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Abstract. In this paper, we propose a Rotation-robust Intersection over
Union (RIoU) for 3D object detection, which aims to learn the overlap of
rotated bounding boxes. In most existing 3D object detection methods,
the norm-based loss is adopted to individually regress the parameters
of bounding boxes, which may suffer from the loss-metric mismatch due
to the scaling problem. Motivated by the IoU loss in the axis-aligned
2D object detection which is invariant to the scale, our method jointly
optimizes the parameters via the RIoU loss. To tackle the uncertainty of
convex caused by rotation, a projection operation is defined to estimate
the intersection area. The calculation process of RIoU and its loss func-
tion is robust to the rotation condition and feasible for back-propagation,
which only comprises basic numerical operations. By incorporating the
RIoU loss with the conventional norm-based loss function, we enforce
the network to directly optimize the RIoU. Experimental results on the
KITTI, nuScenes and SUN RGB-D datasets validate the effectiveness of
our proposed method. Moreover, we show that our method is suitable for
the detection task of 2D rotated objects, such as text boxes and cluttered
targets in the aerial images.
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1 Introduction

Recent years have witnessed the advances in 2D object detection [11,36,25]
along with the breakthrough of deep learning methods. However, detection of
3D objects, such as outdoor vehicles and pedestrians [10, 1], remains a challeng-
ing issue. The detection algorithms are designed to regress the translation, scale
and yaw angle of the bounding boxes. Compared to the axis-aligned 2D targets,
more attributes of 3D object are obtained attributed to the sufficient spatial
information provided by the mounted lidar scanners [1]. Directly consuming li-
dar points as the detection input has drawn more attention recently [22,51, 38].
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Fig. 1: Examples of inconsistency between the smooth-¢1 loss and real IoU. From
left to right, the /1 difference of bounding box parameters is becoming larger,
while the overlap is becoming closer. The consistency is preserved between our
proposed RIoU loss and real IoU in this example. The result is calculated from
numerical simulation.(best viewed in color pdf file)

State-of-the-art 3D object detection methods project the point cloud to a cer-
tain viewpoint [7,49] for convolutional feature extraction in the 2D plane, or
voxelize the point cloud and apply 3D convolution [29,51]. Recently two-stage
RCNN methods [38, 8] are proposed to better leverage the point-wise informa-
tion. Compared to the monocular [4, 2,43, 27, 20] or stereo [6, 24, 23, 35] methods,
the attributes of 3D object are obtained from the lidar points with fewer stages,
which makes it possible for real-time detection usage.

To regress the parameters of rotated bounding boxes, existing approaches of
3D object detection regress the translation, scale and yaw angle individually by
using the smooth-¢1 loss [11,36], which is based on the ¢1-norm of parameter
distance. While each parameter (i.e., height) might be normalized by the anchor
parameters [51,21], the size of the anchor is a pre-defined scalar. Therefore,
the value of the £1-norm is still sensitive to the scale of the bounding box [37].
As shown in Fig. 1, the conventional loss and evaluation metric are inconsistent.
Addressing this loss-metric mismatch could provide insights into computer vision
and machine learning tasks such as object detection [37] and metric learning [13].

In order to learn the bounding box parameters collaboratively as well as
avoiding the scaling problem, directly optimizing Intersection over Union (IoU)
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is addressed in the axis-aligned cases [47, 18,14, 37]. Such attempts significantly
enhance the performance in the axis-aligned 2D object detection. However, due
to the variance in shape, pose and environment condition, object targets are
hardly axis-aligned, especially for 3D objects. Geometrically, the intersection
area between a pair of rotated bounding boxes is non-trivial to calculate by using
the numerical methods. In bird’s eye view, as shown in the upper part of Fig. 1,
the shape of the intersected convex is diverse due to the variance of location,
size and angle. Currently, the accurate convex area between a pair of rotated
bounding boxes is often calculated outside the training loop, or regarded as a
constant [46] and not involved in the gradient descent of the back propagation. To
tackle the aforementioned problem brought by rotation, some methods directly
estimate the confident score of IoU by using deep networks [15] or calculate a
simplified version of IoU [26] to select positive samples. But neither of them tries
to directly learn on the overlap of the bounding boxes, and few similar attempts
have been made in 3D object detection.

In this paper, we propose an IoU for 3D object detection called Rotation-
robust Intersection over Union (RIoU) with its loss function format (Lgrov),
and incorporate it into the conventional /1 loss. Specifically, we define a pair of
projected rectangles to calculate the intersection in the 2D plane. It is suitable
for bounding box regression in arbitrary angles. Besides, it only comprises basic
arithmetic operations and the min / max function, which is feasible for back
propagation during training. We also extend RIoU to the volume and recent
Generalized Intersection over Union [37] format. Experimental results on the
KITTI [10] and nuScenes [1] datasets show that combined with our Lgj,v, the
performance of 3D object detection is improved by a large margin. Moreover, we
test our method on the 2D rotated object detection to validate its applicability.

2 Related Work

Point-based 3D Object Detection: While 3D oriented objects can be de-
tected from monocular [4,2, 43,27, 20] or stereo [6,24, 23, 35] images, the spatial
information is better preserved in point cloud data collected by the lidar scan-
ners. It provides multiple projection viewpoints for feature aggregation [7]. Most
state-of-the-art approaches consume raw lidar data as input. Early works di-
rectly apply 3D convolution to process the point cloud [9,22]. Several methods
group point cloud into stacked 3D voxels [29,51] to generate more structured
data, and [21] restricts the grouping operation within the ground plane to achieve
real time detection. As for two-stage pipelines, some methods adopt detection
results of 2D images to crop ROI regions in the 3D space [32,44,42], or fuse
the image and point cloud feature to reduce the missing instances in the first
stage [19]. Recently proposed RCNN methods [38, 8] adopt PointNet-based [33]
module for better extracting and aggregating the point-wise feature. Similar to
object detection in 2D images, all those methods adopt the £1 regression loss [11,
36], which focuses on the difference of individual bounding box parameters.
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Intersection over Union: Intersection over Union (IoU) is widely adopted as
the evaluation metric in many visual tasks, such as object detection [11, 36, 25,
5], segmentation [33,34,3] and visual tracking [30]. Generally, it is calculated
outside the training loop and not involved in the process of back-propagation.
For example, it is adopted as a metric to discriminate between the positive
and negative samples [18, 51]. Attempts towards directly learning IoU have been
made in the scenario of axis-aligned 2D object detection, since IoU is invariant to
the scale of the problem [37]. Instead of calculating IoU between the detected and
ground-truth bounding boxes, [15] predicts the IoU as a metric in non-maximum
suppression (NMS). ToU loss is adopted for axis-aligned face detection [47], visual
tracking [18] and lumbar region localization [14]. [41] designs Intersection over
Ground-truth (ToG) to penalize the wrongly matched detections. [37] proposes
Generalized IoU (GIoU) to penalize poor detection instances. In the context of
rotation-free bounding box regression, [50, 28] optimize axis-aligned IoU loss and
angle loss seperately for text localization. [26] proposes a surrogate IoU, called
Angle related ToU (ArloU), to select prior boxes as positive samples for aerial
image detection. More recently, [27] proposes F'QNet to directly predict 3D IoU
between samples and objects in monocular data, which is similar to [15]. The
accurate 3D IoU loss is firstly proposed in [48], where the intersection can be
calculated through traversing the vertices of the overlap area, which requires the
sophisticated design of the forward and backward computation. It demonstrates
superior performance over the £1-based loss function. Another alternative is to
regard the accurate IoU as a constant coefficient [46], where the calculation of
IoU is not involved in the back propagation of the training process.

3 Approach

In this section, we formulate the proposed approach in the bird’s eye view of 3D
space, which corresponds to the general 2D cases and can be easily extended to
the 3D cuboid formulation.

3.1 Rotation-robust Intersection over Union

In the 3D space, a rotated bounding box B is defined by (z, vy, 2,1, h, w, r), where
(z,y, 2), (I, h,w) and r represent center coordinates, box size and rotation around
z axis (yaw) respectively. As shown in (1), Intersection over Union (IoU) is
calculated as an evaluation metric in object detection task generally.

B1N By

IoU = . 1
¢ Bi+ By — B1 N By ()

It is introduced as an optimized target in several conventional 2D cases [40,
37]. However, when extended to 3D or other cases, where the bounding box is
rotatable, the calculation of the intersection area becomes non-trivial. The shape
of the intersection polygon depends largely on the location, size and yaw angle
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Fig.2: Upper: Some of the overlapped situations between two rotated bound-
ing boxes. Bottom: The calculation of Rotation-robust Intersection of rotated
bounding box p and g corresponding to one of the upper situations, which is
sampled from the KITTI [10] dataset. The projected rectangle p' (dotted) is
defined in the canonical coordinate system built around g. And vice versa for g .
The smaller of p/ Ng and g/ Np is preserved and multiplied by a cosine coefficient
to get the final intersection, which is the numerator of RIoU(p,g). (best viewed
in color pdf file)

of 2 bounding boxes. As shown in the upper part of Fig. 2, the polygon can be
triangle, parallelogram, trapezoid or even pentagon, etc.

In bird’s eye view or general 2D cases, a rotated bounding box is defined
by (z,y,l,w,r). With the shape of 2 x 4, the coordinates of the bounding box
corners C' can be obtained from the parameters above. Given a pair of predicted
bounding box B,(C)) and ground-truth bounding box By(C,), a canonical co-
ordinate system is firstly built around the center of By. In this system, B, is
axis-aligned and can be represented as (0,0, [4, wg, 0). Then we define a projected
rectangle of B, by satisfying the following properties: Firstly, B, is inside the
projected rectangle. Secondly, The projected rectangle is aligned to the axes of
the new canonical coordinate system, i.e., the axes of B,. Thirdly, The area of
the projected rectangle is minimum. An example of defining such rectangles is
shown in the bottom part of Fig. 2. As shown in (2), we first calculate the corner
coordinates of B, in the canonical coordinate system of B, as Cp 4, including
shifting the origin and rotating the axes. Here we denote the coordinate of i-th
corner of predicted box as Cj,. “x” denotes the matrix multiplication.

Ch =8 — [xg,y,)" i €1,2,3,4

o= |

In the canonical coordinate system of By, the corners of the projected rectan-
gle can be easily defined by extracting the min / max coordinate value of corners.

cosr, sinr (2)
g 9| ,
—sinrg cosry
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For example, C’;,, the top left coordinate of B, is extracted as follows:
C;, = [mwin Chp.as max Cpa)” (3)

B, is axis-aligned in the canonical coordinate system of By. It is easy to
calculate a pair of (/1,Unl) from B, and By, which corresponds to the area of
intersection and the smallest enclosing box of B, and By.

By swapping B, and B, and then repeating (2) and (3), we can get another
pair of (I2,Un2). The smaller intersection value is preserved and multiplied by
a cosine coefficient to get the final intersection area. The final intersection and
union area is calculated as follows:

Irroy =min(I1,12) - |cos(2- (ry — 1)),

Urrov =max(Irrov,;lg - wg + 1 - wp — IRrov), (4)
I
RIoU = FIoU
RIoU

As shown in bottom part of Fig. 2, the area of p' Ng (11) or g’ Np (I2) is larger
than g N p. To remedy this error, we preserve the minimum area of p/ N g and
g/ Np. Besides, we set the angle coefficient of cosine as 2. Therefore, the calculated
area decreases more sharply as the angle difference becomes larger. Note that
RIoU equals zero when the angle difference is 45 degree. However, the partial
derivative of L,y with regard to all parameters except the rotation angle is
zero, which pushes the angle difference down to zero. And our RIoU degrades to
the conventional axis-aligned IoU when the boxes are parallel or orthogonal. We
choose the cosine function in (4) based on its following properties: It decreases as
the angle deviates from zero, which penalizes the fluctuation of angle difference.
Moreover, it is periodic, which corresponds to the periodic orientation of objects.
Please refer to the supplementary pages for more design details.

Apart from RIoU, we also implement its Generalized Intersection over Union
(GIoU) format proposed in [37]. It is designed specifically to reveal and penalize
the low intersection between 2 bounding boxes:

Ungrrov = max(Unl,Un2),
Ungrov — Urrou (5)

RGIoU = RIoU —
Unrrov

The complete process of calculation is summarized in Algorithm 1. The al-
gorithm only comprises basic arithmetic operations and the min / max function,
which is feasible for back propagation during training.

As the RIoU above is implemented in bird’s eye view, it can be easily ex-
tended to 3D IoU format by introducing another axis-aligned z dimension, as
shown in (6). Here we denote the upper/lower z coordinate of ground-truth and
predicted bounding box as zg,.,/24,; and zp/2p,;. But in the experiment section
we show that, the incorporation of £z, implemented in the 2D plane enhances
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Algorithm 1: RIoU, RGIoU and their loss function.

input : Bounding box By, B, and their corners.
output: RIoU, RGIoU, Lriou, LrGIoU-
Function Project (B, B2):
In the canonical coordinate system of B, set new the origin and corner
coordinates for B using (2);

Locate B;, the projected rectangle of Bz using (3);
Calculate Intersection B1 N B; as [;
Calculate Universal of B1 and B; as Un;
return /,Un

1 Calculate 2 pairs of intersection and universal:
I1,Unl = Project (By, Bp);
I12,Un2 = Project (Bp, By);

2 Calculate RIoU and RGIoU using (4) and (5);

3 ['RIOU =1- R[OU, L"RGInU =1- RG[OU

the performance of both 2D and 3D target detection.

6z = min(zg,u, 2p,u) — max(zg,, zp,1)

RIoU(v) = max(0,dz) - RIoU (6)

Our Li1,v and Lrarov is bounded in terms of stability. The final intersection
area of RIoU is the minimum value of a subset of p and a subset of g. Hence
Igrou is always smaller than the area of p or g, thus smaller than Urj,y in (4).
Therefore, the RIoU and Lgj,u are both bounded in [0,1]. As for RGIoU and
Lrerou, since Ungrou is always larger than Ugroy in (4), RGIoU is bounded in
[—1,1]. And Lrgrou is bounded in [0, 2].

3.2 Discussion

Comparison of RIoU loss and the smooth-/1 loss. When rotation is intro-
duced in the detection task, the smooth-£1 loss [11, 36] is often adopted as the
regression target, which focuses on the element-wise difference of the bounding
box parameters. A typical set of element-wise difference in 3D cases is defined
in (7) [51,21], where gt and a denote the parameter of a ground-truth bounding
box and its matched anchor box respectively.

gt _ rpa gt __ ,a gt _ .a
Av= T Ay = e s = e
gt 19t hat
Aw:log%,ﬂl:log l—a,Ah:log T (7)

Al = sin (th — 9“).

Smooth-£¢1 loss shares with ¢1-norm difference the drawback demonstrated
in [37]. As each parameter is optimized independently, smaller parameter differ-
ence can not guarantee bigger IoU (see Fig. 1). The normalization brought by the
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pre-defined anchor parameters d, and h, is not fully effective, because the size
parameters of anchors are usually pre-defined scalars. Consequently, the ¢1 dif-
ference is sensitive to the scale of the bounding box. Therefore, an approximate
function that directly optimizes IoU may further enhance the performance.
Comparison of RIoU and other IoUs. Our RloU shares the non-negativity,
identity of indiscernibles and commutativity with the accurate IoU. The closest
to our work is the angle-related IoU (ArIoU) proposed in [26]:

area(AN B)

ArloUqgp(A, B) = =
160 ) area(AU B)

“|cos(64 — 0B)|. (8)

ArloU is used for selecting positive anchors at the training period. A shares
the parameters with A except that its rotation is the same with B. RIoU and
ArIoU both take the angle difference into consideration. But ArIoU is a non-
commucative function, which means ArIoU (A, B) # ArIoU(B, A). Besides, the
area of AU B might be smaller than AU B. The cosine part further decays the
intersection area, which makes the estimation even worse.

Recently [48] proposes to replace the £1 loss with the accurate IoU loss func-
tion, which does not suffer from the approximation error. The forward compu-
tation of IoU and the backward propagation of the error are firstly implemented
manually in this work. However, our proposed RIoU can be easily implemented
into the existing framework, and does not require the traversal of the vertices.

4 Experiment

To evaluate our RIoU loss and its variant for rotated 3D object detection,
we used the popular KITTI dataset [10] and the newly proposed challenging
nuScenes [1] dataset. We plugged Lr,uv and Lrgru into the loss function of
Frustum-PointNet v1 [32, 33], Frustum-PointNet v2 [32, 34], PointPillars [21] and
VoteNet [31]. The weights for the ¢1 loss and the proposed loss are the same.
Here we denote the raw ¢1 based regression function baseline as /1, baseline
incorporated with our proposed Lgrj,u or Lrarou as £1 + iou or £1 + giou.

4.1 Datasets and Settings

KITTI: The KITTI dataset [10] contains 7481 training and 7518 testing sam-
ples for 3D object detection benchmark. The evaluation is classified into Easy,
Moderate or Hard according to the object size, occlusion and truncation. We
followed [7] to split the training set into 3712 training samples and 3769 valida-
tion samples. As for input modality of the KITTI dataset, We took raw point
cloud [21] and fusion [32] into consideration.

We reported the experiment results on the KITTT validation set. The evalu-
ation took 3D average precision as the metric. The threshold for car, pedestrian
and cyclist is 0.7, 0.5 and 0.5 respectively.
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Table 1: Comparisons of different loss settings on car category of the KITTI
validation set. The baseline model is Frustum-PointNet [32] (F-PointNet). The
backbone network is PointNet [33](v1) and PointNet++ [34](v2) respectively.
The results are reported on the task of 3D object localization (Loc.) and 3D
object detection (Det.).

Easy Moderate Hard

Method vl v2 vl v2 vl v2
£1(baseline) 87.67 88.16 82.68 84.02 74.74 76.44
£14+ArloU 88.36  88.17 82.81 84.12 74.23 76.39

Loc = ron 88.01 8856 | 82.83 85.07 | 75.45 77.02
(1+RGIoU | 8810 88.67 | 82.93 84.83 | 75.65 76.81
f1(baseline) || 83.47 83.76 | 690.52 70.02 | 62.86  63.65

Det. | (IFARIOU || 83.00 8407 | 6894 7112 | 60.96  63.71

L1+RIoU 84.45 84.83 | 71.20 72.13 | 63.61 64.35
{1+RGIoU 84.72 84.10 | 71.46 71.71 | 63.75 64.00

NuScenes: The nuScenes dataset [1] contains 1k scenes, 1.4M camera images,
400k LIDAR sweeps, 1.4M RADAR sweeps and 40k key frames, which has 7x as
many annotations as the KITTI dataset. Each key frame is annotated with 35 3D
boxes on average, which is 2.6x as many as the KITTI dataset. The annotation
of each instance comprises semantic category, parameters of 3D bounding box,
velocity and attribute (parked, stopped, moving, etc.). Each scene is captured
continuously for 20 seconds. The whole dataset is categorized into 23 semantic
categories (car, pedestrian, truck, etc.) and 8 attributes.

For the nuScenes 3D object detection evaluation, we followed the evaluation
protocol proposed along with the dataset [1]. While the average precision (AP)
was calculated as final metric, 2D box center distance on the ground plane instead
of IoU was used as threshold. We also evaluated the result following the KITTI
protocol. The instance was regarded as easy, moderate or hard according to the
number of points inside the bounding box.

SUN RGB-D: The challenging SUN RGB-D[39] dataset for scene understand-
ing contains 10k RGB-D images, 5,285 for training and 5,050 for testing. It’s
densely annotated with 64k oriented 3D bounding boxes. The whloe dataset
is categorized into 37 indoor object classes(bed,chair,desk,etc.). The standard
evaluation protocol reports the performance on the 10 most common categories.

4.2 Results and Analysis

Frustum-PointNet: The training process took 200 epochs. We used the 2D
object detections of the training and validation set provided by the authors®. As
shown in Table 1, when the backbone network of F-PointNet is PointNet [33],
Lriov outperforms these compared methods in both 2D localization and 3D

5 github.com/charlesq34/frustum-pointnets/
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Fig. 3: Visualization of 6 predicted samples on the KITTI validation set (predic-
tions in blue, ground-truths in pink). In each sample, we compare the baseline
(upper) with the incorporation of Lgj,y (middle) or Lrgr,u (lower).

Table 2: Comparisons of different loss settings for 3D object detection and 3D
object localization on car category of the KITTI validation set. The baseline
model is PointPillars [21].

Method

3D detection 3D localization
FEasy Moderate Hard || Easy Moderate Hard
¢1(baseline) || 87.29 76.99 70.84 || 89.92 87.88 86.72
ToU [48] 87.88 77.92 75.70 || 90.21 88.25 87.56
{14+RIoU 88.02 77.37 74.04 || 90.45 87.98 85.83

detection. The Lrgr,u further improves the detection performances. This is be-
cause the predicted boxes are generated from anchors in different sizes and an-
gles but the same center, which could not guarantee the positive match between
anchor and ground-truth. Then those negative matches are penalized more by
Lrcrou than Lgr,y. For the experimental results of the cyclist and pedestrian
categories, please refer to the supplementary pages.

Several visualization results are shown in Fig. 3. We projected the bounding
boxes with confidence score larger than 0.3 into the raw images. In each of the
6 samples, the inaccuracy of localization exists in the upper baseline results.
When incorporated with £ g,y (middle) or Lz, (bottom), the localization
is notably improved. The results are from Frustum PointNet v2.

PointPillars: We used the SECOND [45] implementation® for the nuScenes and
KITTI. We experimented car-only detection on both KITTI and nuScenes, using
SECOND v1.5. The training process took 600k iterations for both datasets. And

5 github.com /traveller59/second.pytorch
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Table 3: Comparisons of different loss settings for 3D object detection on car
category of the nuScenes validation set. The Average Precision (AP) metric of
3D object detection is based on the matching of center distance(D) and IoU
respectively. The baseline model is PointPillars [21].
3D detection(IoU) 3D detection(D)

Easy Moderate Hard || D=0.5 D=1.0 D=2.0 D=4.0
£1(baseline) 86.02 80.66 62.03 55.30 64.79  68.55  T71.85
{14+RIoU 86.30 81.24 62.53 57.26  67.18 7047 73.44
{1+RGIoU 86.42 81.03 62.65 57.9 67.75 71.07 7391
L1+ RIoU(v) 86.82 82.97 65.15 | 61.87 72.89 75.76 77.73
L1+RGIoU(v) || 86.57 81.13 63.79 61.29 7187 7475  76.89

Method

Table 4: Comparisons of different loss settings for 3D object detection on the

SUN RGB-D dataset. The baseline model is VoteNet [31].

Method bathtub bed bookshelf chair desk dresser nightstand sofa table toiletfmAP mAR
votenet 73.7 81.6 285 73.5 244 279 62.5 65.2 50.0 90.1|57.7 83.9
votenet+RIoU 73.5 84.6 31.6 74.6 24.8 30.0 62.7 65.9 50.7 89.3 |58.8 86.9
votenent+RGIoU| 78.7 84.1 32.2 73.5 25.8 294 60.4 65.5 49.5 88.6|58.8 85.4

we also evaluated a 9-class subset on the nuScenes using the proposed loss, which
can be seen in the supplementary pages. The results are summarized in Table2
and Table3. All trials were evaluated on the whole validation set. While Lrrov
and Lrgrou both improve the detection performance by an obvious margin, the
enhancement by Lzagrou is not superior to Lgj,y. In Table 2, the combination
of /1 loss and the RIoU loss achieves the competitive performance in the easy
mode, compared to the IoU loss which computes the accurate IoU. Note that
our proposed RIoU saves the sophisticated forward and backward computation.
VoteNet: We followed the official implementation” of VoteNet [31]. The train-
ing process took 180 epochs. The learning rate was decayed at epoch 40 and
epoch 80 respectively. As shown in Table 4, both Lg;,y and Lrgrouy enhance
the performance in terms of mAP and mAR, where Lgrj,y achieves the best
results. Besides, as for the AP of the individual categories, the baseline method
only achieves the best result in the ”toilet” category. Especially in the ”bathtub”
category, the Lrgr,y improves upon the baseline method by 5 AP.

Compared with ArloU: We also implemented the loss format of angle-related
IoU [26] (ArIoU) as 1 — ArIoU, and incorporated it into regression loss function
just like L, . The experiment results on Frustum PointNet [32] is presented in
Tablel. When incorporated with £ 4.7,u, about half of the detection metrics of
Frustum PointNet even drop compared with baseline. Compared with RIoU loss
function, ArloU is not beneficial to the detection performance. Besides, during
first 100 epochs before convergence, we collected the predicted bounding boxes
and their corresponding ground-truths. We randomly picked 50k sample pairs
with the interval of 10 epochs, and calculated the average real IoU, ArloU and

" github.com /facebookresearch/votenet
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Fig.4: (a): The average real IoU, ArloU and our RIoU of sampled bird’s eye
view prediction and ground-truth pairs. (b): The average IoU curve with regard
to training steps. (c): The center loss and corner loss curve w.r.t. training steps.

our RIoU. The result in Fig. 4(a) shows that our RIoU approximates better than
ArloU, especially during first 40 epochs.

3D assisted by 2D: While we implemented the RIoU in 2D bird’s eye view, it
benefits 2D localization and 3D detection performance simultaneously. Specifi-
cally, our RIoU improves 2D bird’s eye view IoU (Fig. 4(b)), 3D IoU (Fig. 4(b)),
center loss (Fig. 4(c)) and corner loss optimization (Fig. 4(c)) jointly. Note that
the center loss and corner loss are both in /1 format, which means our loss can in
tern benefit the traditional /1 based regression loss. When incorporated with our
LRriou, the overlap between the prediction and ground-truth is higher. The de-
tection network also learns bounding box parameters more efficiently. The data
was collected from the experiment on Frustum PointNet v2 [32]

Given the RIoU in bird’s eye view, we implemented the volume format of our
RIoU by introducing the z axis. The calculation process is the same with the axis-
aligned 3D IoU. Following the setting, the training process took 40k iterations.
We denote the volume format as ¢1+RIoU(v) or {1+RGIoU(v). As shown in
the last 2 rows of Table 3, the volume format further enhanced the detection
performance based on the localization improvement. When incorporated with the
volume format of Lgy,y, the network achieves the best detection performance.

4.3 Ablation Study

The goal of the ablation study is to verify the heuristic design of our RIoU. We
did the ablation experiments on the 3D car detection task of the KITTI [10]
dataset. We chose F-PointNet v1 [32] as the baseline method.

The minimum of intersection areas: While min, max and mean function
all hold the stability for the proposed method, we choose the min function in
(4) to mitigate the estimation error of Intersecitonl and Intersection2. In the
ablation experiment, we replaced the min function with max or mean. As shown
in Table 5, except for the easy mode in 3D object localization, the min function
gave the best detection result.

The cosine coefficient: The ablation study on the cosine coeflicient in (4)
focuses on 2 issues: the necessity of the cosine coefficient and the angle coefhi-
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Table 5: Ablation experiment results on different function and coefficient value
for 3D object detection and localization of car category. ”w.o.” denotes that the
cosine function is removed in the calculation of Irr.y.

Coef | Func 3D detection 3D localization
Easy Moderate Hard || Easy Moderate Hard
2 Max || 83.53 70.79 63.08 || 87.90 82.67 75.01
2 Min || 84.45 71.20 63.61 || 88.01 82.83 75.45
2 Avg || 83.11 69.68 62.85 || 88.09 82.82 74.94
1 Min || 83.86 70.73 63.22 || 87.96 82.53 74.67
2 Min || 84.45 71.20 63.61 || 88.01 82.83 75.45
3 Min || 83.79 70.10 63.11 || 87.83 82.31 74.93
4 Min || 83.23 70.88 63.45 || 88.33 82.26 75.31
5 Min || 82.90 70.39 63.08 || 87.67 82.27 74.22
w.o. | Min || 82.41 69.02 61.13 || 87.87 82.67 75.01

cient value within the cosine function. As shown in the lower part of Tableb,
F-PointNet achieved the best detection performance when the cosine coefficient
was preserved and the angle coefficient was 2. Note that the other 2 categories
also achieved the best performance with Min function and coefficient 2, which
is not shown in the table to save space. After we removed the cosine coefficient
from the calculation of Irroy in (4), or modified the angle coefficient value, the
detection performance dropped by an obvious margin. Note that F-PointNet
gave the best 3D object localization performance under the easy mode when the
angle coefficient value was 4. This might be due to similar degradation property
when the 2 boxes are parallel or orthogonal. Besides, the larger angle coefficient
value penalizes the angle difference more.

4.4 Applications in 2D Object Detection

As mentioned above, the proposed RIoU loss function improves the 3D object
detection performance by an obvious margin. To further verify its effectiveness
in various rotated object detection tasks, we validated it on several 2D detection
benchmarks, such as text localization and aerial image detection. The details of
the latter are presented in the supplementary pages.

Datasets and settings: The ICDAR 2015 text localization benchmark [16]
contains 1000 images for training and 500 images for testing. Each annotated
text region is represented by 4 quadrangle corners. We chose EAST [50] as our
baseline method, which optimizes the axis-aligned IoU and angle seperately. We
used the implementation with RBOX and adopted ResNet-50 [12] as the feature
extractor. Note that the network was trained and evaluated on the single ICDAR
2015 dataset when incorporated with the proposed loss. One of the baseline
networks was also tuned on the the ICDAR 2013 dataset [17], which contains
229 training images with horizontal text annotations.

Results: The text localization results are reported in 3 metrics: recall, precision
and F-score. As shown in Table 6, when incorporated with £rgj,u and trained
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Table 6: Text localization results, evaluated on the ICDAR 2015 test set. The
2013 and 2015 stand for the ICDAR 2013 and ICDAR 2015 dataset respectively.

Trained on Metric
Method 2013 2015 | Recall Precision F-Score
71 (baseline) 7 8380 7646  79.96
f(baseline)!| v v | 84.66 77.32  80.83
(1+RGIoU v |88 7752 80.10
(14+RIoU / |86.20 78.48 82.16

! Reported on the ICDAR 2015 benchmark website.

only on the ICDAR 2015 dataset, the detection performance outperforms the
baseline in terms of Precision and F-score. Especially when incorporated with
Lriou, all the 3 metrics even surpass the jointly-trained baseline by an obvious
margin. The RIoU helps to propose the text boxes more adequately and locate
them more accurately, which demonstrates the effectiveness of our proposed loss
function. The illustration is shown in the supplementary pages.

From the experiment results in text localization and detection in aerial im-
ages, we can see that the proposed loss function could significantly improve the
detection performance of the rotated 2D targets. Apart from the 3D cuboids, it
is also suitable for detection targets in the shape of narrow rectangle and large
numbers of small, cluttered rotated targets in an image.

5 Conclusion

In this paper, we have proposed a loss function called Rotation-robust Intersec-
tion over Union (RIoU) for robust object detection. It is designed for bounding
boxes in arbitrary rotation conditions. The implementation only comprises basic
operations, and is feasible for back-propagation. It is suitable for both 2D target
localization and 3D object detection. Incorporated into traditional ¢1-based re-
gression loss function, the proposed loss function achieves notable improvement
over several state-of-the-art baselines. In the future, we will focus on the invari-
ance of IoU with regard to the rotation. We will also explore its application in
more abundant cases, such as object detection in indoor scenes.
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