
Supplementary

A Experimental Setup

In this part, we want to provide some additional details regarding our experi-
mental setup, which allow a deeper understanding into our experimental setup.

A.1 Detailed Dataset Overview

In Table 4, we give an overview over the number of images in our used data
(sub)sets. The Cityscapes dataset has 2,975 labeled training images on which
we train the semantic segmentation part of our network. As we do not optimize
our hyperparameters for the semantic segmentation and thereby do not use the
validation set during training, our evaluation on this dataset is conducted on the
official validation set containing 500 labeled images.

While we always train the segmentation part of our model on the Cityscapes
dataset, the depth part of the network is trained on various splits of the KITTI
dataset. The split of the KITTI dataset, which is most frequently used to com-
pare depth estimation models, is the Eigen split [2], containing 697 images for
testing. While the number of test images is constant throughout recent ap-
proaches, the number of training and validation images has been redefined by
[12] to exclude static scenes. We also compare our method on the Benchmark
split [10], which contains 500 test images with labels, which are only available
on an evaluation server.

Finally, we train and evaluate on the KITTI split [4], whose test set are the
official 200 training images from the KITTI 2015 Stereo dataset [8]. This test
set has the advantage that it has available labels for both depth and semantic
segmentation, which makes it suitable to observe the benefits of multi-task train-
ing for depth and semantic segmentation. While the Cityscapes validation set in
principle also provides labels for both tasks, here the depth labels are obtained by
a classical model-based algorithm, while the depth labels of the KITTI dataset
are physical measurements from a LiDAR sensor and thereby better suited for
evaluating a depth estimation model. Also, as our depth estimation training re-
quires a preceding and a succeeding frame, the number of training images differs
slightly from the original definition.

A.2 Definition of the DC Object Classes

Also, we defined the DC object classes as all classes belonging to the human
and vehicle categories inside the Cityscapes dataset [1] which contains in total
19 labeled classes. More specifically, that means that we consider the person,
rider, car, truck, bus, train, motorcycle and bicycle class as DC object classes,
as they are often observed as moving inside an image sequence. Opposed to that
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Table 4: Overview over the used databases and available labels. Labels only available
on a benchmark server are denoted by “(3)”.

Dataset Subset # Images
Depth Segmentation
Labels Labels

Eigen split
train 21,880 3 7

val 4,187 3 7

test 697 3 7

Benchmark split
train 36,040 3 7

val 3,030 3 7

test 500 (3) 7

KITTI split
train 28,937 3 7

val 1,158 3 7

test 200 3 3

Cityscapes
train 2,975 3 3

val 500 3 3

test 1,525 3 (3)

the classes road, sidewalk, building, wall, fence, pole, traffic light, traffic sign,
vegetation, terrain and sky are considered as static, as they are usually not in
motion.

A.3 Evaluation Metrics

In Section 4, we simply referred to previous approaches for the exact definition
of the evaluation metrics. In this section, we provide the exact mathematical ex-
pressions which are used to evaluate the predicted depth maps dt with available
depth label dt as well as to evaluate the predicted segmentation maps mt with
regard to the ground truth label mt. Note that the depth maps are evaluated
using a sparse ground truth, where only the pixels with an available LiDAR
measurement are considered during evaluation. Also, we apply median scaling
to the predicted depth maps before evaluation to compensate the global scale
ambiguity [12].

While the defintions of all metrics are equal for all data(sub)sets, there are
two exceptions: On the Eigen test split we apply a crop defined by [2], which
is in accordance with previous approaches, while on the Benchmark test split
we cannot apply median scaling, as the depth labels from the evaluation server
are not freely available. Therefore, we determine the median over all image-wise
scale factors on the validation set and use this value as a global scale factor for
our predictions on the test set. Also note that the subsequent metrics (12)-(21)
are to be averaged over the respective test subset respectively.

The four error depth metrics used for evaluation on the Eigen and KITTI
split are defined as:
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with I being the set of all pixels and H and W being the width and height
of the image, respectively. The accuracy metrics are defined as follows:
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where [·] is defined as the Iverson bracket, which is 1 if the condition inside
the bracket is true, and 0 if the condition is false. Furthermore on the benchmark
split there are two more metrics, which are defined as
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Finally, we evaluate our semantic segmentation using the mean intersection
over union (mIoU) metric, which is defined as:

mIoU =
1

S

∑
s∈S

TPs

TPs + FPs + FNs
, (22)

where S = {1, 2, ..., S} is the set of all classes defined in the Cityscapes
dataset as described in Section A.2. Considering all labeled pixels for class s ∈ S
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in the predicted segmentation map mt, TPs is the number of true positive pre-
dictions, FPs is the number of false positive predictions, and FNs is the number
of false negative predictions. Note that while all depth metrics are computed
image-wise and then averaged over all images inside the test set, for the mIoU
calculation first TPs, FPs and FNs are summed up for all images of the test set
and only afterwards the mIoU is calculated.

B Evaluation

In this part, we give some additional examples of our proposed SGDepth method
in comparison to several depth estimation baselines and also in comparison to
our method trained without the semantic guidance (SGDepth only depth).

B.1 Depth Comparison to Baselines

In this section, we provide additional examples of the proposed SGDepth method,
which we compare to results of the baseline approaches. All models were trained
and tested on the Eigen splits [2] of the KITTI dataset [3].

In the examples of Figure 7 two things can be observed. Firstly, the depth
predictions of our full SGDepth method are sharpened at object boundaries. This
effect can be observed especially for small objects such as traffic lights or traffic
signs as, e.g., in rows 1 and 3 from the top and row 3 from the bottom. This
effect is mainly observed due to the joint training approach of depth estimation
and semantic segmentation as thereby the encoder better learns to extract object
boundaries, provided by the semantic segmentation, which in return guides the
depth estimation to predict sharper edges at these boundaries. We also suspect
that this effect is not even fully considered by the numerical evaluation as the
ground truth depth labels only cover about the bottom two thirds of the image
and many traffic signs and traffic lights are above this zone.

Secondly, our approach also allows for better learned depth of DC objects,
as, e.g., in rows 1, 2 and 6 from the bottom, where especially the pedestrians
and cyclists are more sharply visible inside the depth map. This is most likely
due to our semantic masking technique, where the depth of DC objects is mainly
learned from frames containing rather non-moving DC objects.

B.2 Benefits of Multi-Task Training

In this section we show additional examples of our SGDepth method for com-
parison with baselines trained only for the single tasks of depth estimation or
semantic segmentation, respectively. The models were all trained and tested on
the KITTI splits defined by [4].

The benefits of joint training for the depth estimation as discussed in the
previous section also apply for our comparison to our own baseline, where one
can clearly see the benefits of the semantic guidance for each single image inside
Figure 8. However, also the semantic segmentation maps improve, compared to
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Input RGB image SGDepth full Godard Wang Zhou [12][11][6]

Fig. 7: Additional examples of our proposed full SGDepth method in comparison to
baseline methods. The figure is best viewed on screen and in color.

a semantic segmentation baseline (SGDepth only seg.), which was solely trained
for the task of semantic segmentation (on the Cityscapes dataset). As stated
in Section 5.3, we believe that this improvement on the KITTI dataset is due
to the fact that through the self-supervised depth estimation, suitable features
for the KITTI dataset are extracted, which bridge the domain shift between
the Cityscapes and the KITTI dataset. This claim is also supported by the
qualitative results, which appear clearly improved compared to the baseline.

B.3 KITTI Eigen Split Ablation

We trained and optimized the parameters of our different model variants on the
KITTI split [4] to observe the resulting performance on both tasks, depth and
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Input RGB image SGDepth full SGDepth only depth SGDepth full SGDepth only seg.

Fig. 8: Additional examples on how the full SGDepth model compares to the models
trained only on the single tasks of depth estimation and semantic segmentation,
respectively. The figure is best viewed on screen and in color.

semantic segmentation. In the end we only evaluated the final obtained models
on the Eigen split benchmark. However, for completeness we also provide the
same ablation experiments as executed on the KITTI split on the Eigen split
in Table 5. We observe that all multi-task models outperform the single-task
baseline (SGDepth only depth) and that our final model (SGDepth full) is best
in the important metrics Abs. Rel. and δ < 1.25, as has been observed on
the KITTI split as well. Thereby, our ablation on the Eigen split confirms our
ablation experiments on the KITTI split.
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Table 5: Ablation study of different models on the KITTI Eigen split. CS indi-
cates training of the depth estimation on Cityscapes, K training on the KITTI Eigen
split, and (CS) training of the segmentation branch on Cityscapes. Best results at
each resolution are written in boldface.

Lower is better Higher is better

Method Resolution Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SGDepth only depth 640 × 192 K 0.117 0.907 4.844 0.196 0.875 0.958 0.980

SGDepth add multi-task training 640 × 192 (CS) + K 0.117 0.918 4.777 0.193 0.872 0.960 0.982
SGDepth add scaled gradients 640 × 192 (CS) + K 0.113 0.817 4.671 0.191 0.877 0.961 0.982
SGDepth add semantic mask 640 × 192 (CS) + K 0.116 0.917 4.726 0.189 0.874 0.961 0.982
SGDepth add threshold 640 × 192 (CS) + K 0.113 0.861 4.724 0.191 0.879 0.960 0.981

SGDepth full 640 × 192 (CS) + K 0.113 0.835 4.693 0.191 0.879 0.961 0.981

Table 6: Pose estimation results on the KITTI odometry dataset sequences 9 and 10.
Method Sequence 9 Sequence 10 # frames

Zhou et al. [12] 0.021 ± 0.017 0.020 ± 0.015 5
Godard et al. [5] 0.017 ± 0.008 0.015 ± 0.010 2
Luo et al. [7] 0.013 ± 0.007 0.012± 0.008 3
Ranjan et al. [9] 0.012± 0.007 0.012± 0.008 5

SGDepth only depth 0.017 ± 0.009 0.014 ± 0.010 2
SGDepth full 0.019 ± 0.010 0.016 ± 0.010 2

B.4 Pose Evaluation

Although the focus of our work is on depth estimation, we also provide results
of our pose estimation network evaluated with the same strategy as introduced
in [6, 12]. We trained on the sequences 0 to 8 of the KITTI odometry dataset
and evaluated our models on the sequences 9 and 10 with the results compared
to baselines shown in Table 6. Interestingly, the joint training of depth and
semantic segmentation seems to have a negative effect on the pose estimation,
whose optimization through multi-task learning could be subject to future works.
Nevertheless we achieve competitive results compared to the baselines [7, 9], in
particular when considering that most of them use more than 2 input images for
pose estimation at test time.
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