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A Implementation Details

We based our implementation details on the work of [8], listed below for com-
pleteness.

Generic hyperparamaters. All models are optimized using SGD with a learn-
ing rate 0.005, momentum 0.9, weight decay 0.0001, and the “poly” learning rate
schedule [1]. We use a single GPU with a minibatch of 8 images. The input im-
ages during training are augmented with random horizontal flips and random
scaling in the range [0.5, 2.0] in 0.25 increments. The validity of these hyper-
parameters has already been tested in [8], and hence they are used in all our
experiments too, in order to ensure fair comparisons amongst different methods.

Dataset specific hyperparameters. PASCAL-Context [10] models are trained
for 60 epochs. The spatial size of the input images is 512×512. NYUD [13] mod-
els are trained for 200 epochs. The spatial size of the input images is 425×560.
Images of insufficient size are padded with the mean color.

Task weighting and loss functions. As is common in multi-task learning
(MTL), losses require careful loss weighting [8, 14, 4, 12], where each loss is task-
dependent. For edge detection, we optimize the binary cross-entropy (BCE) loss,
scaled by 50. Due to the class imbalance between the edge and non-edge pixels,
edge pixels are penalized with a weight 0.95, while non-edge pixels with a scale
of 0.05, accommodating [5, 7]. For evaluation, we set the maximum allowed mis-
localization of the optimal dataset F-measure (odsF) [9] to 0.0075 and 0.011 for
PASCAL-Context and NYUD, respectively, using the package of [11]. Semantic
segmentation and human parts segmentation are optimized with cross-entropy
loss, weighted by the factors of 1 and 2, respectively. Predictions of surface nor-
mals (normalized to unit vectors) and depth modalities are penalized using the
L1 loss, scaled by 10 and 1, respectively. Saliency is optimized using the BCE
loss, weighted by a factor of 5.
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Table 1. Single-task baseline comparison. We report the single-task performance
of the baseline implementations of [8, 14] for similar architectures on PASCAL-Context.
The arrow indicates the direction for better performance.

Method Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑
ASTMT [8] 70.30 63.90 55.90 15.10 63.90
MTI-Net [14] 68.20 64.49 57.43 14.77 66.38
Ours 71.88 66.22 59.69 13.64 66.62

B Reparameterization Details

In Section 3.3 of the main text (Response initialization, RI), we introduced the
methodology for the generation of a better filter bank Ws when compared to that
directly learned by pre-training Ws on ImageNet, and demonstrated improved
performance when utilizing RI in Section 4. In this section, we present additional
detail.

Recall that we defined y = f(x;Wm) = Wmx the responses of a convolu-

tional layer for an input tensor x, where Wm ∈ Rcout×k2cin are the pre-trained
ImageNet weights. We specify Y ∈ Rcout×n as a matrix containing n responses
of y with the mean vector y subtracted. To generate the new filter bank, we
first compute the eigen-decomposition of the covariance matrix Y Y T = USUT

(using Singular Value Decomposition, SVD), where U ∈ Rcout×cout is an or-
thogonal matrix with the eigenvectors on the columns, and S is a diagonal ma-
trix of the corresponding eigenvalues. We can now utilize UUT which acts as a
method to project to (UT ) and from (U) a latent space. Thus, we can rewrite
y = UUT (y − y) + y, with the centering operation being of importance due to
the space UUT being generated from centred responses. This gives rise to

y = Wmx = UUT (Wmx− y) + y

y = UUTWmx + (y − UUTy)

y = W i
tWsx + b (1)

where W i
t , initialized by U , represents the task-specific parameters optimized

independently for each task i, and is implemented as a 1 × 1 convolution. The
non-trainable shared parameters are defined as Ws = UTWm and implemented
as a k × k convolution, with k being the filter size of Wm. The bias b can be
added to the running mean of the batchnorm following the convolution [3].

C Baseline

To ensure our re-implementation provides a stable baseline, Table 1 compares
the single-task performance of our implementation using a ResNet-18 based
DeepLabv3+, the results from [14] using a ResNet-18 based FPN [6], and the
results from [8] who utilized a ResNet-26 based DeepLabv3+. We demonstrate
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Table 2. Comparison with the single-task baseline on PASCAL-Context for a
DeepLabv3+ with an R-34 backbone.

Method Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑ ∆m% ↓
Single-task 73.63 69.34 62.96 13.39 67.49 -

RCM (ours) 72.87 69.11 61.41 13.71 67.69 1.18

Table 3. Comparison with the single-task baseline on NYUD for a DeepLabv3+ with
an R-34 backbone.

Method Edge ↑ SemSeg ↑ Normals ↓ Depth ↓ ∆m% ↓
Single-task 70.13 37.39 21.47 0.54 -

RCM (ours) 69.50 36.19 21.70 0.55 1.77

that our single-task baseline outperforms both works on every task, and even
though the numbers are not directly comparable due to minor implementation
differences, it provides a verification of a strong baseline.

D Additional Backbone Experiments

We additionally compare the proposed RCM (Reparameterized Convolutions
for Multi-task learning) with respect to the single-task performance on the
DeepLabv3+ with the deeper ResNet34 (R-34) [2] backbone. Results for PASCAL-
Context [10] and NYUD [13] can be seen in Table 2 and Table 3, respectively.
As seen, the percentage drops of 1.18% and 1.77% for PASCAL-Context and
NYUD respectively are comparable to that of the ResNet18 backbone reported
in the main paper.
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