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These are the supplementary materials, accompanying our main paper. Here
we provide further implementation details and discuss additional quantitative
and qualitative results.

1 Implementation Details

In this section we introduce the implementation details of our method to ease
reproduceability. The code for training and testing will be released.

Network architecture.

We use a standard multi-layer perceptron as our Gradient Updating Network. The
network consists of 4 blocks, each of which is composed by one fully connected
layer, one batch normalization layer, one parametric ReLLU layer and one dropout
layer. Each fully connected layer has 1024 neurons, and the dropout probability
is set to 0.2.

Data sampling for training.

At each iteration of training, we uniformly randomly sample a pose and a shape
parameter from the motion database, processed via MOSH. The pose parameters
already contain global orientation of the body. In order to simulate different
camera view points, we rotate the body with yaw angles that we uniformly sample
from [—180°,180°] and roll and pitch angles uniformly sampled from [—20°, 20°].
To simulate missing or erroneous detections from the 2D pose detector, we ran-
domly drop simulated joints with a probability of 20%.

Training routine.

We train the network using Adam optimizer with learning rate 0f 0.001 for 20
epochs. The batch size is set to 1024. The whole training procedure takes roughly
8 hours on a Nvidia GTX 1080Ti GPU.

* Equal contribution.
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Fig. 1: Gradient comparison with gradient descent, initialized with zero
pose. (a): reconstruction error along with iterations; (b): 2D reprojection error
along with iterations; (c): Gradient norm along with iterations.
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Fig. 2: Gradient comparison with gradient descent, initialized with the
pose running our algorithm for one iteration. (a): reconstruction error
along with iterations; (b): 2D reprojection error along with iterations; (c): Gradi-
ent norm along with iterations.

2 Convergence Analysis

In this experiment we shed further light on the convergence properties of the
proposed algorithm and compare it to standard gradient descent.

To assess the quality of the solutions found by these two iterative algorithms
we optimize the same objective (the 2D re-projection error) without any regu-
larization or prior terms and then compare convergence rate and final solution
quality. As indication for convergence we analyse the gradient norm. In order
to assess the solution quality we analyse both the objective value and the true
reconstruction error (in 3D).

To this end we conduct two experiments. First, we initialize both algorithms
with the zero pose (Fig. 1) and let both algorithms run until convergence.

Fig. 1, ¢) plots the gradient-norm after each iteration, comparing ours with
standard gradient descent, both with and without employing line-search to
find the optimal step-size. Clearly, both algorithms make progress in terms of
convergence, where ours consistently achieves lower gradient norms, and is faster.
Fig. 1, (a+b) furthermore illustrate that both algorithms find a solution with
respect to the optimization criterion, ours finds significantly better solutions with
respect to the true objective. This suggests that our method indeed learns a
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Fig. 3: Gradient comparison with Adam, initialized with zero pose. (a):
reconstruction error along with iterations; (b): 2D reprojection error along with
iterations; (c): Gradient norm along with iterations.

Fig.4: Gradient comparison with Adam, initialized with the pose run-
ning our algorithm for one iteration. (a): reconstruction error along with
iterations; (b): 2D reprojection error along with iterations; (c): Gradient norm
along with iterations.

manifold of valid poses and learns additional regularizing terms that are necessary
in other optimization based methods in order to converge to a good solution.

In our second experiment, illustrated in Fig. 2, we repeat the same experiment
but initialize both algorithms with a pose configuration that is already close
to the true solution. This set of pose parameters is attained by running our
algorithm for one iteration and then using the intermediate output as starting
condition. As can be seen in Fig. 2, our method still converges faster to a better
solution even if gradient descent is initialized close to a good solution.

Please take note that during training we never iterate beyond N = 10 but at
inference we iterate beyond this training window (light blue: Ours beyond the
AL(On) ’

00,
rather than that of the parameter update ||A@| in both Figures to allow for a
direct comparison with gradient descent.

training window). Please also note that we plot the true gradient norm H

Same experiments conducted with Adam can be found in Fig. 3 and Fig. 4.
We can see similar observations.
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3 More quantitative results

We also compare other methods on MPI-INF-3DHP dataset [3]. It is a dataset
captured with a multi-view setup mostly in indoor environments. No markers are
used for the capture, so 3D pose data tend to be less accurate compared to other
datasets. We use the provided training set (subjects S1 to S8) for training and we
report results on the test set. The results are in Tab. 1. Ours also achieves better
performance than other state-of-the-art regression methods [1,2] if compared
fairly to ours. That is we directly compare the setting in which these methods do
not use image-to-3D paired information since our method does not have access
to this additional data.

Table 1: Evaluation on MPI-INF. [3]. For PCK and AUC, higher is better,
while for MPJPE, lower is better. Ours achieves better performance than other

state-of-the-art regression methods [1,2]| if compared fairly to ours.
Method PCK AUC MPJPE
VNect [1] 839 473 98.0

HMR (with additional 3D data) [1] 86.3 47.8  89.8
SPIN (with additional 3D data) [2] 92.5 55.6  67.5

HMR [1] 771 40.7 113.2
SPIN [2] 87.0 485  80.4
Ours 92.0 52.9 73.8

4 More qualitative results

In Fig. 5, we demonstrate more qualitative results and we show some failure
cases in Fig. 6.
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Fig.6: Some failure cases.



