually only contain one or two types of disease [39][40], but in
clinical diagnosis, many eye diseases can be observed in the fundus image. Thus
we collect a dataset from a local hospital, which comprises of 10000 fundus
images. Eye diseases in this dataset include age-related macular degeneration
(AMD), pathological myopia (PM), glaucoma, diabetic retinopathy (DR), and
some other types of eye diseases. To validate the effectiveness of P-Net for dif-
ferent retinal diseases, we use 4000 normal images as the training set, and we
use the remaining 3000 normal images, 700 images with AMD, 800 images with
PM, 420 images with glaucoma, 480 images with DR, and 600 images with other
types of eye diseases, as our testing set.

https://github.com/ClancyZhou/P_Net_Anomaly_Detection
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Table 1. Performance comparison on different datasets.

Method RESC (OCT) iSee (fundus)
Deep SVDD [22] 0.7440 0.6059
Auto-Encoder [12] 0.8207 0.6127

AnoGAN [8] 0.8481 0.6325
VAE-GAN [9] 0.9064 0.6969
Pix2Pix [35] 0.7934 0.6722

GANomaly [16] 0.9196 0.7015
Cycle-GAN [41] 0.8739 0.6699
Our Method 0.9288 0.7245

B. Performance Evaluation.

Baselines. We compare our method with AnoGAN [10] proposed for retinal
OCT images, VAE-GAN [9] proposed for Brain MRI images, GANomaly [16] for
X-ray security images, and Auto-Encoder based anomaly detection [12]. As our
work consists of the translation between image to the structure. Therefore we also
compare P-Net with image-to-image translation networks, including Pix2Pix [35]
and Cycle-GAN [41]. For Pix2Pix [35] and Cycle-GAN [41], we use the original
image and structures extracted with domain adaptation method to train the
network, and use the same measurement as ours for anomaly detection.

As shown in Table 1, our method outperforms all baseline methods on both
datasets, which verifies the effectiveness of our method for retinal images with
different modalities.

Table 2. The results of sub-class on iSee dataset.

Method AMD PM Glaucoma DR Other
Auto-Encoder [12] 0.5463 0.7479 0.5604 0.6002 0.5479

AnoGAN [8] 0.5630 0.7499 0.5731 0.5704 0.6412
VAE-GAN [9] 0.5593 0.8412 0.6149 0.6590 0.7961
GANomaly [16] 0.5713 0.8336 0.6056 0.6627 0.8013
Our Method 0.5688 0.8726 0.6103 0.6830 0.8069

We further report the AUC of our method for five sub-classes in the iSee
dataset, i.e., AMD, PM, glaucoma, DR, and other disease classes, and show the
results in Table 2, As the lesions of PM and DR are related to blood vessel
structure, and our method encodes the relation between vessels and texture, our
method performs well for these diseases. While the lesions of AMD and glauco-
ma are associated with the macular area and the optic disc, respectively, and
the structures we used cannot cover these areas in our current implementation,
therefore our solution doesn’t perform very well for these diseases.

C. Ablation Study.

Domain Adaptation (DA). As shown in Fig. 3(b) since there is domain
discrepancy between source images and target images, if we train a segmentation
model without domain adaptation, the quality of structure is not good enough
for image reconstruction. The quantitative results are listed in Table 3 (row 1
vs. row 4). We can see that our method benefits from DA on both datasets.

The Input of Gr. Our P-Net takes both the structure map and the original
image as input for reconstruction. To investigate the effectiveness of this design,
we conduct qualitative and quantitative experiments. The results are shown in
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Fig. 4. The qualitative results of different input of Gr show that both image and
structure are necessary for anomaly detection. On the one hand, when the input
is only structure, we can observe that optical disc (yellow box) cannot be reconstructed
precisely. The reason is the lack of texture information of optical disc region. On the
other hand, when the input is only image, the lack of structure (blood vessel) informa-
tion results in the vessel information loss (red box of normal and PM), and the lesion
region is reconstructed incorrectly as the vessel (red box of AMD).

Table 3. Ablation study in different datasets. DA and Lstr denote domain adaptation,
and structure consistency loss respectively.

DA
Input of Gr Lstr

AUC
Index Image Structure RESC iSee

1 X X 0.8152 0.5914
2 X X 0.8219 0.6487
3 X X 0.8277 0.6914
4 X X X 0.8518 0.7196
5 X X X 0.8835 0.6574
6 X X X 0.8821 0.6993

Ours X X X X 0.9288 0.7245

Fig. 4 and Table 3 (row 2, 3, and 4), respectively. As shown in Table 3, our
P-Net solution is better than single input based image reconstruction strategy.
Further, from Fig. 4, we can observe that: i) if Gr only takes the structure as
input, the image texture such as the optic disc area will be poorly reconstructed;
ii) if Gr only takes the image as input, the blood vessel and macular area will
be poorly reconstructed, for example, the macular area is reconstructed as the
blood vessel, which is obviously incorrect.

Structure Consistency Loss. The Lstr constrains the consistency between
Ŝ and S, which behaves like a regularizer to enforce the consistency between Î
and I. The results in Table 3 (row 2 vs. row 5, row 3 vs. row 6, and row 4 vs.
row 7) validate the effectiveness of the Lstr.

D. Evaluation of λf .

In the testing phase, we use Equation (7) to measure the anomaly score. λf =

0 denotes that only image difference ‖I− Î‖1 is used for anomaly detection, and
λf = 1 means only structure difference ‖S− Ŝ‖1 is used for anomaly detection.
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We vary λf and show the results in Table 4. We can see that the performance of
image difference only based anomaly detection is worse than structure difference
only based method. The possible reason is that the structure is more evident for
anomaly detection, which agrees with practice of clinicians. If we combine both,
then it leads to a better performance. Further, the model is robust to different
λf ’s. When λf = 0.8, our proposed method achieves the best performance, thus
we set λf = 0.8 in all the experiments.

Table 4. Results of different λf on RESC dataset.

λf 0.0 0.2 0.4 0.5 0.6 0.8 1.0
AUC 0.8481 0.9010 0.9226 0.9232 0.9234 0.9288 0.9084

E. The Number of Cycles in P-Net.

1
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structureimage

SRF
structureimage

Healthy
structureimage

Fig. 5. The qualitative results with different number of cycles. It can be observed that
the texture and the layer-wise structure between original and reconstructed ones in the
healthy sample are consistent, while the consistency in abnormal samples is broken.

The lesion areas cannot be well reconstructed, and we found that these re-
constructed lesion areas are very similar to normal areas. Thus, the results of
appending our framework several times are different from that with only one
cycle. We show the distribution of reconstruction errors for both normal images
and abnormal images with multiple cycles reconstruction. It shows that more
cycles in testing phase improve the performance, while more cycles in training
phase reduce the performance. The poor performance of more cycles in training
phase is probably because more loss terms make the optimization more difficult.

In Fig. 5, we further show the qualitative effect of more cycles in testing
phase, where the images correspond to pigment epithelium detachment (PED),
subretinal fluid (SRF), and healthy image, respectively. In the multiple cycles
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in testing phase, the abnormal lesion becomes more and more similar to normal
patterns, which is a little like “anomalies repairing”. Such phenomenon is more
obvious in the structure map. For the healthy image, both the image and struc-
ture map remain the same even after multiple cycles. Thus more cycles would
enlarge the reconstruction error for abnormal images, and retain the same re-
construction error for normal ones, which explains the phenomenon that more
cycles in testing phase improve the anomaly detection.

Table 5. The results of different number of cycle for training and testing on RESC
dataset.

Cycle number in test 1 2 3 4 5
1 cycle in train 0.9288 0.9304 0.9361 0.9380 0.9374
2 cycles in train 0.8935 0.8962 0.9022 0.8973 0.9015

4.4 Anomaly Detection in Real World Images

We also apply our method on the MVTec AD dataset [42], which is a very chal-
lenging and comprehensive anomaly detection dataset for general object and
texture images. This dataset contains 5 texture categories and 10 object cat-
egories. Since the structure is not annotated on these real-world images, we
simply take the edges detected by Canny edge detection as the structure. We
compare our method with Auto-Encoder with L2 loss or SSIM loss [42], CNN
Feature Dictionary (CFD) [43], Texture Inspection (TI) [44], AnoGAN [8], Deep
SVDD [22], Cycle-GAN [41], VAE-GAN [9] and GANomaly [16]. The quanti-
tative results are shown in Table 6, and qualitative results are provided in the
supplementary (Fig. S1).

We utilize AUC and region overlap as evaluation metrics to evaluate the
performance of our model on MVTec AD dataset. Following [42], we define a
minimum defect area for normal class data. Then we segment the difference map
of normal class samples with increased threshold. This process is not stopped
until the area of anomaly region is just below the defect area we defined and this
threshold is utilized for segmentation anomaly region in testing phase.

We can see our method achieves the best performance in terms of the average
AUC and average anomaly region overlap on all categories. Further, our method
is effective for object images and less effective for some type of texture images.
The possible reason is that we use the edge as structure. For object images,
such edges usually correspond to shapes, which is closely related to the image
contents. Thus the mapping between image and structure is relatively easy, which
consequently helps the anomaly detection. For abnormal object images, usually
some parts are broken or missing, which would leads to a large reconstruction
error. However, since there are too many edges in texture images and the edges
are very noisy, the texture image is hard to reconstruct, consequently reduces
the performance of anomaly detection.

The experimental results of novel class discovery are provided in the supple-
mentary (Section. S3).
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Table 6. For each category, the top row is the anomaly region overlap which is the
same as the evaluation metric in [42] and the bottom row is AUC. The 5 categories
at the top of the table are textures image and the other 10 categories at the bottom
of the table is objects image. The results of AE (SSIM), AE (L2), AnoGAN [8], CFD
[43], and TI [44] are adopted from MVTec AD [42] dataset directly.

Categories
AE

(SSIM)
AE
(L2)

Ano
GAN

CFD
Deep
SVDD

Cycle
GAN

VAE-
GAN

GAN
omaly

TI
Our

Method
0.69 0.38 0.34 0.20 - 0.04 0.01 0.23 0.29 0.14

Carpet
0.87 0.59 0.54 0.72 0.54 0.46 0.35 0.55 0.88 0.57
0.88 0.83 0.04 0.02 - 0.36 0.04 0.41 0.01 0.59

Grid
0.94 0.90 0.58 0.59 0.59 0.86 0.76 0.80 0.72 0.98
0.71 0.67 0.34 0.74 - 0.09 0.12 0.31 0.98 0.52

Leather
0.78 0.75 0.64 0.87 0.73 0.65 0.64 0.77 0.97 0.89
0.04 0.23 0.08 0.14 - 0.14 0.09 0.19 0.11 0.23

Tile
0.59 0.51 0.50 0.93 0.81 0.64 0.70 0.69 0.41 0.97
0.36 0.29 0.14 0.47 - 0.19 0.11 0.32 0.51 0.37

Wood
0.73 0.73 0.62 0.91 0.87 0.95 0.77 0.91 0.78 0.98
0.15 0.22 0.05 0.07 - 0.09 0.11 0.13 - 0.43

Bottle
0.93 0.86 0.86 0.78 0.86 0.76 0.73 0.82 - 0.99
0.01 0.05 0.01 0.13 - 0.02 0.05 0.14 - 0.16

Cable
0.82 0.86 0.78 0.79 0.71 0.61 0.60 0.83 - 0.70
0.09 0.11 0.04 0.00 - 0.04 0.19 0.51 - 0.64

Capsule
0.94 0.88 0.84 0.84 0.69 0.61 0.59 0.72 - 0.84
0.00 0.41 0.02 0.00 - 0.33 0.34 0.37 - 0.66

Hazelnut
0.97 0.95 0.87 0.72 0.71 0.87 0.75 0.86 - 0.97
0.01 0.26 0.00 0.13 - 0.04 0.01 0.18 - 0.24

Metal Nut
0.89 0.86 0.76 0.82 0.75 0.43 0.46 0.69 - 0.79
0.07 0.25 0.17 0.00 - 0.29 0.01 0.17 - 0.58

Pill
0.91 0.85 0.87 0.68 0.77 0.80 0.62 0.76 - 0.91
0.03 0.34 0.01 0.00 - 0.17 0.02 0.24 - 0.32

Screw
0.96 0.96 0.80 0.87 0.64 0.95 0.97 0.72 - 1.00
0.08 0.51 0.07 0.00 - 0.13 0.10 0.48 - 0.63

Toothbrush
0.92 0.93 0.90 0.77 0.70 0.70 0.67 0.82 - 0.99
0.01 0.22 0.08 0.03 - 0.20 0.05 0.15 - 0.24

Transistor
0.90 0.86 0.80 0.66 0.65 0.72 0.78 0.79 - 0.82
0.10 0.13 0.01 0.00 - 0.05 0.04 0.21 - 0.34

Zipper
0.88 0.77 0.78 0.76 0.74 0.63 0.60 0.84 - 0.90

0.22 0.33 0.09 0.13 - 0.15 0.09 0.27 - 0.41
Mean

0.87 0.82 0.74 0.78 0.72 0.71 0.66 0.77 - 0.89

5 Conclusion

In this work, we propose a novel P-Net for retina image anomaly detection. The
motivation of our method is the correlation between structure and texture in
healthy retinal images. Our model extracts structure from original images first,
and then reconstructs the original images by using both structure information
and texture information. At last, we extract the structure from the reconstruct-
ed images, and minimizing the difference between the structures extracted from
original image and that from reconstructed image. Then we combine the im-
age reconstruction error and structure difference as a measurement for anomaly
detection. Extensive experiments validate the effectiveness of our approach.
Acknowledge: The work was supported by National Key R&D Program of
China (2018AAA0100704), NSFC #61932020, Guangdong Provincial Key Labo-
ratory (2020B121201001), ShanghaiTech-Megavii Joint Lab, and ShanghaiTech-
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