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Abstract. The introduction of non-local blocks to the traditional CNN
architecture enhances its performance for various computer vision tasks
by improving its capabilities of capturing long-range dependencies. How-
ever, the usage of non-local blocks may also introduce new threats to
computer vision systems. Therefore, it is important to study the threats
caused by non-local blocks before directly applying them on commer-
cial systems. In this paper, two new threats named disappearing attack
and appearing attack against object detectors with a non-local block are
investigated. The former aims at misleading an object detector with a
non-local block such that it is unable to detect a target object cate-
gory while the latter aims at misleading the object detector such that
it detects a predefined object category, which is not present in images.
Different from the existing attacks against object detectors, these threats
are able to be performed in long range cases. This means that the target
object and the universal adversarial patches learned from the proposed
algorithms can have long distance between them. To examine the threats,
digital and physical experiments are conducted on Faster R-CNN with a
non-local block and 6331 images from 56 videos. The experiments show
that the universal patches are able to mislead the detector with greater
probabilities. To explain the threats from non-local blocks, the recep-
tion fields of CNN models with and without non-local blocks are studied
empirically and theoretically.

Keywords: Non-local block, adversarial examples, object detection

1 Introduction

Convolutional neural networks (CNNs) have been becoming an essential compo-
nent in computer vision systems where many of them have been deployed com-
mercially. Traditional CNNs are built on local operators, such as convolution
and pooling. In order to extract information in a wide area, the local operators
are stacked, resulting in larger receptive fields in theory. However, Luo et al. pin-
pointed that the effective receptive fields of CNNs are much smaller than their
theoretical receptive fields [20]. Furthermore, stacking the local operators, espe-
cially convolution, would dramatically increase the computational cost and cause
optimization difficulties [8]. To address these issues, Wang et al. generalized the
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classical non-local mean operator for image denoising [1] and proposed non-local
blocks [31] in 2018. Since the non-local blocks can be easily inserted into many
existing architectures and combined with other operators, they have been taken
as a generic family of building blocks in CNNs for capturing long-range depen-
dencies. In fact, the non-local neural network has raised a new trend in computer
vision with an outstanding performance in object detection [29,35,13,25], as well
as other various techniques on this basis, such as action recognition [24,9] and
person re-identification [16]. There are nearly 200 related articles published in
top computer vision venues during the past two years. Non-local blocks have also
been applied on other research fields, such as computer-assisted radiology and
surgery, bioinformatics, electronic and automation control, speech processing,
etc. With it being a heated topic, and its potentials, it has also drawn attention
from industry and companies, including Facebook [31], Microsoft [2], Baidu [36],
Tencent [28,6], Huawei [5], Face++ [3], etc.

However, massively applying the non-local blocks in commercial systems
without studying their threats would be risky. Traditional CNNs are well-known
in suffering from adversarial examples. Researchers have demonstrated that using
carefully crafted adversarial examples, they can mislead different CNNs designed
for various computer vision problems. These include image and video classifica-
tion, segmentation and object detection [27,37,4,11,10,34]. To mislead object de-
tectors, the current attacks either modify pixels inside target objects [4,17,26] or
put the adversarial patches very close to target objects [11,10]. Though non-local
blocks have been applied to a lot of computer vision problems, object detection
is selected for this study because it is an essential component in many cyber-
physical systems, e.g., autonomous vehicles. In order to investigate whether the
non-local blocks would bring new threats to object detectors, two types of attacks
are studied in this paper — appearing and disappearing attacks. The former aims
at misleading object detector such that it is unable to detect a target object cat-
egory, e.g., stop sign, and the latter aims at misleading object detector such
that it detects a predefined object category which is not present in images. If an
adversarial patch is similar to a target object, the object detector would detect
it as a target object. However, this is not the goal of appearing attack where
wrongly detected target objects should appear beyond the adversarial patch it-
self. Different from the previous adversarial examples against object detectors,
in these attacks, the adversarial patches are required neither to put very close
to the target objects [11,10] nor to overlap with them [4,17,26].

To study the threats caused by non-local block, a non-local block is added
into a Faster R-CNN and algorithms are designed to craft adversarial examples
for carrying out these two types of attacks. By comparing the experimental
results of the adversarial examples on the Faster R-CNN with non-local block
and the original Faster R-CNN as a control, new threats from non-local blocks
can be identified. To further explain the threats, the reception fields of non-local
blocks are studied empirically and theoretically.

The rest of the paper is organized as follows. Section 2 summarizes the related
works. Section 3 presents the algorithms designed to craft adversarial examples
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for appearing and disappearing attacks. Section 4 reports digital attack experi-
ments on 4073 images from 36 in-car videos and physical attack experiments on
2258 images from 20 videos. Section 5 offers an analysis to explain the experi-
mental findings. Section 6 gives some conclusive remarks.

2 Related Work

2.1 Non-local Neural Networks

Capturing long-range dependencies is of great importance in many computer
vision tasks such as video classification, semantic segmentation, and object de-
tection. However, traditional CNNs are ineffective on it. Inspired by non-local
means in [1], Wang et al.[31] proposed non-local blocks to capture long-range
dependencies. The response of a non-local block at a particular position is the
weighted sum of the features at all positions in the feature maps. Wang et al.[31]
described four different non-local blocks: Gaussian, embedded Gaussian, dot
product and concatenation and found that they perform similarly and are able
to consistently enhance the performance of CNNs in different computer vision
tasks. The non-local blocks can be easily inserted into other existing architec-
tures, which makes them widely adopted by other researchers. Zhen et al. [39]
embedded a pyramid sampling module into non-local blocks to capture seman-
tic statistics in different scales with only a minor computational budget while
maintaining the excellent performance as the original non-local modules in se-
mantic segmentation. Yue et al.[36] generalized the non-local blocks and took
the correlations between the positions of any two channels into account to im-
prove their representation power. They proposed a compact representation for
different kernel functions employed in the non-local blocks and used Taylor ex-
pansion to reduce their computational demand. Zhang et al. [38] extended the
non-local blocks and designed a residual non-local attention network for image
restoration.

The non-local blocks have also been applied to various applications. Ma et
al. [21] used the non-local operator in a framework that restores reasonable and
realistic images by globally modeling the correlation among different regions.
Shokri et al. [25] applied non-local neural networks to capture long-range de-
pendencies and to determine the salient objects. Xia et al. [33] proposed a novel
mechanism for person re-identification that directly captures long-range relation-
ships via second-order feature statistics based on non-local blocks. In medical
applications, Chen et al. [3] used a non-local spatial feature learning block to
learn long-range correlations of the liver pixel position for a better liver segmen-
tation. Besides, non-local neural networks are also applied in image de-raining
[14], video captioning [12], cloth detection [15], text recognition [19], building
extraction [30], and road extraction [32].

2.2 Adversarial Examples

Adversarial examples have drawn great attention since the discovery by Szgedy
et al. [27]. They found that the state-of-the-art image classifiers would classify an
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image with deliberately designed noise to an incorrect label and the image with
the noise looks almost the same as the original image for naked eyes. Thereafter,
different attacks against image classifiers are investigated [7,23,22] and the risks
in other computer vision methods are also studied. Object detector, a critical
component in many computer vision systems, has a lot of real-world applications,
e.g., autonomous driving car. To study its potential security risk, researchers
developed attacks against object detectors digitally and physically. In 2017, Xie
et al. [34] and Lu et al. [18] proposed methods to digitally attack Faster R-
CNN and YOLO respectively. Their attacks are implemented by inserting noise
into whole images. These attacks are not able to be carried out in the physical
world. Lu et al. [17] designed an adversarial stop sign by adding noise to the
stop sign in order to fool Faster R-CNN in both digital and physical worlds.
Different from the adversarial examples against image classifiers, the adversarial
stop sign looks very different from a normal stop sign. To make the adversarial
stop sign more realistic, Chen et al. [4] proposed a method to change every pixel
inside the stop sign, except for those inside the ‘STOP’ word region. Song et
al. [26] further limited the attack region and produced an adversarial sticker
that can mislead an object detector digitally and physically by putting it on
a target stop sign. Different from the previous attacks, Huang et al. [10,11]
attempted to mislead an object detector by placing adversarial examples outside
the target object. However, their adversarial examples need to be placed very
close to the target object. These works show that attacking object detectors is
relatively hard, especially in the physical world when attackers have no access to
target objects and their surrounding area. All these studies were performed on
traditional object detectors without non-local blocks. To the best of the authors’
knowledge, there are no recorded studies on threats against object detectors with
non-local block.

3 Methodology

3.1 Faster R-CNN and Non-local Block

To study the threats caused by the non-local blocks, adversarial patches are de-
signed for carrying out disappearing and appearing attacks. In this study, Faster
R-CNN with a ResNet-101 as its backbone and a non-local block is used to train
the adversarial patches. The Faster R-CNN is selected on the account of its pop-
ularity and that many detectors are relying on the Faster R-CNN architecture.
For a clear presentation, the original Faster R-CNN without the non-local block
is first described. It consists of three major components: a backbone network, a
region proposal network (RPN) and a detection network. The backbone network
computes features for both RPN and detection network. The RPN takes the
features and produces region proposals that have high probability with objects.
The detection network takes the features and the region proposals as inputs.
Its box regression layer refines the bounding box coordinates provided by RPN
and its classification layer outputs a probability matrix, P , each of whose row
and column respectively corresponds to one region proposal and one class label.
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The element in the ith row and the jth column of P representing the probability
of the ith region proposal belonging to the jth class is denoted as pij and the
ith row and the jth column of P are denoted pi· and p·j respectively. Faster
R-CNN applies a threshold and non-maximum suppression to determine final
object classes and their bounding boxes.

For this study, a non-local block is inserted between the 3rd and 4th residual
blocks in the ResNet-101. It is inserted at the same location as Wang et al. [31],
and inserting at a lower layers would require a lot of memory and computation
power when training a non-local block. For the sake of convenience, the term
Faster R-CNN-WN is used to refer to the Faster R-CNN with the non-local block.
Several types of non-local blocks have been proposed. The embedded Gaussian
non-local block is employed in this study because different types of non-local
blocks have very similar effect [31] and embedded Gaussian non-local block is
the most popular one among them. Formally, a non-local block is defined as

zk = Wzyk + xk (1)

where xk is a feature vector at the kth spatial location of the previous layer, Wz

is a matrix optimized through training and

yk =
1

C(x)

∑
∀m

f(xk, xm)g(xm). (2)

In embedded Gaussian non-local block,

f(xk, xm) = eθ(xk)
Tφ(xm) (3)

where θ(xk) = Wθxk, φ(xm) = Wφxm, the normalize factor is set as C(x) =∑
∀m f(xk)f(xm) and g(xm) = Wgxm.

3.2 Disappearing Attack

Let T be a target object category, I be a training image andBgT (I) be the ground
truth bounding box of a target object in I with a size of wgt×hgt pixels. To carry
out disappearing attack, an adversarial patch Λ with a size of w × h pixels is
constructed to minimize all the probabilities of the target object category in P ,
i.e., p·T . Let pjT = FN (I, j), where FN represents the operations in the Faster R-
CNN-WN computing the probability of the jth region proposal belonging to the
target class. To enhance the robustness of the adversarial patch for target objects
in different images taken from different viewpoints and illumination conditions,
Λ is trained on images from k videos, each of which contains at least one target
object. The entire training set is denoted as Q. To properly model the variations
of zoom factors and the distance between camera and target object in different
images, Λ is resized according to the target object. More precisely, Λ is resized
to αwgt × βhgt, where α and β are parameters controlling the size of Λ in the
image. In the training, Λ is placed below BgT (I) with a distance. If the training
image has more than one target object, one of them is randomly selected and
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Λ is placed below it. Though the relative location between Λ and the target
object is fixed in training, in testing, Λ can be placed in different locations to
perform the attack. Section 5 will explain why the difference between training
and testing locations is not important. Let f(I, Λ,BgT (I)) be a training image
with the rescaled adversarial patch. In the training, Λ is trained to minimize the
sum of pjT ,∀j. The objective function

Λ = argmin
Λ

∑
I∈Q

∑
∀j

FN (f(I, Λ,BgT (I)), j) (4)

is used to perform this minimization.

3.3 Appearing Attack

In this sub-section, we use the same notations as in the previous sub-section.
As with the previous attack, an adversarial patch Λ with a size of w × h is
inserted into a training image I, according to the location of a reference object
and its size. The size of the rescaled Λ is set to αwht × βhht pixels and Λ is
placed below the reference object with a distance. In the experiments, stop sign
is used as a reference object for placing and rescaling Λ in the appearing attack.
The image with the rescaled Λ is denoted as f(I, Λ,BgT (I)). To carry out this
attack, a target label T is selected and the adversarial patch Λ is trained to
minimize the negative log pjT for the region proposal not overlapping with Λ.
To avoid the appearing objects overlapping with Λ, the objective function also
minimizes the negative log pjB for region proposals overlapping with Λ, where
pjB is the background probability of the jth region proposals. Mathematically,
the objective function below is used to train Λ,

Λ =argmin
Λ

∑
I∈Q

∑
j∈φC

−ε logFN (f(I, Λ,BgT (I)), j)

−
∑
j∈φ

(1− ε) logFNB(f(I, Λ,BgT (I)), j)
(5)

where ε is a parameter balancing the two terms, FNB represents the operations
of the Faster R-CNN-WN computing pjB , φ is a set storing indexes of the region
proposals overlapping with Λ and φC is its complement storing indexes of the
region proposals not overlapping with Λ.

In this objective function, the first term is to mislead the region proposals
that are not intersecting with Λ and make them target objects. The second term
is designed to keep the proposals intersecting with Λ to be the background. It is
noticed that the appearing attack will be weak when ε is too small, and bounding
boxes will appear around or inside Λ when ε is too large (Fig. 3c).

4 Experiments

To evaluate the threats caused by non-local block, appearing and disappearing
attacks are performed on the Faster R-CNN with the non-local block (Faster
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(a) (b) (c) (d)

Fig. 1: Adversarial patches for the (a) disappearing attacks and (b) appearing
attacks against the Faster R-CNN-WN. Adversarial patches for the (c) disap-
pearing attacks and (d) appearing attacks against the Faster R-CNN.

R-CNN-WN). The attacks are also performed on the original Faster R-CNN
without the non-local block, as a control experiment. The two Faster R-CNNs
are trained on the COCO dataset (2017 training images) and their backbone
networks are ResNet-101. In the disappearing attacks, stop sign is selected as a
target object and also a reference object for resizing and placing the adversarial
patches in the images. In the appearing attacks, stop sign is selected as a ref-
erence object, because it is a common target object in the previous adversarial
example studies [17,4,26,11] and an important object for autonomous vehicles.
In the appearing attacks, boat is selected as a target object because none of the
training and testing videos has boat and it would make the evaluation easier. In
the experiments, 721 images sampled every other frame from five in-car videos
are used as a training set. The image sizes are 406 × 720 pixels or 1080 × 720
pixels. Four adversarial patches with a size of 200 × 200 pixels are generated.
Fig. 1 shows the four adversarial patches. These adversarial patches are used to
evaluate the threats caused by the non-local block in both digital and physical
worlds.

4.1 Digital Attack

In digital attack, 4073 images sampled from 36 Internet in-car videos are taken
as a testing set. The sizes of the images are 1080×1920 pixels and the sizes of the
stop signs range from 21× 22 pixels to 660× 633 pixels. The original detection
rates of the Faster R-CNN-WN and the Faster R-CNN are 80.6% and 78.6%,
respectively. These results match with Wang et al.’s findings [31] that non-local
block can improve detection performance. The adversarial patches are scaled and
then placed below the detected stop signs with a certain distance away from it.
In theory, the attack rate would be higher with a larger adversarial patch. In the
disappearing attack experiments, we would like to keep the size of adversarial
patch similar to that of the traffic signs in the real world. Thus, α and β are set
to 1.5. When at least one detectable stop sign in an original image is missing
due to the adversarial patches, the attack is considered a success. Denote the
number of original images with at least one detectable stop sign as Detimgs. The



8 Y. Huang et al.

(a) (b)

Fig. 2: Disappearing attack results. (a) The detection results of stop sign from
the original Faster R-CNN and (b) the detection results of stop sign from the
Faster R-CNN-WN. The first column is the original detection results without
the adversarial patches and the second column is the detection results with the
adversarial patches.

successful disappearing attack rate Dar defined as:

Dar =
number of sucessful attacks

Detimgs
(6)

is used as a performance index. Table 1 lists the original detection rate (DRorg)
and the successful disappearing attack rates of the two detectors. It indicates
that the impact of the disappearing attacks is much greater on the Faster R-
CNN-WN than the original Faster R-CNN. Fig. 2 shows typical detection results
from these two detectors.

In the appearing attack experiments, boat and stop sign are respectively
selected as a target object and a reference object. Similar to disappearing attack,
α and β are set to 2 and ε in Eq. 5 is set to 0.4. Note that without the adversarial
patches, the detectors would still have the probability of wrongly detecting other
objects or background as a boat. When the detector has wrong detections in
absence of the adversarial patches, only the case where the intersection over
union of these detected boxes and the predictions for boats is smaller than 0.6 will
be considered as a result of the appearing attack. The adversarial patches may
cause the detectors to wrongly detecting multiple boats. The wrongly detected
boats with no intersection with the adversarial patches are considered as a clear
success (Fig. 3a). In some cases, the wrongly detected boats are very large and
have some overlap with the adversarial patches (Fig. 3b). Hence, the intersection
of the detected boat and the adversarial patch over the detected boat (IOD) is
used to define successful attack. If there is no intersection, IOD will be zero and
if the detected boat is completely inside the adversarial patch, IOD will be one.
When IOD is smaller than a threshold, it is considered as a successful attack.
The successful appearing attack rate Aar is defined as

Aar =
number of images with at least one successful attack

number of testing images
(7)
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Table 1: Successful disappearing at-
tack rates (%)

Original
Faster R-CNN

Faster
R-CNN-WN

DRorg 78.6 80.6

Dar 7.6 52.7

Table 2: The successful appearing
attack rates (%) under different IOD
thresholds.

Original
Faster R-CNN

Faster
R-CNN-WN

IOD=0 0 53.5

IOD<0.1 0.6 55

IOD<0.2 1.4 55.2

IOD<0.3 3.1 55.4

IOD<0.4 6.6 55.4

(a) (b) (c)

Fig. 3: Appearing attack results, where boat is a target object. (a)-(b) The de-
tection results of boat from the Faster R-CNN-WN. (c) The detection results of
boat from the original Faster R-CNN.

Table 2 gives the successful appearing attack rates from the two detectors and
Fig. 3 shows some typical detection results from Faster R-CNN-WN and original
Faster R-CNN. The Faster R-CNN can only detect the adversarial patch or it
sub-region as the target object (Fig. 3c). However, the Faster R-CNN-WN is
misled by the adversarial patch and detects large areas as boat. Since the original
Faster R-CNN is insensitive to the disappearing and appearing attacks in the
digital world, it is not included in the following physical experiments.

4.2 Physical Attack

To examine the threats caused by non-local block in the physical world, a stop
sign with a size of 19.3 cm by 19.3 cm and the adversarial patches generated
for disappearing and appearing attacks with a size of 28.5 cm by 28.5 cm are
printed out. In the disappearing attack, 6 groups of videos with resolution of
1080 × 1920 or 1920 × 1080 pixels are taken from outdoor environments by a
smartphone camera. In each group, there are 2 videos taken from the same
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(a)

(b)

Fig. 4: The detection results of stop sign from the Faster R-CNN-WN (a) without
and (b) with the adversarial patch in disappearing attack. Note that the stop
sign closed to the tree is a real stop sign.

location and roughly the same viewpoint. One video has the stop sign only;
one video has the stop sign and the adversarial patch for disappearing attack.
The adversarial patch is placed below or in front of the stop sign without a
fixed distance (Fig. 4b). On average, 110 frames are sampled from each video
for testing. As in the digital experiment, every other frame is sampled. In the
digital disappearing attacks, the successful disappearing attack rate is used as a
performance index. However, it is not applicable to physical attack because the
videos with and without adversarial patches are neither collected from the exact
same viewpoint nor at the same time, and have different numbers of frames.
Thus, the detection rates with and without the influence from the adversarial
patch are used to evaluate the impact and provided in Table 3. In some videos,
there is also a real stop sign, so the detection rate here is defined as the number
of detected stop signs divided by the number of stop signs in the images. Table 3
shows that for the Faster R-CNN-WN, the adversarial patch reduces the average
detection rates from 87.2% to 48.0%. Fig. 4 shows some example results of the
physical disappearing attack.

In the digital appearing attacks, stop sign is just used as a reference object
for resizing and placing the adversarial patch. Since it is impossible to resize the
adversarial patch in physical attack and in fact, it is not necessary, stop sign is
not used as a reference object. For examining appearing attacks in the physical
world, 4 groups of videos, with resolution of 1080 × 1920 pixels are taken in 4
locations. In each group, there are 2 videos with and without the adversarial
patch for appearing attack taken from the same location and roughly the same
viewpoint. The videos are sampled in every other frame. On average, 118 frames
per video are used for testing. The appearing rate here is defined as the number
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Fig. 5: The Faster R-CNN-WN detection results
of boat in appearing attack.

Fig. 6: Two sample images
with the grids.

of frames detected with the target object divided by the total number of the
frames. Table 4 shows that for the Faster R-CNN-WN, the adversarial patch
increases the average appearing rates of boat from 0.8% to 31.3%. Fig. 4 shows
some example results from the physical appearing attack.

4.3 Effective Attack Regions

In the previous disappearing attack experiments, the relative locations between
the target object i.e., stop sign and the adversarial patches are fixed. More pre-
cisely, in both training and testing of the digital attacks, the adversarial patches
are placed 1.5 ht pixels below the stop sign, where ht is the detected height of the
stop sign in the image. In this experiment, the adversarial patches trained in the
fixed relative position are placed in different locations. 831 images are sampled
from every 5 frames from the 36 testing videos in the digital experiments. From
them, 670 and 645 images are detected with stop sign by the Faster R-CNN-WN
and the Faster R-CNN, respectively. Only the images with detected stop signs
are employed in the following evaluation. Each image is divided by a grid and the
size of each block in the grid is 1.5ht× 1.5wt. Note that the number of blocks in
different images is different. Fig. 6 shows images with the grids. In total 11× 11
positions are tested. The adversarial patches (Figs. 1a and 1c) are rescaled based
on the stop signs and put in the centers of the blocks. If the detector cannot
detect the stop sign, it is considered as a successful attack. Note that the size
and the location of the stop sign in each image are different. To compute the
successful attack rates at different relative locations, the grids are rescaled and
aligned. Fig. 7 shows the successful attack rates from both Faster R-CNN-WN
and Faster R-CNN. The red boxes indicate the locations of the aligned stop
signs. Note that the successful attack rates at different locations are computed
from different numbers of images, because some stop signs are close to image
boundary. Fig. 7a shows that the effective attack region for the Faster R-CNN-
WN covers the entire grid and most of the successful attack rates are higher
than 30%. The region close to the target object has much higher successful at-
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Table 3: The detection rate of
stop sign in disappearing attacks
in the physical world.

Detection rate Faster R-CNN-WN

Without attack 89.9

With attack 47.6

Table 4: The appearing rate of boat
in appearing attacks in the physical
world.
Appearing rate Faster R-CNN-WN

Without attack 0.8

With attack 31.3

(a) (b)

Fig. 7: Successful attack rates in different locations, (a) Faster R-CNN-WN and
(b) Faster R-CNN. The red boxes indicate the locations of the stop signs and
the yellow lines indicate successful attack rates greater than 10%.

tack rates and the upper, lower and right borders have relatively lower successful
attack rates. The rest of the region has similar successful attack rates. Without
the non-local block, the successful attack rates become very low (Fig. 7b), except
for the region very close to the center. These results indicate that disappearing
attacks can be applied in long-distance and the difference between training and
testing location is not a matter.

5 Analysis of the Effective Attack Regions

The experiments in Section 4.3 expose several properties of the effective attack
regions of the two detectors. To discuss the properties observed in Fig. 7 sys-
tematically, in this section, an effective attack region is defined as where the
successful attack rate is higher than 10%, which is highlighted by the yellow
color boundaries. To understand these properties, analysis and discussion are
provided in this section. The effective attack region of the Faster R-CNN is first
discussed and then an analysis for the effective attack region of the Faster R-
CNN-WN is provided. Since they are in fact the same, except for the non-local
block in the backbone networks, the analysis below focuses on the reception
fields of the backbone networks.

The effective attack region of the Faster R-CNN is very small and very con-
centrated on the center. Luo et al. [20] points out that the output neurons of
deep CNNs, like ResNet-101 has a small effective receptive field with a Gaussian
shape, which is much smaller than its theoretical receptive field. Thus, the ad-
versarial patch can only affect its surrounding region and the successful attack
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rate decays exponentially when the distance between the target object and the
adversarial patch increases (see Fig. 7b). Also because of the Gaussian shape
effective receptive field, Fig. 7b has a roughly circular shape.

The effective attack region of the Faster R-CNN-WN (Fig. 7a) is very dif-
ferent. It covers the entire Fig. 7a with high successful attack rates. The region
around the center has a very high successful attack rate and the successful attack
rate in the rest of the region is roughly the same, except for the boundaries. It
implies that the non-local block extends the effective receptive field to entire im-
ages. We would like to mathematically quantify how the receptive field has been
changed after adding the non-local block on top of the convolution neural net-
work. Here we only consider single-channel case for every layer and dot-product
form of non-local block for simplicity. The result can be derived similarly for
multi-channel cases by considering inter-channel correlations, and extended to
other versions of non-local block by replacing the pairwise function f .

Following Luo et al.’s effective receptive field analysis [20], we compute the
gradient of a single output neuron with respect to all input pixels. What we
are interested here is the gradient of a single output pixel with respect to all
input pixels, i.e., ∂yi/∂am for all m ∈

{
1, . . . , N2

}
, where y is the output of

non-local block, and a is an N ×N input image. The output of the CNN block,
also the input of non-local block, is denoted by x. Without the loss of generality,
we assume that xi’s are uniformly distributed. The gradient can be decomposed
to ∂yi/∂am =

∑
k ∂yi/∂xk · ∂xk/∂am using chain rule, which is further divided

into the following two cases,

∂yi
∂am

=


∑
k 6=i

∂yi
∂xk
· ∂xk
∂am

+
∂yi
∂xi
· ∂xi
∂ai

, m = i∑
k 6=m

∂yi
∂xk
· ∂xk
∂am

+
∂yi
∂xm

∂xm
∂am

, m 6= i
(8)

Recall that the dot-product version non-local operator follows the function
zi = Wzyi + xi, where

yi =
1

C(x)

∑
∀j

f(xi, xj)g(xj) =
1

N

∑
∀j

xixjWgxj (9)

Thus, the gradient signal on x, ∂yi/∂xm, can also be computed by considering
the cases when m = i and m 6= i,

∂yi
∂xm

=
1

N
Wg ×

{∑
j 6=m x

2
j + 3x2m, m = i

2xixm, m 6= i
(10)

It is presented by the previous work [20] that ∂xk/∂am for all m forms a
Gaussian shape, which diminishes fast at its tails. Thus, the summation terms
in both cases of Eq. 8 are negligible since ∂xk/∂am is close to zero when |k−m|
becomes larger. Moreover, we noticed in Eq. 10 that the gradient when m = i is
strictly greater than that when m 6= i since

∑
j 6=m x

2
j + 3x2m − 2xixm is strictly
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positive, when not all xi’s are zeros, and ∂xi/∂ai for all i is the value of a
Gaussian density function taken at its mean, which is assumed to be equal for
all i. We then conclude that the gradient ∂yi/∂am when m = i is greater than
that when m 6= i. Besides, since not all xi’s are zeros, the gradients ∂yi/∂am is
also non-zeros for all m 6= i.

This gives us an intuition of analyzing the receptive field by considering the
non-local block. Different from the effective receptive field of CNNs without
non-local block, which has non-zero gradient values in the neighborhood of the
center pixel and zero gradients further away, the receptive field of CNNs with
non-local block covers the whole input space. More specifically, the gradient
of a single output pixel with respect to the corresponding pixel, ∂yi/∂am, is
non-zero everywhere. It also proved that the gradient with respect to center
pixel (∂yi/∂ai) is the maximum. With the consideration of the skip connection
in the non-local block, which is the sum of xj over all j in computing zi, the
neighborhood region of the center would have higher gradients because of its
Gaussian shape receptive field [20]. The gradients of other regions are strictly
smaller and have similar values.

The analysis above does not explain why the successful attack rate is lower at
the boundary. When the adversarial patch is put in the image border, it would
affect lesser number of neurons in the input layer of the non-local block, x.
Therefore, the attack would be weaker as illustrated in Fig. 7. The experimental
results also show that the adversarial patch trained at a fixed relative location
with respect to the target object is effective in other locations. Because CNNs
without a fully connected layer is roughly translation invariant, putting the
adversarial patch in two different locations, p and q, their corresponding neuron
outputs xp and xq should be roughly the same. Since the non-local block (Eq. 1)
considers all xi,∀i, the adversarial patch can attack on other locations, different
from the training location.

6 Conclusion

To overcome the weaknesses of traditional deep neural networks, which are inef-
fective to capture long-range dependency, researchers developed non-local blocks
and demonstrated their effectiveness on various computer vision tasks. However,
without understanding the threats caused by the non-local blocks and applying
them to critical systems is risky. In this paper, two types of attacks, disappearing
and appearing attacks against object detectors are studied. Different from the
previous attacks against object detectors, these attacks are performed in long
distance. The digital and physical experimental results show that the universal
adversarial patches obtained by the proposed algorithms can mislead the Faster
R-CNN with a non-local block to classify stop sign as background and to wrongly
detect boats that are not in the images. To understand the effective attack region
and its properties, the reception field of the non-local block is analysed.
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