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Abstract. To learn a reliable people counter from crowd images, head
center annotations are normally required. Annotating head centers is
however a laborious and tedious process in dense crowds. In this paper,
we present an active learning framework which enables accurate crowd
counting with limited supervision: given a small labeling budget, instead
of randomly selecting images to annotate, we first introduce an active
labeling strategy to annotate the most informative images in the dataset
and learn the counting model upon them. The process is repeated such
that in every cycle we select the samples that are diverse in crowd density
and dissimilar to previous selections. In the last cycle when the labeling
budget is met, the large amount of unlabeled data are also utilized: a dis-
tribution classifier is introduced to align the labeled data with unlabeled
data; furthermore, we propose to mix up the distribution labels and la-
tent representations of data in the network to particularly improve the
distribution alignment in-between training samples. We follow the popu-
lar density estimation pipeline for crowd counting. Extensive experiments
are conducted on standard benchmarks i.e. ShanghaiTech, UCF CC 50,
MAll, TRANCOS, and DCC. By annotating limited number of images
(e.g. 10% of the dataset), our method reaches levels of performance not
far from the state of the art which utilize full annotations of the dataset.

1 Introduction

The task of crowd counting in computer vision is to automatically count people
numbers in images/videos. With the rapid growth of world’s population, crowd
gathering becomes more frequent than ever. To help with crowd control and
public safety, accurate crowd counting is demanded.

Early methods count crowds via the detection of individuals [49, 2, 34]. They
suffer from heavy occlusions in dense crowds. More importantly, learning such
people detectors normally requires bounding box or instance mask annotation-
s for individuals, which often makes it undesirable in large-scale applications.
Modern methods mainly conduct crowd counting via density estimation [32, 60,
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Fig. 1: Given a crowd counting dataset, we propose an active learning framework (AL-
AC) which actively labels only a small proportion of the dataset and learns an accurate
density estimation network using both labeled and unlabeled data.

44, 37, 26, 21, 20, 54]. Counting is realized by estimating a density map of an im-
age whose integral over the image gives the total people count. Given a training
image, its density map is obtained via Gaussian blurring at every head center.
Head centers are the required annotations for training. Thanks to the powerful
deep neural networks (DNNs) [17], density estimation based methods show a
great success in recent progress [60, 39, 20, 35, 42, 54, 43, 25].

Despite above, annotating head centers in dense crowds is still a laborious
and tedious process. For instance, it can take up to 10 minutes for our annotators
to annotate a single image with 500 persons; while the popular counting dataset
ShanghaiTech PartA [60] has 300 training images with an average of 501 persons
per image! To substantially reduce the annotation cost, we study the crowd
density estimation in a semi-supervised setting where only handful images are
labeled while the rest are unlabeled. This setting has not been largely explored
in crowd counting: [4, 61] propose to actively annotate the most informative
video frames for semi-supervised crowd counting, yet the algorithms are not deep
learning based and rely on frame consecutiveness. Recently, some deep learning
works propose to leverage additional web data [24, 23] or synthetic data [51] for
crowd counting; images in existing dataset are still assumed annotated, or at least
many of them. The model transferability is also evaluated in some works [12, 54]
where a network is trained on a source dataset with full annotations and tested
on a target dataset with no/few annotations.

Given an existing dataset and a power DNN, we find that 1) learning from
only a small subset, the performance can vary a lot depending on the subset
selection; 2) for the specific subset that covers diverse crowd densities, the per-
formance can be quite good (see results in Sec. 4.2). This motivates us to study
crowd counting with very limited annotations yet producing very competitive
precision. To achieve this goal, we propose an Active Learning framework for Ac-
curate crowd Counting (AL-AC) as illustrated in Fig. 1: given a labeling budget,
instead of randomly selecting images to annotate, we first introduce an active
labelling strategy to iteratively annotate the most informative images in the
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dataset and learn the counting model on them. In each cycle we select samples
that cover different crowd densities and also dissimilar to previous selections.
Eventually, the large amount of unlabeled data are also included into the net-
work training: we design a classifier with gradient reversal layer [7] to align the
intrinsic distributions of labeled and unlabeled data. Since all training samples
contain the same object class, e.g. person, we propose to further align distribu-
tions in-between training samples by mixing up the latent representations and
distribution labels among labeled and unlabeled data in the network. With very
limited labeled data, our model produces very competitive counting result.

To summarize, several new elements are offered:

– We introduce an active learning framework for accurate crowd counting with
limited supervision.

– We propose a partition-based sample selection with weights (PSSW) strat-
egy to actively select and annotate both diverse and dissimilar samples for
network training.

– We design a distribution alignment branch with latent MixUp to align the
distribution between the labeled data and large amount of unlabeled data
in the network.

Extensive experiments are conducted on standard counting benchmarks, i.e.
ShanghaiTech [60], UCF CC 50 [13], Mall [5],TRANCOS [9], and DCC [28]. Re-
sults demonstrate that, with a small number of labeled data, our AL-AC reaches
levels of performance not far from state of the art fully-supervised methods.

2 Related works

In this section, we mainly survey deep learning based crowd counting methods
and discuss semi-supervised learning and active learning in crowd counting.

2.1 Crowd counting

The prevailed crowd counting solution is to estimate a density map of a crowd
image, whose integral of the density map gives the total person count of that im-
age [60]. A density map encodes spatial information of an image, regressing it in
a DNN is demonstrated to be more robust than simply regressing a global crowd
count [58, 26]. Due to the commonly occurred heavy occlusions and perspective
distortions in crowd images, multi-scale or multi-resolution architectures are of-
ten exploited in DNNs: Ranjan et al. [35] propose an iterative crowd counting
network which produces the low-resolution density map and uses it to generate
the high-resolution density map. Cao et al. [3] propose a novel encoder-decoder
network, where the encoder extracts multi-scale features with scale aggrega-
tion modules and the decoder generates high-resolution density maps by using
a set of transposed convolutions. Furthermore, Jiang et al. [15] develop a trellis
encoder-decoder network that incorporates multiple decoding paths to hierar-
chically aggregate features at different encoding stages. In order to better utilize
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multi-scale features in the network, the attention [21, 43], context [44, 22], or per-
spective [42, 55] information in crowd images is often leveraged into the network.
Our work is a density estimation based approach.

2.2 Semi-supervised learning

Semi-supervised learning [29] refers to learning with a small amount of labeled
data and a large amount of unlabeled data, and has been a popular paradigm in
deep learning [52, 36, 18, 57]. It is traditionally studied for classification, where a
label represents a class per image [19, 10, 36, 18]. In this work, we focus on semi-
supervised learning in crowd counting, where the label of an image means the
people count, with individual head points available in most cases. The common
semi-supervised crowd counting solution is to leverage both labeled and unla-
beled data into the learning procedure: Tan et al. [46] propose a semi-supervised
elastic net regression method by utilizing sequential information between unla-
beled samples and their temporally neighboring samples as a regularization term;
Loy et al. [4] further improve it by utilizing both the spatial and temporal reg-
ularization in a semi-supervised kernel ridge regression problem; finally, in [61],
graph Laplacian regularization and spatiotemporal constraints are incorporated
into the semi-supervised regression. All these are not deep learning works and
rely on temporal information among video frames.

Recently, Olmschenk et al. [30, 31] employ a generative adversarial network
(GAN) in DNN to allow the usage of unlabeled data in crowd counting. Sam et
al. [38] introduce an almost unsupervised learning method that only a tiny pro-
portion of model parameters is trained with labeled data while vast parameters
are trained with unlabeled data. Liu et al. [24, 23] propose to learn from unla-
beled crowd data via a self-supervised ranking loss in the network. In [24, 23],
they mainly assume the existence of a labeled dataset and add extra data from
the web; in contrast, our AL-AC seeks a solution for accurate crowd counting
with limited labeled data. Our method is also similar to [30, 31] in spirit of the
distribution alignment between labeled and unlabeled data. While in [30, 31] they
need to generate fake images to learn the discriminator in GAN which makes it
hard to learn and converge. Our AL-AC instead mixes representations of labeled
and unlabeled data in the network and learns the discriminator against them.

2.3 Active learning

Active learning defines a strategy determining data samples that, when added
to the training set, improve a previously trained model most effectively [40].
Although it is not possible to obtain an universally good active learning strate-
gy [6], there exist many heuristics [41], which have been proved to be effective in
practice. Active learning has been explored in many applications such as image
classification [45, 16] and object detection [8], while in this paper we focus on
crowd counting. Methods in this context normally assumes the availability of the
whole counting set and choose samples from it, which is the so-called pool-based
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Fig. 2: Overview of our active learning framework for accurate crowd counting (AL-
AC). GRL: gradient reversal layer; GAP: global average pooling. PSSW: Partition-
based sample selection with weights; Conv 1×1: output channel is 1.

active learning [56]. [4] and [61] employ the graph-based approach to build adja-
cency matrix of all crowd images in the pool, sample selection is therefore cast
as a matrix partitioning problem. Our work is also pool-based active learning.

Lately, Liu et al. [23] apply active learning in DNN where they measure the
informativeness of unlabeled samples via mistakes made by the network on a self-
supervised proxy task. The method is conducted iteratively and in each cycle it
selects a group of images based their uncertainties to the model. The diversity of
selected images is however not carefully taken care in their uncertainty measure,
which might result in a biased selection within some specific count range. Our
work instead interprets uncertainty from two perspectives: selected samples are
diverse in crowd density and dissimilar to previous selection in each learning
cycle. It should also be noted that [23] mainly focuses on adding extra unlabeled
data to an existing labeled dataset, while our AL-AC seeks for the limited data
to be labeled within a given dataset.

3 Method

3.1 Problem

We follow crowd density estimation in deep learning context where density maps
are pixel-wise regressed in a DNN [60, 20]. A ground truth density map is gen-
erated by convolving Gaussian kernels at head centers in an image [60]. The
network is optimized through a loss function minimizing the prediction error
over the ground truth. In this paper, we place our problem in a semi-supervised
setting where we only label several or few dozens of images while the rest large
amount remains unlabeled. Both the labeled and unlabeled data will be exploit-
ed in model learning. Below, we introduce our active learning framework for
accurate crowd counting (AL-AC).
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3.2 Overview

Our algorithm follows an active learning pipeline in general. It is an iterative
process where a model is learnt in each cycle and a set of samples is chosen to be
labeled from a pool of unlabeled samples [41]. In classic setting, only one single
sample is chosen in each cycle. This is however not feasible for DNNs because
it is infeasible to train as many models as the number of samples since many
practical problems of interest are very large-scale [40]. Hence, the commonly used
strategy is batch mode selection [50, 23] where a subset is selected and labeled
in each cycle. This subset is added into the labeled set to update the model and
repeat the selection in next cycle. The procedure continues until a predefined
criterion is met, e.g. a fixed budget.

Our method is illustrated in Fig. 2: given a dataset A with labeling budget
M (number of images as in [38, 23]), we start by labeling m samples uniformly
at random from A. For each labeled sample vi, we generate its count label
ci and density map di based on the annotated head points in vi. We denote
V1 = {vi, ci, di} and U1 = {uj} as the labeled and unlabeled set in cycle 1,
respectively. A DNN regressor R1 is trained on V1 for crowd density estimation.
Based on R1’s estimation of density maps on U1, we propose a partition-based
sample selection with weights strategy to select and annotate m samples from
U1. These samples are added to V1 so we have the updated labeled and unlabeled
set V2 and U2 in 2rd cycle. Model R1 is further trained on V2 and updated as
R2. The prediction of R2 is better than R1 as it uses more labeled data, we use
the new prediction on U2 to again select m samples and add them to V2. The
process moves on until the labeling budget M is met. The unlabeled set U is also
employed in network training through our proposed distribution alignment with
latent MixUp. We only use U (UT ) in the last learning cycle T as we observe
that adding it in every cycle does not bring us accumulative benefits but rather
additional training cost.

The backbone network is not specified in Fig. 2 as it can be any standard
backbone. We will detail our selection of backbone, M , m and R in Sec. 4. Below
we introduce our partition-based sample selection with weights and distribution
alignment with latent MixUp. Overall loss function is given in this end.

3.3 Partition-based sample selection with weights (PSSW)

In each learning cycle, we want to annotate the most informative/uncertain sam-
ples and add them to the network. The informativeness/uncertainty of samples
is evaluated from two perspectives: diverse in density and dissimilar to previous
selections. It is observed that crowd data often forms a well structured manifold
where different crowd densities normally distribute smoothly within the mani-
fold space [4]; the diversity is to select crowd samples that cover different crowd
densities in the manifold. This is realized by separating the unlabeled set into d-
ifferent density partitions for diverse selection. Within each partition, we want to
select those samples that are dissimilar to previous labeled samples, such that the
model has not seen them. The dissimilarity is measured considering both local
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crowd density and global crowd count: we introduce a grid-based dissimilarity
measure (GDSIM) for this purpose. Below, we formulate our partition-based
sample selection with weights.

Formally, given the model Rt, unlabeled set U t and labeled set Vt in tth cy-
cle, we denote by c̃j the predicted crowd count by Rt for an unlabeled image uj .
The histogram of all c̃j on U t discloses the overall density distribution. For the
sake of diversity, we want to partition the histogram into m parts and select one
sample from each. Since the crowd counts are not evenly distributed (see Fig. 3:
Left), sampling images evenly from the histogram can end up with a biased view
of the original distribution. We therefore employ the Jenks natural breaks opti-
mization [14] to partition the histogram. Jenks minimizes the variation within
each range, so the partitions between ranges reflect the natural breaks of the
histogram (Fig. 3).

Within each partition Pk, inspired by grid average mean absolute error
(GAME) [9], we propose a grid-based dissimilarity from an unlabeled sample
to labeled samples. Given an image i, GAME is originally introduced as an
evaluation measure for density estimation,

GAME(L) =

4L∑
l=1

|c̃ li − c
l
i |, (1)

where c̃ li is the estimated count in region l of image i. It can be obtained via

the integration over the density d̃ l
i of that region l; c li is the corresponding

ground truth count. Given a specific level L, GAME(L) subdivides the image
using a grid of 4L non-overlaping regions which cover the full image (Fig. 3);
the difference between the prediction and ground truth is the sum of the mean
absolute error (MAE) in each of these regions. With different L, GAME indeed
offers moderate ways to compute the dissimilarity between two density maps,
taking care of both global counts and local details. Building on GAME, we
introduce grid-based dissimilarity measure GDSIM as,

GDSIM(uj , LA)
uj∈Pk

= min
i,vi∈Pk

( LA∑
L=0

4L∑
l=1

|c̃ lj − c
l
i |
)
, (2)

where uj and vi are from the unlabeled set U t and labeled set Vt, respectively;

they both fall into the Pk-th partition. c̃ li and cli are crowd counts in region l as in
formula (1) but for different images uj and vi (see Fig. 3: Right). Given the level
LA, unlike GAME, we compute the dissimilarity between uj and vi by traversing
all levels from 0 to LA (Fig. 3). In this way, the dissimilarity is computed based
on both global count (L = 0) and local density (L = LA) differences. Afterwards,
instead of averaging the dissimilarity scores from uj to all the vi in Pk, we use
min to indicate if uj is closer to any one of the labeled images, it is regarded
as a familiar sample to the model. Ideally, we should choose the most dissimilar

sample from each partition; nevertheless, the crowd count c̃ lj in formula (2) is not
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Fig. 3: Illustration of Jenks natural breaks (Left) and grid-based dissimilarity measure
(GDSIM, Right). We take the histogram of crowd count on SHB.

ground truth. We convert the GDSIM scores to probabilities and adopt weighted
random selection to label one sample from each partition.

3.4 Distribution alignment with latent MixUp

Since labeled data only represents partial crowd manifold, particularly when they
are limited, distribution alignment with large amount of unlabeled data becomes
necessary even within the same domain. In order for the model to learn a proper
subspace representation of the entire set, we introduce distribution alignment
with latent MixUp.

We assign labeled data with distribution labels 0 while unlabeled data with
labels 1. A distribution classifier branched off from the deep extractor (φ in
Fig. 2) is designed: it is composed of a gradient reversal layer (GRL) [7], 1 × 1
convolution layer and global average pooling (GAP) layer. The GRL multiplies
the gradient by a certain negative constant (-1 in this paper) during the network
back propagation; it enforces that the feature distributions over the labeled and
unlabeled data are made as indistinguishable as possible for the distribution
classifier, thus aligning them together.

The hard distribution labels create hard boundaries between labeled and
unlabeled data. To further merge the distributions and particularly align in-
between training samples, we adapt the idea from MixUp [59]. MixUp normally
trains a model on random convex combinations of raw inputs and their corre-
sponding labels. It encourages the model to behave linearly “between” training
samples, as this linear behavior reduces the amount of undesirable oscillations
when predicting outside the training samples. It has been popularly employed
in several semi-supervised classification works [1, 47, 48, 59]. In this work, we
integrate it into our distribution alignment branch for semi-supervised crowd
counting. We find that mixing raw input images does not work for our problem.
Instead we propose to mix their latent representations in the network: supposed-
ly we have two images, x1, x2, and their distribution labels y1, y2, respectively.
The latent representations of x1 and x2 are produced by the deep extractor φ as
two tensors (φ(x1) and φ(x2)) from the last convolutional layer of the backbone.
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We mix up (φ(x1), y1), (φ(x2), y2) with a weight λ′ as

z′ = λ′φ(x1) + (1− λ′)φ(x2)

y′ = λ′ × y1 + (1− λ′)× y2.
(3)

where (z′, y′) denotes the mixed latent representation and label. λ′ is generated
in the same way with [1]: λ′ = max(λ, 1 − λ), λ ∼ Beta(α, α); α is a hyper-
parameter set to 0.5. Both labeled and unlabeled data can be mixed. For two
samples with the same label, their mixed label remains. We balance the number
of labeled and unlabeled data with data augmentation (see Sec. 4.1) so a mixed
pair can be composed of labeled or unlabeled data with (almost) the same prob-
ability. MixUp enriches the distribution in-between training samples. Together
with GRL, it allows the network to elaborately knit the distributions of labeled
and unlabeled data. The alignment is only carried out in the last active learning
cycle as an efficient practice. The network training proceeds with a multi-task
optimization that minimizes the density regression loss on labeled data and the
distribution classification loss for all data including mixed ones, specified below.

3.5 Loss function

For density regression, we adopt the commonly used pixel-wise MSE loss Lreg:

Lreg =
1

2K

K∑
k=1

‖dek − d
g
k‖

2
2 (4)

dek and dgk denote the density map prediction and ground truth of image k, re-
spectively. K is the number of labeled images. For the distribution classification,
since distribution labels for mixed samples can be non-integers, we adopt the
binary cross entropy with logits loss Ldc, which combines a Sigmoid layer with
the binary cross entropy loss. Given an image pair, Ldc is computed on each indi-
vidual as well as their mixed representations (see Fig. 2). The overall multi-task
loss function is given by

L = Lreg + βLdc (5)

4 Experiments

We conduct our experiments on three counting datasets: ShanghaiTech [60],
UCF CC 50 [13], Mall [5]. In the supplementary material, we offer more results
not only in the three datasets for people counting, but also in the TRANCOS [9]
and DCC [28] datasets for vehicle and cell counting, respectively.

4.1 Experimental Setup

Datasets. ShanghaiTech [60] consists of 1,198 annotated images with a total of
330,165 people with head center annotations. This dataset is split into SHA and
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SHB. The average crowd counts are 123.6 and 501.4, respectively. Following [60],
we use 300 images for training and 182 images for testing in SHA; 400 images
for training and 316 images for testing in SHB. UCF CC 50 [13] has 50 images
with 63,974 head center annotations in total. The head counts range between
94 and 4,543 per image. The small dataset size and large variance make this a
very challenging counting dataset. We call it UCF for short. Following [13], we
perform 5-fold cross validations to report the average test performance. Mall [5]
contains 2000 frames collected in a shopping mall. Each frame on average has
only 31 persons. The first 800 frames are used as the training set and the rest
1200 frames as the test set.
Implementation details. The backbone (φ) design follows [20]: VGGnet with
10 convolutional and 6 dilated convolutional layers, it is pretrained on ILSVRC
classification task. We follow the setting in [20] to generate ground truth density
maps. To have a strong baseline, the training set is augmented by randomly
cropping patches of 1/4 size of each image. We set a reference number 1200, both
labeled and unlabeled data in each dataset are augmented up to this number to
have a balanced distribution. For instance, if we have 30 labeled images, we need
to crop 40 patches from each image to augment it to 1200. We feed the network
with a minibatch of two image patches each time. In order to have the same
size of two patches, we further crop them to keep the shorter width and height
of the two. We set the learning rate as 1e-7, momentum 0.95 and weight decay
5e-4. We train 100 epochs with SGD optimizer for each active learning cycle and
before the last cycle, the network is trained with only labeled data. In the last
cycle, it is trained with both labeled and unlabeled data. In all experiments, LA

is 3 for GDSIM (2) and β is 3 for loss weight (5).
Evaluation protocol. We evaluate the counting performance via the commonly
used mean absolute error (MAE) and mean square error (MSE) [39, 44, 21] which
measures the difference between the counts of ground truth and estimation. For
active learning, we choose to label around 10% images of the entire set, which
goes along with our setting of limited supervision. m is chosen not too small
so that we can normally reach the labeling budget in about 2-4 active learning
cycles. Sec. 5 gives a discussion on the time complexity. M and m are by default
30/40 and 10 on SHA and SHB, 10 and 3 on UCF (initial number is 4), 80
and 20 on Mall, respectively. We also evaluate different M and m to show the
effectiveness of our method. The baseline is to randomly label M images and
train a regression model using the same backbone with our AL-AC but without
distribution alignment. As in [4, 61], taken the randomness into account, we
repeat each experiment with 10 trials for both mean and standard deviation, to
show the improvement of our method over baseline.

4.2 ShanghaiTech

Ablation study. The proposed partition-based sample selection with weights
and distribution alignment with latent MixUp are ablated.
Labeling budget M and m. As mentioned in Sec. 4.1, we set M = 30/40
and m = 10 by default. Comparable experiments are offered in two ways. First,
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Dataset SHA SHB

Method PSSW RS PSSW RS

M= 10, m=10 121.2± 9.3 121.2± 9.3 20.5± 4.8 20.5± 4.8

M=20, m=10 96.7± 7.3 111.5± 7.4 17.0± 1.9 19.3± 2.2

M=30, m=10 93.5± 2.9 102.1± 7.0 15.7± 1.5 19.9± 3.1

M=40, m=10 85.4± 2.5 93.8± 5.6 14.6± 1.3 17.9± 1.9

M = 30, m = 5 92.6 ± 3.1 102.1 ± 7.0 15.1 ± 1.5 19.9 ± 3.1

M = 40, m = 5 84.4± 2.6 93.8± 5.6 14.4± 1.2 17.9± 1.9

M=40, m=10 SHA SHB

RS (Baseline) 93.8 17.9
Even Partition 89.6 16.2

Global Diff 86.6 15.3
PSSW 84.4 14.4

Table 1: Ablation study of the proposed partition-based sample selection with weights
(PSSW) strategy. Left: comparison against random selection (RS). Right: comparison
to some variants of PSSW; Even Partition means evenly splitting on the histogram of
crowd count; Global Diff refers to using global count difference for dissimilarity. MAE
is reported on SHA and SHB.

keeping m = 10, we vary M from 10 to 40. The results are shown in Table 1.
We compare our partition-based sample selection with weights (PSSW) with
random selection (RS); distribution alignment is not added in this experiment.
For PSSW, its MAE on SHA is gradually decreased from 121.2 with M = 10
to 85.4 with M = 40, the standard deviation is also decreased from 9.3 to 2.5.
The MAE result is in general 10 points lower than RS. With different M , PSSW
also produces lower MAE than RS on SHB. For example, with M = 40, PSSW
yields an MAE of 14.6 v.s. 17.9 for RS.

Second, by keeping M = 30/40, we decrease m from 10 to 5 and repeat the
experiment. Results show that having a small m indeed works slightly better:
for instance, PSSW with M = 30 and m = 5 reduces MAE by 1.0 on SHA
compared to PSSW with M = 30 and m = 10. On the other hand, m can not be
too small as discussed in Sec. 3.2 and Sec. 5. In practice, we still keep m = 10
for both efficiency and effectiveness.

Variants of PSSW. Our PSSW has two components: the Jenks-based parti-
tion for diversity, and the GDSIM for dissimilarity (Sec. 3). In order to show
the effectiveness of each, we present two variants of PSSW: Even Partition and
Global Diff. Even Partition means that Jenks-based partition is replaced by even-
ly splitting the ranges on the histogram of crowd count while GSDIM remains;
Global Diff means that GDSIM is replaced by using the global count difference to
measure the dissimilarity while Jenks-based partition remains. We report MAE
on SHA and SHB in Table 1: Right. It can be seen that Even Partition produces
MAE 89.6 on SHA and 16.2 on SHB, while Global Diff produces 86.6 and 15.3.
Both are clearly inferior to PSSW (84.4 and 14.4). This suggests the importance
of the proposed diversity and dissimilarity measure.

Distribution alignment with latent MixUp. Our proposed distribution
alignment with latent MixUp is composed of two elements: distribution clas-
sifer with GRL and latent MixUp (Sec. 3.4). To demonstrate their effectiveness,
we present the result of PSSW plus GRL classifer (denoted as PSSW + GR-
L), and latent MixUp (denoted as PSSW + GRL + MX) in Table 2. We take
M = 40 as an example, adding GRL and MX to PSSW contributes to 5.0 points
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Dataset SHA SHB

M = 30, m =10 MAE MSE MAE MSE

PSSW 93.5± 2.9 151.0± 15.1 15.7± 1.5 28.3± 3.4

PSSW+GRL 90.8± 2.7 144.9± 14.5 14.7± 1.3 27.8± 2.9

PSSW+GRL+MX 87.9± 2.3 139.5± 12.7 13.9± 1.2 26.2± 2.5

M = 40, m =10 MAE MSE MAE MSE

PSSW 85.4± 2.5 144.7± 10.7 14.6± 1.3 24.6± 3.0

PSSW+GRL 82.7± 2.4 140.9± 11.3 13.7± 1.3 23.5± 2.2

PSSW+GRL+MX 80.4 ± 2.4 138.8± 10.1 12.7± 1.1 20.4± 2.1

M=40, m=10 SHA SHB

RS (Baseline) 93.8 17.9
RS+GRL+MX 87.3 15.1

PSSW 84.4 14.4
PSSW+GRL+MX 80.4 12.7

Table 2: Ablation study of the proposed distribution alignment with latent MixUp.
Left: analysis on latent MixUp (MX) and gradient reversal layer (GRL). Right: com-
parison against RS plus GRL and MX. MAE is reported in the right table.

MAE decrease on SHA and 1.9 points decrease on SHB. Specifically, The MX
contributes to 2.3 and 1.0 points decrease on SHA and SHB, respectively. The
same observation goes for MSE: by adding GRL and MX, it decreases from 144.7
to 138.8 on SHA, from 24.6 to 20.4 on SHB.

To make a further comparison, we also add the proposed distribution align-
ment with latent MixUp to RS in Table 2: Right, where we achieve MAE 87.3
on SHA and 15.1 on SHB. Adding GRL+MX to RS also improves the baseline:
the performance difference between PSSW and RS becomes smaller; yet, the ab-
solute value of the difference is still big, which justifies our PSSW. Notice PSSW
+ GRL + MX is the final version of our AL-AC hereafter.
Comparison with fully-supervised methods. We compare our work with
those prior arts [60, 39, 20, 35, 42, 43, 27]. All these approaches are fully-supervised
methods which utilize annotations of the entire dataset (300 in SHA and 400 in
SHB). While in our setting, we label only 30/40 images, 10% of the entire set.
It can be seen that our method outperforms the representative methods [60, 39]
a few years ago, and are not far from other recent arts, i.e. [20, 35, 42, 43, 27]. A
direct comparison to ours is CSRNet [20], we share the same backbone. With
about 10% labeled data, our AL-AC retains 85% accuracy on SHA (68.2 / 80.4),
83% accuracy on SHB (10.6 / 12.7 ). Compared to our baseline (denoted as RS
in Table 1), AL-AC in general produces significantly lower MAE, e.g. 87.9 v.s.
102.1 on SHA with M = 30; 17.9 v.s. 12.7 on SHB with M = 40.

Despite that we only label 10% data, our distribution alignment with latent
MixUp indeed enables us to make use of more unlabeled data across datasets:
for instance, a simple implementation with M = 40 on SHA, if we add SHB as
unlabeled data to AL-AC for distribution alignment, we obtain an even lower
MAE 78.6 v.s. 80.4 in Table 3.
Comparison with semi-supervised methods. There are also some semi-
supervised crowd counting methods [23, 38, 31]1. For instance in [38, 31], with
M = 50 they produce MAE 170.0 and 136.9 on SHA, respectively. These are
much higher MAE than ours. Since [38, 31] use different architectures from AL-

1 Results of [23, 38] can be estimated from their curve plots.
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Dataset SHA SHB

Measures MAE MSE MAE MSE

MCNN [60] 110.2 173.2 26.4 41.3

Switching CNN [39] 90.4 135.0 21.6 33.4

CSRNet [20] 68.2 115.0 10.6 16.0

ic-CNN [35] 68.5 116.2 10.7 16.0

PACNN [42] 62.4 102.0 7.6 11.8

CFF [43] 65.2 109.4 7.2 11.2

BAYESIAN+ [27] 62.8 101.8 7.7 12.7

Baseline (M = 30) 102.1 164.0 19.9 30.6

AL-AC (M = 30) 87.9 139.5 13.9 26.2

Baseline (M =40) 93.8 150.9 17.9 27.3

AL-AC (M =40) 80.4 138.8 12.7 20.4

Table 3: Comparison of AL-AC to
the state of the art on SHA and SHB.

Counting UCF

Measures MAE MSE

MCNN [60] 377.6 509.1

Switching CNN [39] 318.1 439.2

CP-CNN[44] 295.8 320.9

CSRNet [20] 266.1 397.5

ic-CNN [35] 260.0 365.5

PACNN [42] 241.7 320.7

BAYESIAN+ [27] 229.3 308.2

Baseline (M=10, m=3) 444.7± 25.9 600.3± 32.7

AL-AC (M=10, m=3) 351.4± 19.2 448.1± 24.5

Baseline (M=20, m=10) 417.2± 29.8 550.1± 25.5

AL-AC (M=20, m=10) 318.7± 23.0 421.6± 24.1

Table 4: Comparison of AL-AC with state
of the art on UCF.

C: 88 C: 87.5 C: 271 C: 274.1 C: 1210 C: 1215.7

C:700 C:647.8 C: 89 C: 89.1 C: 45 C: 45.3

Fig. 4: Examples of AL-AC on SHA, SHB, UCF, TRANCOS, and DCC. Ground truth
counts are in the original images while predicted counts in the estimated density maps.

AC, they are not straightforward comparisons. For [23], it uses about 50% labeled
data on SHA (Fig.7 in [23]) to reach the similar performance of our AL-AC with
10% labeled data. We both adopt the VGGnet yet [23] utilizes extra web data
for ranking loss while we only use unlabeled data within SHA, we use dilated
convolutions while [23] does not. To make them more comparable, we instead use
the same backbone of [23] and repeat AL-AC on SHA (implementation details
still follow Sec. 4.1), the mean MAE with M=30, m=10 on SHA becomes 91.4
(v.s. 87.9 in Table 3), which is still much better than that of [23].

In the supplementary material, we also provide the result by gradually in-
creasingM till 280 on SHA, where we show that by labelling about 80-100 labeled
data (nearly 30% of the dataset), AL-AC already reaches the performance close
to the fully-supervised method, as in [20] (Table 3).

4.3 UCF CC 50

It has 40 training images in total. We show in Table 4 that, labeling ten of them
(M = 10,m = 3) already produces a very competitive result: the MAE is 351.4
while the MSE is 448.1. The MAE and MSE are significantly lower (93.3 and
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Mall Baseline AL-AC* Count Forest [33] ConvLSTM [53] DecideNet [21] E3D [62] SAAN [11]

MAE 5.9± 0.9 3.8± 0.5 4.4 2.1 1.5 1.6 1.3
MSE 6.3± 1.1 5.4± 0.8 2.4 7.6 1.9 2.1 1.7

Table 5: Comparison of AL-AC with state of the art on Mall (M=80, m=20).

152.2 points) than baseline. We analyzed the result and found that our AL-AC
is able to select those hard samples with thousands of persons and label them
for training, while this is not guaranteed in random selection. Compared to fully
supervised method, e.g. [20], our MAE is not far. We also present the result of
M = 20,m = 10: MAE/MSE is further reduced.

4.4 Mall

Different from ShanghaiTech and UCF datasets, Mall contains images with much
sparser crowds, 31 persons on average per image. Following our setup, we label
80 out of 800 images and compare our AL-AC with both baseline and other
fully-supervised methods [33, 53, 21, 62, 11] in Table 5. With 10% labeled data,
we achieve MAE 3.8 superior to the baseline and [33], MSE 5.4 superior to the
baseline and [53]. This shows the effectiveness of our method on sparse crowds.

5 Discussion

We present an active learning framework for accurate crowd counting with lim-
ited supervision. Given a counting dataset, instead of annotating every image,
we introduce a partition-based sample selection with weights to label only a few
most informative images and learn a crowd regression network upon them. This
process is iterated till the labeling budget is reached. Next, rather than learn-
ing from only labeled data, the abundant unlabeled data are also exploited: we
introduce a distribution alignment branch with latent MixUp in the network.
Experiments conducted on standard benchmarks show that labeling only 10%
of the entire set, our method already performs close to recent state-of-the-art.

By choosing an appropriate m, we normally reach the labeling budget in
three active learning cycles. In our setting, training data in each dataset are
augmented to a fixed number. We run our experiments with GPU GTX1080.
It takes around three hours to complete each active learning cycle. The total
training hours are more or less the same to fully-supervised training, as in each
learning cycle we train much fewer epochs with limited number of labeled data.
More importantly, compared to the annotation cost for an entire dataset (see
Sec. 1 for an estimation on SHA), ours is substantially reduced !
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32. Onoro-Rubio, D., López-Sastre, R.J.: Towards perspective-free object counting
with deep learning. In: ECCV (2016)

33. Pham, V.Q., Kozakaya, T., Yamaguchi, O., Okada, R.: Count forest: Co-voting
uncertain number of targets using random forest for crowd density estimation. In:
ICCV (2015)

34. Rabaud, V., Belongie, S.: Counting crowded moving objects. In: CVPR (2006)
35. Ranjan, V., Le, H., Hoai, M.: Iterative crowd counting. In: ECCV (2018)
36. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised

learning with ladder networks. In: NIPS (2015)
37. Sam, D.B., Babu, R.V.: Top-down feedback for crowd counting convolutional neu-

ral network. In: AAAI (2018)
38. Sam, D.B., Sajjan, N.N., Maurya, H., Babu, R.V.: Almost unsupervised learning

for dense crowd counting. In: AAAI (2019)
39. Sam, D.B., Surya, S., Babu, R.V.: Switching convolutional neural network for

crowd counting. In: CVPR (2017)
40. Sener, O., Savarese, S.: Active learning for convolutional neural networks: A core-

set approach. In: ICLR (2018)
41. Settles, B.: Active learning literature survey. Tech. rep., University of Wisconsin-

Madison Department of Computer Sciences (2009)
42. Shi, M., Yang, Z., Xu, C., Chen, Q.: Revisiting perspective information for efficient

crowd counting. In: CVPR (2019)
43. Shi, Z., Mettes, P., Snoek, C.G.: Counting with focus for free. In: ICCV (2019)
44. Sindagi, V.A., Patel, V.M.: Generating high-quality crowd density maps using

contextual pyramid cnns. In: ICCV (2017)
45. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In:

ICCV (2019)
46. Tan, B., Zhang, J., Wang, L.: Semi-supervised elastic net for pedestrian counting.

Pattern Recognition 44(10-11), 2297–2304 (2011)
47. Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Courville, A., Lopez-

Paz, D., Bengio, Y.: Manifold mixup: Better representations by interpolating hid-
den states. In: ICML (2019)

48. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consis-
tency training for semi-supervised learning. arXiv preprint arXiv:1903.03825 (2019)



Active Crowd Counting with Limited Supervision 17

49. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion
and appearance. IJCV 63(2), 153–161 (2003)

50. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for
deep image classification. IEEE Transactions on Circuits and Systems for Video
Technology 27(12), 2591–2600 (2016)

51. Wang, Q., Gao, J., Lin, W., Yuan, Y.: Learning from synthetic data for crowd
counting in the wild. In: CVPR (2019)

52. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised
embedding. In: Neural Networks: Tricks of the Trade, pp. 639–655. Springer (2012)

53. Xiong, F., Shi, X., Yeung, D.Y.: Spatiotemporal modeling for crowd counting in
videos. In: ICCV (2017)

54. Xu, C., Qiu, K., Fu, J., Bai, S., Xu, Y., Bai, X.: Learn to scale: Generating multi-
polar normalized density map for crowd counting. In: ICCV (2019)

55. Yan, Z., Yuan, Y., Zuo, W., Tan, X., Wang, Y., Wen, S., Ding, E.: Perspective-
guided convolution networks for crowd counting. In: ICCV (2019)

56. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learn-
ing by uncertainty sampling with diversity maximization. International Journal of
Computer Vision 113(2), 113–127 (2015)

57. Yang, Z., Shi, M., Avrithis, Y., Xu, C., Ferrari, V.: Training object detectors from
few weakly-labeled and many unlabeled images. arXiv preprint arXiv:1912.00384
(2019)

58. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep con-
volutional neural networks. In: CVPR (2015)

59. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: Beyond empirical risk
minimization. In: ICLR (2018)

60. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via
multi-column convolutional neural network. In: CVPR (2016)

61. Zhou, Q., Zhang, J., Che, L., Shan, H., Wang, J.Z.: Crowd counting with limited
labeling through submodular frame selection. IEEE Transactions on Intelligent
Transportation Systems 20(5), 1728–1738 (2018)

62. Zou, Z., Shao, H., Qu, X., Wei, W., Zhou, P.: Enhanced 3d convolutional networks
for crowd counting. In: BMVC (2019)


