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Abstract. Motion segmentation, i.e., the problem of clustering data in
multiple images based on different 3D motions, is an important task
for reconstructing and understanding dynamic scenes. In this paper we
address motion segmentation in multiple images by combining partial
results coming from triplets of images, which are obtained by fitting a
number of trifocal tensors to correspondences. We exploit the fact that
the trifocal tensor is a stronger model than the fundamental matrix,
as it provides fewer but more reliable matches over three images than
fundamental matrices provide over the two. We also consider an alter-
native solution which merges partial results coming from both triplets
and pairs of images, showing the strength of three-frame segmentation
in a combination with two-frame segmentation. Our real experiments on
standard as well as new datasets demonstrate the superior accuracy of
the proposed approaches when compared to previous techniques.

Keywords: motion segmentation, structure from motion, multi-model
fitting, trifocal tensor

1 Introduction

Motion segmentation, i.e., the problem of clustering data in multiple images
based on different 3D motions, has attracted a lot of attention in Computer
Vision. Existing techniques can be divided into three categories, according to
the type of data that is being clustered and the assumptions that are made
about the input.

The first category, which accounts for the majority of works in the literature,
assumes that a set of points is tracked through multiple images, and the task
is to cluster those trajectories (i.e., multi-frame correspondences) into different
groups based on the moving object they belong to. Methods performing sub-
space separation (e.g., [44, 48, 33, 7, 25, 17]) and multi-model fitting (e.g., [39, 5,
14, 6, 28, 4]) belong to this category. Other solutions include [37, 30, 35, 23, 22, 47].
The typical scenario consists in videos where there are small motions between
consecutive frames (e.g., the Hopkins benchmark [42]). This involves several ap-
plications such as surveillance [19], scene understanding [34] and autonomous
driving [9]. We name this category “trajectory clustering” (see Fig. 1).



2 F. Arrigoni et al.

unfeasible
realistic

feasible
unrealistic

Unknown
correspondences

Two frame
correspondences

Trajectory
clustering

Fig. 1: The proposed taxonomy divides existing approaches into three categories: tra-
jectory clustering; segmentation with two-frame correspondences; segmentation with
unknown correspondences. When moving from right to left the problem becomes more
difficult to solve since assumptions are weaker (but more realistic). This paper comes
under the middle category.

The second category considers the problem of clustering image points (e.g.,
SIFT keypoints [26]) into different motions, assuming that matches between
pairs of images (i.e., two-frame correspondences) are available only. This task
is poorly studied and there are only a few works addressing it [3, 2]. The typ-
ical scenario involves unstructured/unordered image sets where there are large
motions between different frames (e.g., the indoor scenes used in [3, 2]). This
finds application in multi-body structure from motion [36], where the objective
is to reconstruct a 3D scene containing multiple moving objects. This category
is represented in the middle of Fig. 1.

The third category, shown in the left part of Fig. 1, assumes that a set of
image points (e.g., SIFT keypoints) is given and considers the case of unknown
correspondences. This problem is addressed in [15, 46] only, where the authors
aim at computing multi-frame correspondences while at the same time classi-
fying those trajectories into different groups. However, such approaches are not
suitable for practical applications: only sequences with (at most) 200 tracks are
analyzed in [15, 46] due to algorithmic complexity.

In the first case, multi-frame correspondences are needed before motion seg-
mentation. Note that recovering trajectories in the presence of multiple moving
objects is a hard task [16]. To overcome such a difficulty, correspondences are usu-
ally cleaned with manual operations (see, e.g., the Hopkins benchmark), hence
they are not realistic at all. In the second case, multi-frame correspondences are
not computed explicitly. However, they could be recovered after motion segmen-
tation as follows: single-body techniques (e.g., RANSAC [8]) can be used to clean
the input two-frame correspondences for each motion; then, existing solutions
(e.g., QuickMatch [43] or StableSfM [29]) can be used for getting tracks starting
from those (refined) two-frame correspondences. In the third case, multi-frame
correspondences are computed during motion segmentation. However, address-
ing segmentation under such a weak assumption is very challenging due to the
large number of unknowns, and existing solutions [15, 46] are not practical yet.
Note that methods belonging to a specific category are, in general, sub-optimal
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when applied to the task associated with another category. To sum up, the sec-
ond category lies at the middle between the first one and the third one, hence it
can be viewed as a good trade-off between making realistic assumptions and ad-
dressing a feasible/practical task. This motivates our interest in those methods,
which are reviewed in Sec. 1.1.

1.1 Related Work

The most related work [3, 2] address motion segmentation in two steps:

1. motion segmentation is solved independently on different image pairs;
2. such partial results are combined in order to get a multi-frame segmentation.

Concerning the first step, multiple fundamental matrices are fitted to correspond-
ing points via Robust Preference Analysis (RPA) [27]. Concerning the second
step, different techniques are proposed.

In [2] all the two-frame segmentations produced by Step 1 are represented as
binary matrices, and they are collected in a big block-matrix. Then, the unknown
multi-frame segmentation is recovered from the spectral decomposition of such
a matrix, followed by a rounding procedure. This method – named Synch– can
be viewed as a “synchronization” of binary matrices [1] or as a special case of
“spectral clustering” [45].

In [3] it is observed that all the two-frame segmentations involving a fixed
image provide – up to a permutation of the motions – a possible solution for
clustering points in that image. In order to resolve such ambiguity, permutation
synchronization [31] is performed. Then, each point is assigned to the most
frequent label (i.e., the mode) among all the possible solutions coming from
different two-frame segmentations. For this reason the method is named Mode.

1.2 Contribution

In this paper we propose two methods that tackle motion segmentation by ex-
ploiting the trifocal tensor, motivated by the fact that the latter constitutes
a stronger model than the fundamental matrix. Indeed, it is well known that
the trifocal tensor can be used to determine the exact position of a point in a
third image (given its position in the other two images), hence there are fewer
mismatches over three images than there are over two [11]. In the case of the
fundamental matrix, instead, there is only the weaker constraint of an epipolar
line against which to verify a possible correspondence.

Our methods are outlined in Fig. 2. They belong to the second category
(i.e., the case of two-frame correspondences represented in the middle of Fig. 1)
and are inspired by [3]. The first approach – named TriSeg– addresses motion
segmentation in two steps:

1. motion segmentation is solved independently on different triplets of images;
2. such partial results are combined in order to get a multi-frame segmentation.
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Fig. 2: The method developed in [3] and our approaches combine segmentation results
independently obtained from subsets of images: Mode [3] considers pairs of images (i.e.,
the fundamental matrix); TriSeg considers triplets of images (i.e., the trifocal tensor);
TriPairSeg considers both pairs and triplets of images (i.e., both the fundamental
matrix and the trifocal tensor).

Concerning Step 1, we exploit RPA [27] in order to fit multiple trifocal tensors
to correspondences. Concerning Step 2, we adapt the method proposed in [3] –
which was developed for merging results coming from pairs of images – in order
to deal with triplets of images. The relevance of the trifocal tensor for addressing
motion segmentation in three images was already observed in some early works
[41, 40, 10]. However, this is the first paper where the trifocal tensor is exploited
in order to solve motion segmentation in multiple images.

The second approach – named TriPairSeg– is made of three steps:

1. motion segmentation is solved independently on different pairs of images;
2. motion segmentation is solved independently on different triplets of images;
3. the partial results derived in the first two steps are combined in order to get

a multi-frame segmentation.

Concerning Step 1, multiple fundamental matrices are fitted to corresponding
points via RPA, as done in [3]. Concerning Step 2, multiple trifocal tensors
are fitted to correspondences via RPA, as done by TriSeg. Concerning Step
3, we explain how TriSeg can be easily adapted in order to deal with both
pairs and triplets of images. The idea of merging results coming from different
models is also present in [47], where the authors consider both the homography,
the fundamental matrix and the affine subspace. Such approach, however, differs
from ours in three respects. First of all, it addresses a different task for it belongs
to the first category of methods. Secondly, the analysed models are not used one
at a time to provide a possible segmentation involving a subset of images – as
happens for our method – but they are used all together to build an accumulated
affinity matrix. Finally, the trifocal tensor is not used in [47].

The proposed solutions were validated on previous datasets and compared
to the state of the art. Moreover, a new image collection was created, which
comprises six indoor scenes with three or four motions. Results show that: our
methods outperform both Mode [3] and Synch [2] in terms of misclassification
error; they successfully handle sequences with four motions, whereas the com-
peting methods either fail on a few images or produce useless results; TriSeg
usually classifies less points than TriPairSeg with higher accuracy.
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The paper is organized as follows. Section 2 is devoted to our solutions to
motion segmentation: Sec. 2.1 describes TriSeg whereas Sec. 2.2 presents Tri-
PairSeg. Experimental results are reported in Sec. 3 and Sec. 3.1 explains how
the RPA algorithm can be used in order to fit multiple trifocal tensors. The
conclusion is drawn in Sec. 4.

2 Proposed Methods

Let us introduce some useful notation. Let n denote the number of images and
let d denote the number of motions, which is known by assumption. Similarly
to [3, 2], we assume that a set of points is given in all the images and correspon-
dences between points in image pairs have been established (using SIFT [26] for
instance). Let pi denote the number of points in image i, and let p “

řn
i“1 pi

denote the total amount of points over all the images. Let si P t0, 1, . . . , du
pi

be a vector – named the total segmentation of image i – representing the labels
of points in image i. Labels from 1 to d identify the membership to a specific
motion, while the zero label identifies those points (also known as unclassified
points) whose cluster can not be established due to high corruption in the corre-
spondences. The goal here is to estimate si for all i “ 1, . . . , n. Two approaches
are developed to accomplish such a task, which are presented in Sec. 2.1 and 2.2.

2.1 TriSeg

Let α “ pi, j, kq be a triplet of images and let tα P t0, 1, . . . , du
mα be a vector

– named the partial segmentation of triplet α – representing the labels of cor-
responding points in images i, j and k, where mα ď mintpi, pj , pku denotes the
number of correspondences in the triplet. Hereafter Greek letters are used to
denote triplets of images. In practice each partial segmentation is computed by
fitting multiple trifocal tensors to correspondences with RPA [27], as explained
in Sec. 3.1, where points labelled as outlier (if any) are given the zero label.
Note that the usage of the trifocal tensor is a relevant difference with respect
to [3], where fundamental matrices are used. Such difference brings significant
improvement in performance, as shown in Sec. 3. The goal here is to estimate
the total segmentations starting from a redundant set of partial segmentations,
as shown in Fig. 3. In this respect, two issues have to be addressed:

– each partial segmentation considers its own labelling of the motions, i.e., the
same motion may be given a different label in different triplets;

– each partial segmentation may contain some errors, which can be caused
either by wrong correspondences or by failure of the RPA algorithm.

We now explain how to address the first challenge. Note that tα P t0, 1, . . . , du
mα

gives rise to three vectors
sαi P t0, 1, . . . , du

pi

sαj P t0, 1, . . . , du
pj

sαk P t0, 1, . . . , du
pk

(1)
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(a) three-frame segmentation (b) multi-frame segmentation

Fig. 3: The task of TriSeg is to assign a label (blue or red) to each point in multiple
images based on the moving object (house or cloud) it belongs to. The starting point
is a set of partial results obtained by solving motion segmentation on different triplets.
Observe that such results may contain errors and they are not absolute: the house is
given the red label in the first triplet but it is given the blue label in the second triplet.

which contain labels of corresponding points in images i, j and k, where missing
correspondences are given the zero label. Observe that the superscript in Eq. (1)
refers to the triplet whereas subscripts refer to the images in the triplet. Let us
construct a graph G “ pV, Eq with vertex set V and edge set E as follows:

– each vertex corresponds to one triplet;
– an edge is drawn between two vertices each time the associated triplets have

one image in common.

Note that G is a multigraph, i.e., a graph with multiple edges: in the case where
two triplets share two images there will be two edges between the corresponding
vertices, as shown in Fig. 4a. Observe that a multigraph is not constructed in
[3], since different pairs can not share two images but (at most) one.

Each vertex in the multigraph is associated with an unknown permutation
and each edge is associated with a known permutation4. Let Pα denote the dˆd
permutation matrix associated with vertex α, which corresponds to triplet α.
The interpretation is that – after applying Pα to the partial segmentation tα
– the ambiguity in the local labelling of motions is fixed, i.e., the same motion
has the same label in different triplets. Let k denote a common image between
triplets α and β (i.e., k P α X β) and let P kαβ denote the d ˆ d permutation
matrix associated with the k-th edge between vertices α and β. Such a matrix
represents the permutation that best maps the vector sαk (i.e., labels of image k

in triplet α) into the vector sβk (i.e., labels of image k in triplet β):

P kαβ “ bestMap psαk , s
β
kq. (2)

Recall that sαk and sβk are recovered from tα and tβ respectively, as stated by
Eq. (1). Finding P kαβ is a linear assignment problem, which can be solved with
the Hungarian algorithm [21].

4 Observe that these permutations are represented as square matrices since we are
assuming that the number of motions is known and constant over all the frames.
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(a) multigraph (b) simple graph

Fig. 4: The relations between different triplets of images can be represented as multi-
graph or a simple graph. In both cases each vertex corresponds to one triplet. In the
multigraph an edge connects two triplets all the times they share one image. Triplets
p1, 2, 3q and p1, 3, 5q, for instance, are linked by two edges since they have two com-
mon images. In the simple graph, instead, one (single) edge is drawn between two
triplets if and only if they share (at least) one image. Vertices correspond to unknown
permutations and edges correspond to known permutations, as explained in the text.

Now we turn G into a simple graph (i.e., a graph without multiple edges) in
order to have (at most) one single measure between each pair of vertices (instead
of multiple measures), as shown in Fig. 4b. Thus the task is to find a permutation
Pαβ associated with edge pα, βq that best represents (or, in other words, that
“averages”) the set tP kαβ s.t. k P αX βu:

Pαβ “ meantP kαβ s.t. k P αX βu. (3)

Finding Pαβ can be cast to a linear assignment problem, as explained in the
supplementary material, which can be solved with the Hungarian algorithm [21].

Now we have to face the problem of computing an unknown permutation Pα
for each vertex α P V starting from a redundant set of permutations Pαβ with
pα, βq P E , where G “ pV, Eq is a simple graph. It can be seen that such matrices
satisfy the following consistency relation

Pαβ “ PαP
T
β (4)

which defines a permutation synchronization problem [31]. Equation (4) can be
solved via spectral decomposition (see [31, 38] for more details). At this point
the permutation Pα is applied to the partial segmentation tα for each triplet α.
This has the effect of (possibly) reshuffling the labels of motions in individual
triplets so that the permutation ambiguity is fixed, i.e., the same motion has the
same label in different triplets.

We now explain how to deal with errors in individual partial segmentations,
thus addressing the second challenge mentioned above. Recall that Eq. (1) means
that each partial segmentation provides a possible solution for the total segmen-
tation of the three images involved in the triplet. Hence, for a given image,
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several estimates are available for its total segmentation. If Ti denotes the set of
triplets involving image i, then such estimates are given by tsαi s.t. α P Tiu. In
order to assign a unique label to each point, the following criterion [3] is used

sirrs “ mode tsαi rrs s.t. α P Ti, sαi rrs ‰ 0u (5)

with r “ 1, . . . , pi and i “ 1, . . . , n. The idea is that the most frequent label
(i.e. the mode) is, in general, correct in the presence of moderate noise. The
condition sαi rrs ‰ 0 means that both missing correspondences and points labelled
as outlier (if any) by RPA are ignored, and the mode is computed over remaining
points. We set sirrs “ 0 (i.e., point r in image i is labelled as unknown) in the
case where sαi rrs “ 0 for all α P Ti, meaning that the point is either missing
or deemed as outlier in all the triplets. For the sake of robustness, we further
require that the mode is equal to (at least) two measures, otherwise the point is
labelled as unknown.

To summarize, our method – named TriSeg– is made of the following steps:

i) for each triplet α, the partial segmentation tα is computed by fitting multiple
trifocal tensors with RPA (see Sec. 3.1); the three vectors in Eq. (1) are
derived from tα;

ii) for each pair pα, βq of triplets with some images in common, the following
operations are performed: first, the permutation matrix P kαβ is computed
from Eq. (2) for all k P α X β (linear assignment problem); then, the per-
mutation matrix Pαβ is computed from Eq. (3) (linear assignment problem
– see supplementary material);

iii) the permutation matrices Pα, . . . , Pβ are computed simultaneously for all
the triplets from Eq. (4) (permutation synchronization);

iv) for each triplet α, the permutation matrix Pα is applied to the partial seg-
mentation tα; the three vectors in Eq. (1) are derived from tα;

v) for each image i, the total segmentation si is derived from Eq. (5).

Step i) is a pre-processing phase where motion segmentation is solved on triplets
of images. Steps ii)-iv) aim at expressing all such partial/local results with re-
spect to the same numbering of motions (see the first challenge mentioned at
the beginning of this section). Step v) explains how to robustly assign a unique
label to each point starting from multiple measures possibly corrupted by noise
(see the second challenge mentioned at the beginning of this section).

2.2 TriPairSeg

We introduce here another technique – named TriPairSeg– which computes the
total segmentations starting from partial segmentations of two different types,
as shown in Fig. 2. Such partial results are derived by fitting either fundamental
matrices (in the case of image pairs) or trifocal tensors (in the case of triplets of
images) via RPA. The idea is that, by using models of two different types, the
advantages of both are inherited, as shown in Sec. 3.
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It is straightforward to see that the approach developed in Sec. 2.1 applies
equally well to this case, with the provision that the multigraph G “ pV, Eq is
now constructed as follows: each vertex can be either an image pair or a triplet
of images; an edge is present between two pairs if and only if they share one
image (i.e., there are no multiple edges between two pairs); an edge is present
between a triplet and a pair (or between two triplets) each time they have one
image in common. After constructing the multigraph, TriPairSeg proceeds
in the same way as TriSeg: it first solves linear assignment problems, it then
performs permutation synchronization and it finally computes the mode.

3 Experiments

In this section we report experimental results on both existing datasets and
new image collections. We implemented TriSeg and TriPairSeg in Matlab
and we made our code publicly available5. We compared our approaches to
previous techniques belonging to the same category (see Fig. 1), namely methods
working under the mild assumption of two-frame correspondences (Mode [3]
and Synch [2]), whose implementation is available online6. All the analysed
techniques assumed that the number of motions d was known.

3.1 Implementation details

Given a set of two-frame correspondences, we proceed as follows in order to
compute the partial segmentations, which constitute the input to TriSeg. First,
triplets of images are identified: for the smallest sequences (i.e., n ă 10) all
the possible triplets are considered; in the remaining cases, a fixed number of
triplets is sampled [32]. Such number is set equal to twice the number of image
pairs. Then, for each triplet, a set of trajectories is computed by chaining two-
frame correspondences. Note that these are not multi-frame correspondences,
for they involve three images at a time. Moreover, observe that they are, in
general, much noisier than the input two-frame correspondences: a mismatch
between two images in the triplet propagates also to the third one. Finally,
motion segmentation is solved in each triplet by fitting multiple trifocal tensors
to those trajectories via RPA [27].

Robust Preference Analysis (RPA) is a general technique7 for fitting multiple
instances of a model to data corrupted by noise and outliers. Three main steps
can be singled out. First, points are described in a conceptual space as vectors
of “preferences”, which measure how well they are fitted by a pool of provi-
sional models instantiated via random sampling. Specifically, model hypotheses
are instantiated from a minimal sample set (i.e., the minimum number of points
necessary to fit a model), residuals are computed for every model, and the pref-
erence a point grants to a model is expressed in terms of its residual using the

5 https://github.com/federica-arrigoni/ECCV_20
6 https://github.com/federica-arrigoni/ICCV_19
7 http://www.diegm.uniud.it/fusiello/demo/rpa/
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Cauchy weight function [13]. Vectors are hence collected in a matrix that is seg-
mented leveraging on robust principal component analysis [24] and symmetric
non negative factorization [20]. A model is fitted to every cluster using robust
statistics and the segmentation is accordingly refined. Possible applications of
RPA include fitting geometric primitives (e.g., lines or circles) to points in the
plane and fitting geometric models (e.g., fundamental matrices or homographies)
to correspondences in an image pair. However, fitting trifocal tensors (and hence,
performing motion segmentation in three images) has not been explored in [27].
In order to use RPA for such a task, we proceed as follows:

– we randomly sample subsets of 7 points and use them to instantiate a ten-
tative trifocal tensor via linear estimation [12];

– residuals between points and a tensor are expressed using the reprojection
error, as explained in [11];

– the final models are refined using Gauss-Helmert optimization with Ressl
parametrization8, as suggested in [18];

– the parameter σn (representing the standard deviation of the residuals of
the inliers [27]) is set equal to 0.1 in all the experiments9.

Concerning TriPairSeg, partial segmentations of two different types are
required as input: the ones associated with triplets of images are computed by
fitting trifocal tensors with RPA, as explained above; the ones associated with
pairs of images are obtained by fitting fundamental matrices with RPA (using
default values for the algorithmic parameters specified in [27]).

3.2 Existing datasets

We considered the benchmark provided in [3, 2] consisting of 12 indoor scenes
with two or three motions counting from 6 to 10 images. Image points (with
ground-truth labels) and noisy two-frame correspondences are available in this
dataset. As done in [3, 2], we computed the misclassification error – defined as
the percentage of misclassified points over the total amount of classified points10

– and we also considered the percentage of points labelled by each method.
Results are reported in Table 1, showing that TriSeg achievest the lowest

misclassification error in 9 out of 12 sequences, outperforming the competing
techniques. This clearly shows the benefit of using the trifocal tensor, which is
more robust to mismatches than the fundamental matrix. TriPairSeg is slightly
better than Mode and significantly better than Synch in terms of accuracy.

8 https://github.com/LauraFJulia/TFT_vs_Fund
9 This value was optimally determined on a small subset of sequences (Penguin, Flow-

ers, Pencils and Bag [3]). As for the remaining parameters of RPA (e.g. the number
of sampled hypotheses), we used default values provided in the code by the authors.

10 This choice is motivated by the fact that, in the presence of high corruption among
the correspondences, one may not expect to classify all the points, as explained in
[3]. Observe also that this error metric reports the fraction of wrong labelled data,
that one wants to minimize in practice.
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Table 1: Misclassification error [%] (the lower the better) and classified points [%] (the
higher the better) for several methods on the data used in [3, 2]. The number of motions
d, the number of images n, and the total number of image points p are also reported
for each sequence. The best results are highlighted in boldface. In this experiment all
the correspondences are used.

TriSeg TriPairSeg Mode [3] Synch [2]
Dataset d n p Error Classified Error Classified Error Classified Error Classified

Pen [2] 2 6 4550 0.15 60.51 0.55 79.56 0.58 80.07 0.82 83.23
Pouch [2] 2 6 4971 1.07 33.86 3.09 67.09 3.79 65.34 4.15 69.89
Needlecraft [2] 2 6 6617 0.53 45.40 0.84 73.76 0.83 72.81 1.04 76.76
Biscuits [2] 2 6 13158 0.04 63.59 0.35 85.72 0.47 84.47 0.51 87.28
Cups [2] 2 10 14664 0.07 50.31 0.49 66.37 0.56 65.42 1.01 69.82
Tea [2] 2 10 32612 0.01 61.69 0.23 82.37 0.29 81.70 28.12 52.21
Food [2] 2 10 36723 0.01 52.87 0.26 77.17 0.36 76.19 0.56 80.66
Penguin [3] 2 6 5865 0.75 34.31 0.73 69.70 0.76 69.17 44.21 46.97
Flowers [3] 2 6 7743 0.05 51.62 0.86 75.00 1.23 73.65 1.62 77.28
Pencils [3] 2 6 2982 5.04 35.28 3.73 65.56 3.80 65.33 27.53 40.44
Bag [3] 2 7 6114 1.40 40.97 1.37 64.26 1.52 57.95 25.92 54.27
Bears [3] 3 10 15888 2.84 41.21 4.38 74.31 4.82 73.65 38.95 74.59

Note that the latter fails in 5 cases. Concerning the amount of classified data,
the best results are achieved by Synch in all the cases where it does not fail.
The amount of point labelled by TriPairSeg is slightly better than Mode.
The lowest amount is given by TriSeg, which, however, is not surprising: this
method actually ignores all the points that have only one correspondence (points
that are visible in 3 images are required to estimate the trifocal tensor).

In order to enrich the evaluation, we considered another scenario, reported
in Tab. 2. Starting from the data used in [3, 2], the input correspondences were
then filtered as follows: all the points that are matched in just one other image
were removed. In other words, only correspondences involving (at least) 3 images
were kept. In this way the performance of TriSeg remains unchanged in terms
of misclassification error, but it is not penalized when counting the percent-
age of classified data. The output of the remaining methods, instead, generally
improves. Observe that the lowest misclassification error is achieved either by
TriSeg or TriPairSeg, outperforming the competing techniques, and Synch
fails in 4 out of 12 cases. There is no significative difference between all the
analysed methods in terms of amount of classified points in this experiment.

3.3 Novel benchmark

In order to study a more challenging scenario, we created a new dataset consist-
ing of six indoor image collections with three or four motions. The benchmark
created in [3, 2], instead, counts several sequences with two motions and only
one sequence with three motions. Two-frame correspondences were obtained
with SIFT [26] without any cleaning procedure, and ground-truth labels of im-
age points were obtained by manual operations. More information about the
dataset is provided in the supplementary material.
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Table 2: Misclassification error [%] (the lower the better) and classified points [%] (the
higher the better) for several methods on the data used in [3, 2]. The number of motions
d, the number of images n, and the total number of image points p are also reported
for each sequence. The best results are highlighted in boldface. In this experiment all
the trajectories of length two are removed.

TriSeg TriPairSeg Mode [3] Synch [2]
Dataset d n p Error Classified Error Classified Error Classified Error Classified

Pen [2] 2 6 3208 0.15 83.98 0.17 88.29 0.24 88.77 0.42 93.47
Pouch [2] 2 6 2227 1.07 75.57 0.65 76.29 1.94 74.14 3.16 79.48
Needlecraft [2] 2 6 3733 0.53 80.47 0.45 82.67 0.56 81.94 1.21 88.51
Biscuits [2] 2 6 9306 0.04 89.91 0 91.91 0.07 91.15 0.20 94.87
Cups [2] 2 10 10452 0.07 70.58 0.21 78.10 0.26 77.58 0.84 83.31
Tea [2] 2 10 26134 0.01 76.98 0.09 88.22 0.15 88.02 24.48 63.08
Food [2] 2 10 27021 0.01 71.86 0.03 83.61 0.10 83.24 0.34 88.75
Penguin [3] 2 6 3035 0.75 66.29 0.61 81.58 0.73 81.29 35.29 51.73
Flowers [3] 2 6 4813 0.05 83.05 0 84.50 0.15 83.94 0.52 88.61
Pencils [3] 2 6 1424 5.04 73.88 1.04 74.44 1.58 75.49 34.72 45.72
Bag [3] 2 7 3108 1.40 80.60 0.92 80.57 1.24 72.52 2.10 82.82
Bears [3] 3 10 9998 2.84 65.48 2.56 81.73 3.08 81.13 29.08 65.18

Results are collected in Tab. 3, which reports the misclassification error and
the percentage of classified data for all the analysed techniques. Synch presents
poor performances on most cases, thus it is not a practical solution to motion
segmentation, confirming the outcome of the experiments in Sec. 3.2. Some in-
teresting observations can be made about the remaining methods, which share
the same framework but they are based on different models: Mode uses the fun-
damental matrix; TriSeg uses the trifocal tensor; TriPairSeg uses both the
fundamental matrix and the trifocal tensor. Using only the fundamental matrix
as underlying model is not enough to segment the most difficult scenes. This as-
pect can be appreciated from the poor performance of Mode on the sequences
with four motions. It is remarkable that TriSeg achieves very good results on
all the sequences, outperforming all the analysed techniques. This is due to the
usage of the trifocal tensor, which constitutes a stronger model than the fun-
damental matrix. The percentage of points classified by TriSeg is, in general,
lower than the other approaches but it is still acceptable. TriPairSeg achieves
reasonably good results (although not comparable to TriSeg) and it is better
than Mode both in terms of misclassification error and amount of classified
points. Note that TriPairSeg inherits the advantages of both models: on one
side, it provides a good segmentation thanks to the presence of the trifocal ten-
sor; on the other side, it classifies a high amount of points thanks to the presence
of the fundamental matrix, which does not discard trajectories of length two.

The fact that the trifocal tensor usually provides a better segmentation than
the fundamental matrix can also be appreciated in Fig. 5, which shows the dis-
tribution of the misclassification error achieved by RPA on all the triplets/pairs.
This gives an idea about the quality of the input partial segmentations used by
different approaches. It is clear that those produced by trifocal tensor fitting are
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Table 3: Misclassification error [%] (the lower the better) and classified points [%] (the
higher the better) for several methods on our dataset. The number of motions d, the
number of images n, and the total number of image points p are also reported for each
sequence. The best results are highlighted in boldface.

TriSeg TriPairSeg Mode [3] Synch [2]
Dataset d n p Error Classified Error Classified Error Classified Error Classified

stuffed animals1 4 7 11507 1.82 64.99 4.73 86.95 8.92 83.98 40.79 56.88
stuffed animals2 4 7 11159 3.05 61.78 6.92 83.87 17.56 79.29 9.96 49.95
stuffed animals3 4 7 10989 2.20 59.07 7.39 83.78 15.03 81.49 27.58 73.53
stuffed animals4 4 7 8079 3.33 55.80 6.96 78.79 13.37 76.57 32.97 62.02
stuffed animals5 3 7 13851 0.72 60.19 2.00 88.10 2.56 87.04 2.20 89.26
stuffed animals6 3 7 12170 0.60 58.89 4.68 84.77 5.43 84.80 15.60 65.46

(a) stuffed animals1 (b) stuffed animals2

(c) stuffed animals3 (d) stuffed animals5

Fig. 5: Histograms of misclassification error achieved by RPA on sample sequences from
our dataset. Each point in the horizontal axis corresponds to a possible misclassification
error in an individual pair/triplet of images. Each point in the vertical axis corresponds
to the number of pairs/triplets where a given error is reached.

the most accurate, since the blu light histograms are concentrated to the left.
Those produced by fundamental matrix fitting, instead, are very noisy: note
that RPA can even reach a misclassification error larger than 30% in some pairs
related to stuffed animals1 (see the purple histogram in Fig.5a).

Some qualitative results are reported in Fig. 6 and further analysis is given
in the supplementary material. Note that both Synch and Mode presents dif-
ficulties in segmenting this scene: the former produces useless results whereas
the latter switches two motions in the middle image. TriSeg and TriPairSeg,
instead, report good performances.
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(a) TriSeg (b) TriPairSeg (c) Mode [3] (d) Synch [2] (e) Ground-truth

Fig. 6: Segmentation results are reported on sample images from stuffed animals4 for
several methods. Different colours correspond to different motions. For better visual-
ization, unclassified points are not drawn. Ground-truth segmentation is also reported.

4 Conclusion

We presented two novel solutions to motion segmentation that combine local re-
sults independently obtained from subsets of images: TriSeg considers triplets
of images whereas TriPairSeg considers both triplets and image pairs. In or-
der to tackle segmentation in a triplet, multiple trifocal tensors were fitted to
correspondences via robust preference analysis. The usage of the trifocal tensor
within motion segmentation was the key to success for our methods, for it is
more robust to wrong correspondences than the fundamental matrix. The pro-
posed solutions outperform previous techniques on existing datasets as well as
on a new image collection, and they can handle scenes with four motions. The
choice of one method between TriSeg– which classifies less points with higher
accuracy – and TriPairSeg depends on the task and is left to the reader.
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