
AssembleNet++: Assembling Modality
Representations via Attention Connections

- Supplementary Material -

Michael S. Ryoo1,2, AJ Piergiovanni1, Juhana Kangaspunta1, and
Anelia Angelova1

1 Robotics at Google
2 Stony Brook University

{mryoo,ajpiergi,juhana,anelia}@google.com

A Appendix

A.1 Convolutional blocks with (2+1)D residual modules

Each convolutional block is implemented by alternating 2-D residual modules
and (2+1)D residual modules as was done in [5]. Each (2+1)D residual module
does 1D temporal convolution first, and then 2D spatial convolution followed by
1x1x1 convolution. This (2+1)D residual module is also similar the ones used in
[2]. We use the filter size of 3x3 for spatial convolutional layers, and the size of 3
for temporal convolutional layers. Temporal dilation from [5] was used to control
the temporal resolution of each (2+1)D block. 2D and (2+1)D residual modules
are repeated multiple times in each block. As a result, our residual blocks have
a total of 9, 12, 18, and 9 convolutional layers for levels 1 to 4, making the depth
of the network comparable to ResNet-50.

Since we follow the AssembleNet (2+1)D block design, the total number of
filers in each level is maintained as a constant, regardless the number of blocks
in the level. That is, our model has the number of parameters equivalent to the
two-stream version of ResNet-50.

Each RGB input block has 1 spatial convolutional layer (filter size 7x7, stride
2x2), 1 temporal convolutional layer (filter size 5, stride 1), and one max pooling
layer (pool and stride size 2x2). Each optical flow input block has 1 spatial
convolutional layer (filter size 7x7, stride 2x2) and one max pooling layer (pool
and stride size 2x2). The object input block has only one max pooling layer (pool
and stride size 4x4).

A.2 Computation overhead of peer-attention

Our approach is adding very little computation overhead. As was done in previ-
ous differentiable architecture search [1, 4], once the one-shot search is finished
and the attention connection weights (i.e., h) are obtained, only a single peer
node is selected by the softmax for each block and the others are discarded.
Figure 1(c) in the paper shows an example of the final model.



2 M. S. Ryoo et al.

As a result, similar to what was reported in [3] with channel-wise self-
attention, our peer-attention only causes 0.151% increase in the total computa-
tion (FLOPs). The increase in the number of parameters is 1.68%. Peer-attention
only adds one fully connected layer after every block. Each FC layer has an iden-
tical number of parameters as a 1x1 conv layer, while spending significantly less
amount of computation (compared to 1x1) as it does not have spatial resolution.

A.3 Learned architecture

We also provide our model in table form in Table 1. In particular, the 3rd column
of the table shows the connectivity: a list of blocks where the input to that block
is coming from. The fusion of the convolutional block outputs with different
tensor shapes is done using a spatial pooling and a 1x1 conv layer, before the
weighted summation. Further, notice that (as described in Section 3.5) there is
the one-shot peer-attention search module implemented before every input to
a convolutional block (i.e., Figure 2 in the paper), in addition to Table 1. The
final block (i.e., block 14) is followed by a FC layer to generate logits. Temporal
max pooling is used to combine logits of different frames in videos. Finally, cross
entropy loss is used to train the network.

Table 1. The table form of our model with detailed parameters. This model corre-
sponds to Figure 4 in the paper. “C, dilation, stride” in the Table correspond to the
ResNet channel parameter, temporal dilation rate, and spatial stride. Note that the
object input block does not have any convolutional layer, and 151 is the number of
object categories which decide the size of its input channel.

Index Level Input connections Block parameters:
C, dilation, stride

0 0 [RGB] 32, 2, 4

1 0 [RGB] 32, 4, 4

2 0 [Flow] 32, 1, 4

3 0 [Flow] 32, 1, 4

4 0 [Object] 151, 1, 4

5 1 [0, 1, 2, 3, 4] 32, 1, 1

6 1 [0, 1, 4] 32, 4, 1

7 1 [2, 3, 4] 32, 8, 1

8 1 [2, 3, 4] 32, 1, 1

9 2 [0, 1, 2, 4, 5, 6, 7, 8] 64, 4, 2

10 2 [2, 3, 4, 7, 8] 64, 1, 2

11 2 [0, 4, 5, 6, 7] 128, 8, 2

12 3 [4, 11] 256, 8, 2

13 3 [2, 3, 4, 5, 6, 7, 8, 10, 11] 256, 4, 2

14 4 [4, 12, 13] 512, 2, 2



AssembleNet++ 3

References

1. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and
simplifying one-shot architecture search. In: International Conference on Machine
Learning (ICML) (2018)

2. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition.
In: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(2019)

3. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

4. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture seach. In:
International Conference on Learning Representations (ICLR) (2019)

5. Ryoo, M., Piergiovanni, A., Tan, M., Angelova, A.: AssembleNet: Searching for
multi-stream neural connectivity in video architectures. In: International Conference
on Learning Representations (ICLR) (2020)


