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Abstract. Recent generative adversarial network (GAN) based meth-
ods (e.g., CycleGAN) are prone to fail at preserving image-objects in
image-to-image translation, which reduces their practicality on tasks
such as domain adaptation. Some frameworks have been proposed to
adopt a segmentation network as the auxiliary regularization to prevent
the content distortion. However, all of them require extra pixel-wise an-
notations, which is difficult to fulfill in practical applications. In this
paper, we propose a novel GAN (namely OP-GAN) to address the prob-
lem, which involves a self-supervised module to enforce the image content
consistency during image-to-image translations without any extra anno-
tations. We evaluate the proposed OP-GAN on three publicly available
datasets. The experimental results demonstrate that our OP-GAN can
yield visually plausible translated images and significantly improve the
semantic segmentation accuracy in different domain adaptation scenarios
with off-the-shelf deep learning networks such as PSPNet and U-Net.

Keywords: Image-to-Image translation, domain adaptation, semantic
segmentation.

1 Introduction

Deep learning networks have shown impressive successes on various computer
vision tasks such as image classification [9,19,28] and semantic segmentation
[2,11,33]. However, most of current deep learning based approaches easily suffer
from the problem of domain shift—the models trained on a dataset (source)
seldom maintain the same performance on other datasets (target) obtained un-
der different conditions. Image-to-image (I2I) translation is one of the potential
solutions to address the problem by enforcing the input data distributions of
two domains to be similar. Due to the recent success of generative adversarial
network (GAN) [8] on generating high-quality synthetic images, many studies
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adopted GANs for the I2I domain adaptation [12,36], which authentically convert
an input image to a corresponding output image by constructing a pixel-to-pixel
mapping. As a representative method, Pix2Pix [12] shows a strategy to learn
such adaptation mapping with a conditional setting to capture structure infor-
mation. However, it requires paired cross-domain images as training data, which
are often difficult to acquire.

To loose the requirement of pairwise training images, GAN-based unpaired
I2I domain adaptation methods, e.g., CycleGAN [36], DiscoGAN [13], and Du-
alGAN [32] were recently proposed, where a cycle consistency constraint was
applied to encourage bidirectional image translations with regularized struc-
tural output. Although these GANs present realistic visual results on several I2I
translation tasks, the corruptions of image content are frequently observed in the
translated images, which is unacceptable for the domain adaptation scenarios,
requiring rigorous preservation of image content. Some researchers [10,34] spent
efforts to address the problem of content distortions. They employed additional
segmentation branches to embed the semantic information to the generators,
which enforced the CycleGAN to perform an content-aware image translation.
Nevertheless, the obvious drawback of these methods is the demand of pixel-wise
annotations.

Inspired by the recent study [3], using a self-supervised loss to retain the
benefit of conditional GAN, we explore the potential of self-supervised task for
improving CycleGAN’s capacity of image content preservation without the de-
mand of pixel-wise annotations. In this paper, we propose an object-preserving
I2I domain adaptation network, namely OP-GAN, with the specific capability to
address the problem of content distortion occurred in the typical CycleGAN. To
be more specific, the newly introduced self-supervised task disentangles the fea-
tures of image content from the disturbance of domain differences, so as to bring
additional regularization for maintaining the consistency of image-objects. The
proposed OP-GAN is evaluated on three publicly available datasets. The exper-
imental results show that our OP-GAN can produce satisfactory cross-domain
images, while impeccably preserving the image content. The quantitative results
demonstrate that the proposed OP-GAN can significantly increase the perfor-
mance of semantic segmentation networks such as PSPNet [35] and U-Net [24],
so as to close the performance gap between different domains.

2 Related Work

In this section, we briefly review previous works on self-supervised learning and
unpaired I2I translation.

2.1 Self-supervised learning

To deal with the deficiency of annotated data, researchers attempted to exploit
useful information from unlabeled data without direct supervision information.
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The self-supervised learning, as a new paradigm of unsupervised learning, at-
tracts increasing attentions from the community. The typical self-supervised
learning framework defines a proxy task to enforce neural networks to deeply
mine useful information from the unlabeled raw data, which can boost the ac-
curacy of the subsequent target task with limited training data. Various proxy
tasks have been proposed, which include grayscale image colorization [15], jigsaw
puzzles [23] and object motion estimation [16]. More recently, researchers began
to adopt the idea of self-supervised learning to address some key issues of deep
learning. For example, Chen et al. [3] introduced an auxiliary self-supervised loss
to the typical conditional GAN to address the problem of discriminator forget-
ting during training. Gidaris et al. [7] integrated the self-supervised learning task
to the few-shot learning framework for exploiting richer and more transferable
visual representations from few annotated samples.

2.2 Unpaired image-to-image translation

Witnessing the success of cycle-consistency-based approaches [36,13,32], an in-
creasing number of researchers [4,6,22,25] made their effort to the area of un-
paired I2I translation. For example, UNIT [21], a recently proposed model, as-
sumes that there exists a shared-latent space in which a pair of corresponding
images from different domains could be mapped to the same latent representa-
tion. Through such latent representation, the I2I cross-domain translation can be
achieved. To further increase the output diversity, Lee et al. [17] proposed a dis-
entangled representation framework, namely DRIT, with unpaired training data.
DRIT embedded images into two spaces—a domain-invariant content space cap-
turing shared information across domains, and a domain-specific attribute space
to achieve diversity of the translated results. However, none of those approaches
explicitly takes the image content preservation into account during translation,
which may result in content distortion of the translated images and limit their
practicality for the task requiring rigorous preservation of image-objects such as
domain adaptation.

3 Revisiting the Problem of CycleGAN

CycleGAN has two paired generator-discriminator modules, which are capable
of learning two mappings, i.e., from domain A to domain B {GAB , DB} and
the inverse B to A {GBA, DA} . The generators (GAB , GBA) translate images
between the source and target domains, while the discriminators (DA, DB) aim
to distinguish the original data from the translated ones. Thereby, the generators
and discriminators are gradually updated during this adversarial competition.

As shown in Fig. 1, the original CycleGAN is supervised by two losses, i.e.,
adversarial loss Ladv and cycle-consistency loss Lcyc. The adversarial loss encour-
ages local realism of the translated data. Taking the translation from domain A
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Fig. 1. The overview of CycleGAN [36]. Taking the translation from domain A to
domain B as an example, the framework consists of generators (GAB and GBA) and
discriminator (DB), which are supervised by cycle-consistency and adversarial losses,
respectively. Due to the bijective geometric transformation (e.g., translation, rotation,
scaling, or even nonrigid transformation) and its inverse (i.e., T and T−1), an obvious
content distortion is observed in the translated image B, which limits the application
of CycleGAN for the tasks required rigorous image-object preservation such as domain
adaptation.

to domain B as an example, the adversarial loss can be written as:

Ladv(GAB , DB) =ExB∼pxB

[
(DB(xB)− 1)2

]
+ ExA∼pxA

[
(DB(GAB(xA)))2

] (1)

where pxA
and pxB

denote the sample distributions of domain A and B, respec-
tively; xA and xB are samples from domain A and B, respectively.

The cycle-consistency loss Lcyc relieves the requirement of paired training
data. The idea behind the cycle-consistency loss is that the translated data from
the target domain can be exactly converted back to the source domain, which
can be expressed as:

Lcyc(GAB , GBA) =ExA∼pxA
[‖GBA(GAB(xA))− xA‖1]

+ ExB∼pxB
[‖GAB(GBA(xB))− xB‖1] .

(2)

With these two losses, CycleGAN can perform I2I translation using unpaired
training data. However, recent study [34] found that the cycle-consistency has
an intrinsic ambiguity with respect to geometric transformations. Let T be a
bijective geometric transformation (e.g., translation, rotation, scaling, or even
nonrigid transformation) with inverse transformation T−1, the following gener-
ators G

′

AB and G
′

BA are also cycle consistent.

G
′

AB = GABT, G
′

BA = GBAT
−1. (3)

Consequently, due to lack of penalty in content disparity between source and
translated images, the results produced by CycleGAN may suffer from geometri-
cal distortions, as the translated result shown in Fig. 1. To address this problem,
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existing studies [34,10] proposed to use a segmentation sub-task with pixel-wise
annotation as an auxiliary regularization to assist the training of the generators,
which enabled CycleGAN to be applied to tasks such as domain adaptation [34]
and data augmentation [10]. However, the expensive and laborious pixel-wise
image annotation process limits the practical values of those frameworks.

Motivated by the recent advancements of self-supervised learning, we try
to address the content distortion problem of CycleGAN using a novel self-
supervised task. The proposed self-supervised task disentangles the content in-
formation from the domain variations and accordingly optimizes the generators
of CycleGAN without any extra annotations.

4 OP-GAN

In this section, we introduce the proposed OP-GAN in details. Similar to the
original CycleGAN, our OP-GAN involves the adversarial and cycle-consistency
losses to achieve unpaired I2I translation. In addition, a multi-task self-supervised
siamese network (S) is integrated in our OP-GAN, which takes the source and
translated images as input, to preserve image content during the I2I image trans-
lation.

4.1 Multi-task self-supervised learning

We formulate two self-supervised learning tasks, the content registration and do-
main classification, to disentangle the features of image content and domain in-
formation. We introduce the proposed multi-task self-supervised learning frame-
work in the following section.

Self-supervision formulation. As no preexistent label information is avail-
able for the self-supervised siamese network, the supervision is derived from the
image data itself. We first divide both the source and translated images into
a grid of 3 × 3.3 As shown in Fig. 2, letting A and B represent the source
and translated images respectively, the generated patches (P ) can be written as
P ∈ {A1, ..., A9} ∪ {B1, ..., B9}. There are four scenes if we randomly select two
patches from the patch pool, as listed in Table 1. Note that, the {A1, A5, B1, B5}
in Fig. 2 are examples for the illustration purpose. During the training stage,
the framework randomly selects two patches from the patch pool as the paired
input of the siamese network.

Based on the design of the self-supervision, we propose two assumptions to
formulate the object-aware domain adaptation: 1) the patches from the same
position of source and translated images (C1) should have consistent content;
2) the patches from the same image (D1, D2) should contain similar domain
information (e.g., illumination). Accordingly, the relative position of two patches
can be used to supervise the proxy task that extracts features with content

3 The analysis of grid size can be found in Appendix.
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Fig. 2. The supervision signals for the proposed multi-task self-supervised learning
framework. The relative position of two patches are used to supervise the content
registration, while the domain classification is formulated as a 1-of-K classification
task. The A1, A5, B1, B5 are examples for illustration. The framework randomly selects
two patches from the source and translated images as the paired input of the siamese
network.

Table 1. Scenes for random patch selection

Scenes

D1: Two patches are both from the source image.
D2: Two patches are both from the translated image.
C1: Two patches are respectively from the source and
translated images on the same position of the grid.
C2: Two patches are respectively from the different
positions of source and translated images.

information, while the provenance information of the patches can be used to
formulate the proxy task as a domain classification.

Network architecture. The architecture of the proposed siamese network is
presented in Fig. 3, which consists of two shared-weight encoders,4 a content
registration branch, and a domain classification branch. The blue, orange, red,
and cyan rectangles represent the convolutional, interpolation, global average
pooling (GAP), and concatenation layers, respectively.

The shared-weight encoders embed the input patches (P ) into a latent feature
space (Z) and disentangle the features that contain the content and domain
information, respectively. Taking the source (A) and translated (B) images as

4 The network architecture of the shared-weight encoder is presented in Appendix.
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Fig. 3. The architecture of our siamese network. Here, we use the scene with two
patches from the same position of two domains as an example. Our siamese network
involves three components—two shared-weight encoders, a content registration branch,
and a domain classification branch. There are two losses (i.e., content consistency loss
and domain classification loss) used for the optimization. The shared-weight encoders
embed the two patches into a latent feature space and produce four 11×11×512 feature
maps (cA, dA, cB , dB) for content registration and domain classification branches.

an example, the feature embedding process can be defined as:

EA : PA → Z(cA, dA), EB : PB → Z(cB , dB) (4)

where cA and cB are the disentangled content features; dA and dB are the features
containing domain information. The size of the four disentangled features is
11 × 11 × 512. Afterwards, cA and cB are compacted with 1 × 1 convolutional
layers and interpolated to the original size of the input patch for the computation
of content consistency loss, while dA and dB are concatenated and fed to the
domain classification branch to distill domain information from the features.

Content registration. The content registration branch aims to maintain the
patch content during the I2I domain adaptation process. As shown in Fig. 3,
the content features are separately processed to produce the content attention
maps (p̃), which represent the shape and position of image-objects. As minimum
content distortion is a mandatory requirement in our domain adaptation task,
the image-objects in source and translated images should be geometrically con-
sistent (i.e., maintaining the shape and position of objects). Hence, we formulate
the content consistency loss (Lcc) using the two content attention maps (p̃) in
L2 norm:

Lcc =
1

M ×N

M∑
x=1

N∑
y=1

(p̃Ax,y − p̃Bx,y)2 (5)
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where M and N are the width and height of the patch under processing, respec-
tively, and (x, y) is the coordinate of pixel in the attention map.5

The content consistency loss produces the pixel-wise penalty for any content
disparity between the source and translated images, which enables our OP-GAN
to synthesize a realistic result without distortions. The relative position of two
input patches is also taken into consideration for the calculation of Lcc, i.e., the
loss is calculated and optimized only for the scene C1, and set to 0 otherwise.

Domain classification. As aforementioned, the scenes for random patch selec-
tion are adopted as the supervision signals for the domain classification task. It
is formulated as a 1-of-K classification, which consists of three classes—D1, D2

and C (C = {C1, C2}). The domain features (dA and dB) are first fused using
concatenation, which results in a 11×11×1024 discriminative feature map. The
feature map is then transformed and downsampled to a 1× 1× 3 vector by con-
volutional and global average pooling layers for the following scene prediction.
The cross-entropy loss (denoted as Ldc) is adopted in this task for optimization,
which can be defined as:

Ldc = −
∑
i

log(
epgi∑
j e

pj
) (6)

where pj denotes the jth element (j ∈ [1,K], K is the number of classes) of vector
of class scores, and gi is the label of ith input sample. The domain classification
branch mainly distills domain information from the features, which leads to a
better disentanglement of content features.

4.2 Generator and discriminator

In consistent with the standard CycleGAN, the proposed OP-GAN has cyclic
generators (GAB , GBA) and corresponding discriminators (DB , DA), which have
the same architectures as described in [36]. The generators employ the instance
normalization [29] to produce elegant image translation results, aiming to fool
the discriminators, while the discriminators adopt PatchGAN [12,18] to provide
patch-wise predictions of given image being real or fake, rather than classifying
the whole image.

4.3 Objective function

Given the definitions of content consistency loss and domain classification loss,
we define the self-supervised loss (LS) as: LS = Lcc + Ldc.

6 Therefore, the full

5 After excluding the domain specific information, the content features p̃ from differ-
ent domains are directly comparable. So, we use the simple mean squared error to
measure the difference.

6 The detailed training process with self-supervised loss can be found in Appendix.
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objective function of our OP-GAN can be written as:

L (GAB , GBA, DA, DB , S) =Ladv (GBA, DA) + Ladv (GAB , DB)

+ αLcyc (GAB , GBA) + βLS (GAB , GBA, S)
(7)

where α and β are loss weights (we heuristically set α = 10 and β = 1 in our
experiments).

The optimization of LS is performed in the same manner of Ladv—fixing
the siamese network (S) and DA/DB to optimize GBA/GAB first, and then
optimize S and DA/DB respectively, with GBA/GAB fixed. Therefore, similar
to the discriminators, our siamese network can directly pass the knowledge of
image-objects to the generators, which helps to improve the quality of their
translated results in terms of object preservation.

5 Experiments

Given two domains (A, B), our goal is to narrow down their gap not only in terms
of visual perception i.e., plausible adaptation results, but also feature represen-
tations, i.e., improved model robustness. We visualize the I2I domain adaptation
results to qualitatively evaluate the former factor. For the latter one, we evaluate
the OP-GAN in a similar transfer learning scenario as [27]. Let domain A be in
good image condition (e.g., daylight scene with proper exposure), while domain
B is unsatisfactory (e.g., image is dark, losing detailed information). In this case,
the models trained on domain A usually fail to generalize well to the data from
domain B, due to the cross-domain variations. To alleviate the problem, we try
different I2I translation frameworks to adapt the domain B data to domain A
for testing.

5.1 Experiment settings

Datasets. Experiments are conducted on three publicly available datasets to
demonstrate the effectiveness of our OP-GAN.

CamVid [1]: It contains driving videos under different weathers, e.g., cloudy
and sunny. The task adapting cloudy videos to sunny ones in terms of illumi-
nation and color distribution is very challenging, as the cloudy videos are often
very dark, which lose much detailed information. We conduct experiments on
the cloudy-to-sunny adaptation to evaluate our OP-GAN.

SYNTHIA [38]: It consists of photo-realistic frames rendered from a virtual
city. The night-to-day adaptation is a more difficult task than the cloudy-to-
sunny, since the night domain suffers from severe loss of context information. We
examine how the proposed OP-GAN performs on the night-to-day adaptation
task using two sub-sequences (i.e., winter-day and winter-night) from the Old
European Town, which is a subset of SYNTHIA.

Colonoscopic datasets: Medical images from multicentres often have dif-
ferent imaging conditions, e.g., color and illumination, which make the model
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trained on one centre difficult to generalize to another. Our OP-GAN tries to
address the problem. Two publicly available colonoscopic datasets (i.e., CVC-
Clinic [30] and ETIS-Larib [26]) are used as two domains for the multicentre
adaptation.

Evaluation criterion. To evaluate the performance of domain adaptation, the
mean of class-wise intersection over union (mIoU) [35] is used to evaluate the
improvement achieved by our OP-GAN on the semantic segmentation tasks for
CamVid and SYNTHIA datasets. For medical image segmentation, the widely-
used F1 score [20], which measures the spatial overlap index between the segmen-
tation result and ground truth, is adopted as the metric to assess the accuracy
of colorectal ployp segmentation on the colonoscopic datasets.

Baseline overview. Several unpaired I2I domain adaptation frameworks, in-
cluding CycleGAN [36], UNIT [21], and DRIT [17] are taken as baselines for the
performance evaluation. The direct transfer approach, which takes the target
domain data for testing without any adaptation, is also involved for comparison.
Note that the recent proposed GANs for image-based adaptation, e.g., SPGAN
[5], PTGAN [31], and AugGAN [10], are not involved for comparison, due to the
strong prior-knowledge used in those approaches. SPGAN, which was proposed
for person re-identification task, used the prior-knowledge of the personal ID sets
of different domains. PTGAN required coarse segmentation results to distinguish
foreground and background areas. AugGAN added a segmentation subtask to
the CycleGAN-based framework, which requires pixel-wise annotations. The use
of prior-knowledge degrades the generalization of those GANs, which are only
suitable for the domains fulfilling the specific requirements.

Training details. The proposed OP-GAN is implemented using PyTorch. The
generator, discriminator, and siamese network are iteratively trained for 200
epochs with the Adam solver [14]. The baselines involved in this study adopt
the same training protocol.

5.2 Visualization of adaptation results

The adaptation results for the three tasks generated by different I2I domain
adaptation frameworks are presented in Fig. 4, which illustrate the main prob-
lem of existing approaches (UNIT [21], DRIT [17], and CycleGAN [36])—image
content corruptions. Due to the lack of penalty in content disparity between
the source and translated images, the existing I2I adaptation frameworks intend
to excessively edit the image content such as changing the shape and colors of
image-objects, referring to the distorted road and building in the CamVid and
SYNTHIA translated images. Furthermore, the polyps in colonoscopy images
are essential clue for the screening of colorectal cancer. However, few of the ex-
isting frameworks successfully maintain the shape and texture of polyps during
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(a) (b) (c)

Fig. 4. Comparison of translated images with different approaches. The image-based
adaptation performance is evaluated on three tasks: (a) cloudy-to-sunny, (b) night-to-
day, and (c) multicentres. The original images, adaptation results produced by UNIT
[21], DRIT [17], CycleGAN [36], and our OP-GAN are presented.

Table 2. Semantic segmentation IoU (%) of the cloudy images from CamVid with
different I2I domain adaptation frameworks. (val.—validation)

Bicyclist Building Car Pole Fence Pedestrian Road Sidewalk Sign Sky Tree mIoU

Sunny (val.) 84.03 86.30 90.91 18.36 74.91 63.09 94.07 89.75 7.49 94.00 91.48 70.38

Cloudy (test)

Direct transfer 48.70 40.29 51.15 21.59 4.95 43.84 71.64 60.69 21.29 40.59 63.90 41.86

UNIT [21] 0.67 49.28 6.99 6.10 1.54 0.79 45.05 15.16 0.00 62.61 39.34 19.94

DRIT [17] 0.34 40.00 0.31 0.33 0.83 0.23 48.27 26.81 0.00 64.85 23.73 18.20

CycleGAN [36] 6.16 56.64 10.76 8.61 0.01 4.06 50.49 30.21 8.67 75.97 45.62 26.26

OP-GAN (Ours) 51.28 73.10 74.19 25.84 12.42 42.75 70.48 51.74 14.71 81.09 72.40 51.40

multicentre adaptation, which is unacceptable and limits their practical values
in medical-related applications. On the contrary, the proposed OP-GAN can ex-
cellently perform cross-domain adaptation, while preserving the image-objects.

5.3 Cloudy-to-sunny adaptation on CamVid

The CamVid dataset contains four sunny videos (577 frames in total) and one
cloudy video (124 frames). Each frame of the videos is manually annotated, which
associate each pixel with one of the 32 semantic classes. Based on the widely-
accepted protocol [37], we focus on 11 classes including bicyclist, building, car,
pole, fence, pedestrian, road, sidewalk, sign, sky, and tree. To evaluate the do-
main adaptation performance yielded by our OP-GAN, a semantic segmentation
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Table 3. Semantic segmentation IoU (%) of the night images from SYNTHIA with
different I2I domain adaptation frameworks. (Veg.—Vegetation, Ped.—Pedestrian, l.-
m.—lane-marking, val.—validation)

Sky Building Road Sidewalk Fence Veg. Pole Car Sign Ped. Bicycle l.-m. mIoU

Day (val.) 94.84 93.71 96.49 92.09 27.99 50.06 54.04 91.35 46.31 69.21 54.46 77.18 70.02

Night (test)

Direct transfer 0.04 61.45 70.41 78.22 11.35 37.76 34.67 80.88 26.62 53.51 54.33 38.42 44.49

UNIT [21] 63.52 72.69 65.80 47.44 0.93 48.76 28.11 37.54 9.71 28.10 26.76 9.87 34.97

DRIT [17] 33.63 43.96 50.35 13.10 0.03 17.92 0.41 2.69 0.06 0.38 0.03 0.62 12.66

CycleGAN [36] 37.73 51.79 55.48 36.37 0.71 44.23 14.60 17.94 1.57 8.19 10.67 11.89 22.88

OP-GAN (Ours) 21.90 66.22 86.78 79.05 7.70 54.86 39.11 85.09 31.40 55.77 54.54 47.61 50.86

network (PSPNet7 [35]) is trained with the sunny frames and tested on the orig-
inal cloudy frames and the translated ones. In the experiment, the sunny frames
are separated into training (three videos) and validation (one video) sets. The
evaluation results are shown in Table 2.

Due to the loss of detailed information, it can be observed from Table 2 that
the performance of PSPNet trained with sunny images dramatically drops to
41.86% while tested on the original cloudy images. As the existing I2I domain
adaptation approaches encounter the content distortion problem, the segmenta-
tion mIoU of PSPNet further degrades to 26.26%, 19.94% and 18.20% using the
CycleGAN, UNIT and DRIT, respectively. In contrast, the proposed OP-GAN
achieves a significant improvement (+9.54%) compared to the direct transfer,
which demonstrates that our OP-GAN can narrow down the gap between the
cloudy and sunny domains while excellently preserving the image-objects. The
proposed OP-GAN significantly boosts the IoU of some object-related classes
such as building, car, and fence (i.e., +32.81%, +23.04%, and +7.47%, respec-
tively). Specifically, AugGAN [10], using pixel-wise annotations for image-object
preservation, achieves a mIoU of 55.31% in our experiment, which can be re-
garded as the upper bound for our approach.

5.4 Night-to-day adaptation on SYNTHIA

We adopt two sub-sequences (winter-day and winter-night) from SYNTHIA to
perform night-to-day adaptation. The winter-day and winter-night sequences
contain 947 and 785 frames, respectively. SYNTHIA dataset provides pixel-wise
semantic annotations for each frame, which can be categoried to 13 classes (12
semantic classes and background). The partition of training, validation, and test
sets complies with the same protocol to that of the CamVid dataset—the day
images are separated into training and validation sets according to the ratio of
70:30, while all the night images are used as the test set. The fully convolutional
network (PSPNet [35]) is also adopted in this experiment to perform semantic
segmentation.

7 The top-1 solution (without extra training data) on the leaderboard of semantic seg-
mentation on CamVid: https://paperswithcode.com/sota/semantic-segmentation-
on-camvid.
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Table 4. Ablation study of OP-GAN for the semantic segmentation task on CamVid
(%). (D. T.—Direct Transfer)

- A B C D

Setup D. T. Original CycleGAN A + Lcc A + Ldc A + Lcc + Ldc

mIoU 41.86 26.26 45.63 45.86 51.40

The segmentation mIoUs yielded by different testing strategies are shown in
Table 3. Similar to the cloudy images, the PSPNet trained with day images fails
to propoerly process the night images—an mIoU of 44.49%, due to the loss of
information. The night-to-day adaptation on SYNTHIA is a more challenging
task compared to the cloudy-to-sunny adaptation on CamVid, since a large por-
tion of the night images is dark, where the image-objects (e.g., buildings) are
difficult to recognize. Refer to Fig. 4, existing I2I domain adaptation frameworks
used to create extra contents to fill the extremely dark areas, which consequently
corrupts the original image-objects. Due to these distortions, the images trans-
lated by UNIT, CycleGAN and DRIT further decrease the mIoU of PSPNet to
34.97%, 22.88% and 12.66%, respectively. Our OP-GAN can excellently prevent
image-object corruptions during night-to-day adaptation (as shown in Fig. 4)
and achieves the best mIoU (50.86%) for the night images, which is +6.37%
higher than the direct transfer.

5.5 Multicentre colonoscopy adaptation

Due to the limitation of paper length, the experimental results on multicentre
colonoscopy adaptation are presented in Appendix.

5.6 Ablation study

An ablation study is conducted on the cloudy-to-sunny adaptation task on
CamVid to evaluate the contribution produced by each component of our OP-
GAN. The result of ablation study is presented in Table 4. Due to the capacity of
feature distillation, the content registration and domain classification branches
can respectively improve the mIoU of original CycleGAN with +19.37% and
+19.6%. The combination of these two branches lead to a better disentanglement
of content and domain information, which results in the highest improvement
(+25.14%). To validate the effectiveness of the proposed self-supervised learning
tasks, we visualize the knowledge learned by different branches and analyze their
contributions for image-object preservation.

Content registration. The content registration branch aims to maintain the
shape and texture of image-objects before and after domain adaptation. We visu-
alize two pairs of attention maps (p̃) generated by content registration branches
to validate whether they have the ‘object’-related concept. The attention maps
are presented in Fig. 5 (a), which shows that the content registration branch
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(a) (b)

Fig. 5. Validation of self-supervised proxy tasks. (a) Visualization of attention maps
produced by content registration branch. For an object-preserving I2I domain adap-
tation, the patches on the same position of source and translated images should have
similar content attention maps (p̃). (b) The activation patterns of different classes (D1,
D2, and C) in domain classification.

prefers to activate the areas containing image-objects (e.g., buildings and trees)
and ignore those containing more domain information such as sky. As a result,
this branch penalizes the generator if the translated image-objects have large dis-
tortions, which encourages the OP-GAN to perform object-aware translation.

Domain classification. To ensure the scene classification is a learnable proxy
task, we plot the 1×1×256 averaged activation patterns for different classes (D1,
D2, C) produced by the global average pooling layer of domain classification
branch in Fig. 5 (b). It can be observed that different neurons are activated
when processing paired patches from different scenes, which demonstrates that
the scenes defined in Table 1 indeed contain specific domain information for the
classifier to distinguish each other.

6 Conclusion

In this paper, we proposed a novel GAN (namely OP-GAN) to perform object-
preserving image-to-image domain adaptation without supervision from manual
labels. Extensive experiments have been conducted on three publicly available
datasets. The experimental results demonstrated the effectiveness of our OP-
GAN—performing excellent cross-domain translation while preserving image-
objects.
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