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A Generalization Bounds for the generative replay
mechanism

In the following, We extend the theory analysis on the domain adaptation from
[5] (Theorem 2) to the generative replay mechanism.

Theorem 2. Let us consider two vector samples, one corresponding to the gener-
ated data {ut/ € R8|lvy ~ p(x*)} and another corresponding to the real data {v; €
Ré|y ~ p(x")} of size ny and ny, respectively. Then let h'(-) be a new learned
model trained on vy . For any s' > s and a’ < \/2, there is a constant ng depend-
ing on s’ satisfying that for any § > 0 and min(vy,ny) > ng max(é’(s'“), 1).
Then we have the following inequality, with the probability of at least 1 — § for
all ht :

E (h' () < E (W' (w)) + W (g, ) + 1/210g< )/a <\/T: \/;> +D

where E(h' (1)) := By, opx) [|B (1) — g(w) [, E(W (1)) := By, opzey (|1 (l/t/) -
g(vy)|] denote the observed risk for vy and vy, respectively, and g(-) is the
ground-truth labeling function. W (vy, 1) is the Wassenstein distance between
v and vy. D is the combined error when we find the optimal model ht' =
argmin(E(ht (1)) + E(ht(vy)).

This theorem clearly demonstrates that the performance degeneration of a
new learned model h! on the empirical data distribution p(x*). From Theorem 2,
we can conclude that with the generative replay mechanism, the lifelong learning
can be defined as a special domain adaptation case, in which the source and
target domain are the empirical data distributions from the current task and the
distribution approximated by the new learned model. As a direct consequence
of Theorem 2, we have the following Lemma 2 :

Lemma 2. There is a bound on the accumulated errors across all tasks, learned
from the given sequence of databases, during the lifelong learning :
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where F (hK (v )) denotes the observed risk on the probability measure v;x)
formed by samples drawn from p(X*), after they have been learned across K
tasks. D(i(K—l)J;(K)) is the combined error of an optimal model h* =

argmin(E (h* (v;c-1)) + E (K" (v;0)))

Proof. From Theorem 2, we can derive the following :
E (h'(n)) < E (h'(v1)) + By + D11
E (h (1/1')) < E (h (1/12)) =+ B12 =+ D(l/’12)

E (hl(l/lel)) <F (hl(ljlx)) + Bix-1 + D(1K7171K)

And then we can have:

E (hl(l/l)) S E (hl(l/lK)) + BlK + C(lk—l,lK)

B1e=W (v1,v1x) + \/W(\/”T \/;>

where n; and n;x denote the sample size for 14 and v, respectively.
And then we sum up all task risks, resulting in:

where

K

S EEKw) <Y B (W i)

/ (4)
W (v, Z(K)) 210g< )/a ( ) +D(1<K 1) 50,
N (K)

B The proof for Theorem 1 from the paper

In the paper, we define in equation (9) p(X!|x! =1, x*)= exp(—(I'(p(x'~1, x?), p(x!)))

as a probability of X* when observing X*~! and x* given that the proposed model

aims to align two distributions p(x*~1,x%) and p(x‘) where i > 1 at i-th task

learning. We can have the joint distribution p(x?, %=1, x!) = p(x?|x! =1, x!)p(x! 1,

The marginal probability is calculated by the following :

Xt) _ //p(it‘it—17Xt)p(it—17xt>d)~{t—ldxt

= i

////p(it|it_l’xt> &R X p(R ) p(x)p(x T dx T dx dx 2 dx" s

t—2

t—2
= / . ./p(il) H KR X I—Ip()(:t_i)df(1 cdxtUTrax? L dx!
i=0 i=0
(5)
This function describes how an initial distribution p(X) can be refined and
evolved to be a complex distribution p(x?) during the lifelong learning of multiple
databases.
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C The proof for Theorem 3. 090

091
In this case, we only consider two separate underlying generative factors z‘*%, z* o2
and define the latent variable model p(x!*1, %!, z!t1 z!) = p(x!*!, x|zt 2!)p(z! 1) 003

p(z?). It can be easily extended to multiple variables. The marginal likelihood is 004

calculated as: 095
096
p(XH—l, it) _ //p(xt+1, Zt+1)p()~ct, Zt)dzt—HdZt 007
(6) o098
_ /p(XH_l,ZH_l)dZH_l 5 /p(f(t, Zt)dZt 099
100
where we assume p(x!T1, z!™1) is independent from p(x?,z'). The marginal log- %!
likelihood function is derived as: 102
103
10gp(Xt+1,)~(t) _ log </p(Xt+17Zt+1) dzt+1 . /p(fct,zt) dzt) 104
105
_1 t+1 t+1 d t+1 1 =t t d t 106
108
gzt xt)
= log </p(xtﬂ’Zt+1)q(zt+1|xt+1>dzt+l + (7) 100

tiot
] PN AL )d t> 111
o8 (/p(x ' )q(ztlit) ’ 112

p(x+ zt+) P&, 2") 113
= logEq(zt+1‘xt+1) |:q(Zt+1|Xt+1) +lOgEq(zt|§(t) W 114
115
where ¢(z!*1|x!*1) and ¢(z!|X?) are variational distributions. Then we can derive 116
a lower bound on the model log-likelihood by using the Jensens inequality. 117
118

i (x+1, 71 p(x,2')
logp(XtJrl,Xt) > E Zt+1|xt+1 |:10g —— | 4+ E zt | %t log — T (8) 119
q(zttxt*1) q(ztH1]xt+T) a(z*|x*) q(zt|xt) 120
Then we can decompose the two terms from the right hand side. We omit e
the superscript for z for the sake of simplicity. 122
123
124

t+1 ~t

1yt p(xt*1|z)p(z) i p(Xt|z)p(z) 125
log p(x")p(x") = Eq(zfxt+1) [IOg q(z[x 1) + By(ajzr) |log q(z]xt) 126
B - »(z) 127
= Eq(zlxt+1) [logp(xt \z)] + Eq(z|xt+1) |:10g q(ZlXH'l):| + 128
Eq@z) [logp(X'[2)] + Eqeapxr) {log o(z) } i
etz e q(z[x") 131
= Eq(ajx+) [log p(x*)2)] — Drcr(q(zlx")[|p(2))+ 132
Eq(zixt) [log p(X'2)] — Dicr(q(2[%")|Ip(2)) s
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In practice, we can implement variational distributions by using a single
probabilistic encoder, and this can have many advantages. For instance, the la-
tent space can capture specific task information in several subspaces and capture
the shared information between different domains in the same subspace. In ad-
dition, we can easily perform many down-stream tasks such as inference and
reconstruction across domains.

D The proof for Lemma 3.

Lemma 3. From the Theorems 2 and 3, we can derive a lower bound on the
ELBO at t-th task learning, as expressed by:

L(6,6x,.,x") > L£(0,&x", %) = W(v0') - [2log Cs) /a <\/E+ \/3)

_D*

(10)
where v € R*, 1/ € R® are formed by n and n’ numbers of drawn samples from
p(x")p(x'~1) and [L p(x*), respectively, where n and n’ denote the sample size.
Proof. We consider the negative EBLO —£(6,&;x!,..,x?) as the observed risk
for v and —L£(0,&;xt,%x!71) as the observed risk for v’. The h' is expressed as
the proposed model that measures the ELBO. For any s’ > s and o’ < /2,
there exists some constant ng depending on s’ satisfying that for any § > 0 and
min(n, n’) > no max(6~('+2) 1). Then with the probability at least 1 — & for all
ht, we can have:

—L(0,&x ., xt) < —L£(0,&x, %71

FW(0,0') 44 [210g (;) Ja! (\/Eﬂ/nT) . (11)

where D* is the combined error of an optimal model h* that minimizes the
errors (—L£(6,&xY, .., x%) — £(6,&x8,%571)). Then Both sides are multiplied by
-1, resulting in:

£(97 E; Xl? “’Xt) Z E(G’ 6; xt75’(t71)

_W(U,U')_\/WQ/zﬂ/g)_D* (12)

This result shows that we can derive a lower bound on real sample log-
likelihood logpg(x!,...,x") > L£(6,& x5, x'71). We also show the connection
between domain adaptation and generative replay mechanism such that [ p(x?)
and p(x!)p(x'~1) can be seen as the source domain and target domain under the
context of domain adaptation.

In the following, we provide the quantitative results for Lemma 3. We train
the proposed model under the MNIST to Fashion lifelong learning setting. In
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180 order investigate the convergence of the proposed algorithm, we calculate the 180
181 L(0,4;xH, %7 and £(0,&;xY, ..., x?) during the second task learning. The re- 181
182 sults are provided in Figure 1, where ELBO1 and ELBO2 - A denote £(f,i;x!,X'™1) 182

1 and £(0,&xY,...,x") — /2log (3) /o’ (\/g—i— ,/%), respectively. We can ob- 183
184
185 serve that \/2log (3) /a’ (ﬁ + #) can be calculated explicitly. However, if g5

1:3 we can calculate the —W(v,v") — \/g) — O, explicitly. Then £(0,&;x,...,x%) ij
188 is bounded by the right hand side of equation (12). Lemma 3 shows that max- 188
189 imizing sample log-likelihood is equal to minimizing the two terms (one is the 189
190 distance between empirical and the approximated distributions while the second 190
Lo1 is the combined error C). 101
192 192
193 193
194 194
195 80 /== z501 B 195
196 --=- ELBO2-A 196
197 g - 197
198 g 198
199 %”“ 199
200 %_”o 200
201 8 201
202 120 202
203 203
204 U S R B 200
205 205
206 Fig.1. ELBO calculated durinig the MNIST to Fashion lifelong learning. 206
207 207
208 208
209 209
210 210
211 211
212 K The derivation of Lvyag. 212
213 213
214 214
215 In this case, we only consider to model a single task, then we have: 215
216 216
21 Do (Xv z,Q, C) 217
218 logp(x) =10g By . ;(z,a,c/x) |:Q§,a,6(z’ a, c|x)} (13) o5
219 219
220 220
o1 Then according to Jensens’ inequality, we have: o1
222 222
223 po(x,2,a,c) 223
224 Ing(X) > IE(IS-,E,(;(z,a,c|x) [IOg qg,a,a(z, a, C|X):| (14) 224
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EVAE(Hy G, &, 5) = ]Eq;,s,s(Z,a,Clx) log [m:l
po(x|2, a, c)p(alz)p(z)p(c)

Go(c¥)g-(@z)g,(zpx) | (19
= By et loglpo(x]2, a,¢)] — Dicr g (2])||p(2)]

— Egs (e Dr Llge(alz)|[p(al2)] — Dicrlgs(c[x)]p(c)]

= Eqa(C\X)q,s(a\Z)qc(Z\X) log [

where we have separated the Kullback-Leibler (KL) divergence components for
the continuous z space, as well as for the discrete and domain spaces ¢ and d,
respectively. Meanwhile, 6, ¢, ¢, d represent the parameters of the corresponding
networks.
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F The derivation of Lyag(0:,st, €ty 0t).

From Theorem 2, we can define the following latent variable model :

p(it_l,xt,zt+1,a ,C

p(f{tfl |zt+1 tJrl7 Ct+1)

t+1 t41

t ot At
,Z,a,C)—

Pzttt

16
,a x'|z', at, ct)p(z!, a’, c) (16)

The marginal log-likelihood can be rewritten as :

logp St—1 t

X
log/// t 1|Zt+1 at +1 ctH)p(zHl,atH,c”l)dztﬂdat*ldc“rl

+10g/// (x'|z', a’, c")p(z', a’, c')dz'da’dc’ (17)

pe(xt 1,Zt ’a 1 t+1)

q§,575(zt+1,at+1,ct+1‘xt 1):| +
pg(xt’zt’at,ct) :|
Q<,6,5(Zt7atact|xt)

= log qu,s,5(zt+l ,attl ct+l|xt) |:

log EQq,a,é(zt7at7ct|Xt) |:

Then according to Jensens’ inequality, we can rewrite the above equation as.

po(xt~ 1z, a,c) ]

95,2, (Z7 a, C|)~(t_1)

po(xt|z, a,c) }

Q§,6,5(Za a, C|Xt)

log p(x' ™1, x") 2 Eq . s (saclxt-1) [10%
(18)
+ ch,syg(z,a,c\xt) |:10g

where the superscripts of all latent variables are omitted for simplicity. Then we
can decompose the right hand side of the above equation as follows :

log[p(X' "M )p(x")] = Epmg. (alict—1),amg. (a1 ),cmgs (clzt-1) [l0gpo(X' |z, a,¢)]
— Dk [g5 (2% )p(2)] — Eq (zxt-1) D1 [4=(alz) ||p(al2)]
— Dxr [g5(c|x"1)[[p(c)]
+ By (slxt) amge (alxt) o (clxt ) [108 Do (X" |2, 2, €)]
— Dk, [4(2[x")[[p(2)] — Eq (z1x) Dicr [g-(al2)||p(al2)]

— Dk, [as(c[x")]|p(c)]
(19)
We ignore the subscripts for the sake of simplicity and rewrite the above
equation as:

2
log[p(X' " )p(x")] = D Earvg. (alx),aa (al),emas (cl) 108 Do (X2, 2, €)]
— Dk (s (2[x)|[p(2)] — Eq, (zx) Dx L [g:(al2)||p(alz)]
— D1 [g5(c|x)||p(c)]

(20)
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Where we use 22 to denote the joint model log-likelihood which includes
both data from a new database as well as data generated by the generator and
corresponding to the previously learnt databases. In practice, we sample a batch
of images from both the true data distribution p(x!) and from the previously
learnt distributon p(x'~!) for estimating the gradients of the data with respect
to the model parameters in the Stochastic Gradient Descent training.

G The pseudocode and learning process for the
supervised algorithm.

The pseudocode of the proposed algorithm is provided in Algorithm 1. The
learning procedure is illustrated in Fig. 2. Two objective functions, adversarial
loss and log-likelihood maximization, are employed to train the generator and
inference models, respectively. Once the learning for the current task is fulfilled,
the generator starts generating replay data samples while the inference models
infer the latent variables from the generated images.

Match the two distributions

Generate previous knowledge

| o619 =@~ sl [@

EERRG

Fig. 2. The structure of the supervised learning.
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9

Algorithm 1 The supervised training algorithm for L-VAEGAN.

1:Sample X” ={x,x] ,....,x} } from the T-th task

2:Sample Y ={y/,y} ..., ) } from the T-th task

3:Assign 4" ={a},a,.....,a) } for the T-th task

4:Sample {X] yers XT']} = {xll S X5 ey x;,_]} from the previous task
5:0btain {Y1 yens YT’I} = {yl1 J Ve y;’l} inferred by the encoder
6:0btain {Al, — AH} = {all, a,..., a]Tv’l} inferred by the encoder

7: Xy =X U{X' X"}
8:%,, =Y u{r, .y}
9: Ay, =A"0{4,.. 4"}

10:While epoch < epoch™ do

11: While batch < batch™ do minibatch procedure
12: x,,, =Select(epoch, X, ) batch samples
130 . = Select (epoch,Y, ;) batch samples

14:  a,,, = Select(epoch, 4,,, ) batch samples
15:  Weak phase:

16:  Train the generator and discriminator by optimizing L¢,, (6,,®,)
17:  Dreaming phase:
18:  Train the generator and encoders by optimizing L7, (6,,6,,,,6,)

19:  Train the class-specific and domain-specific encoders by L, L.
20: End
21:End
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H Ablation study

In this section, we investigate the importance of various model characteristics
for the lifelong unsupervised representation learning.

H.1 The choice of the latent variables

Firstly, we consider that we train the proposed framework with only a single
latent variable z as the baseline. Afterwards, we train the proposed framework
with two inference models as explained in Section 5.3 for comparison. In here,
we would like to investigate whether the proposed approach can accurately infer
the task ID for the given data samples without performance loss. The average
reconstructions across all testing data is reported in Table 1. We observe that the
performance of the task inference model does not deteriorate while learning from
several databases. Then we perform task inference experiments and the results
are reported in Table 2. We find that the task-inference model can infer accurate
task ID for the given data. This result also demonstrates that the latent variable
z has captured the task or domain information, which enables the task-inference
model ¢.(a]z) to make accurate predictions.

MNIST and Fashion
Methods Lifelong Dataset Reco Acc

L-VAEGAN M-F MNIST 4.75 92.53
Baseline M-F MNIST 4.71 91.29

L-VAEGAN M-F Fashion 17.44 67.66
Baseline M-F MNIST 16.54 67.97

L-VAEGAN F-M MNIST 4.92 93.29
Baseline F-M MNIST 5.14 92.34

L-VAEGAN F-M Fashion 13.16 66.97
Baseline F-M MNIST 14.78 66.45

Table 1. Quantitative Evaluation on the representation learning ability of various
methods

H.2 Disentanglement between z and c

In this section, we investigate the effectiveness of the disentanglement between z
and c. We train the proposed model with three latent vectors under the lifelong
supervised learning setting. After training, the inference model g, (c|x) is used to
make predictions. Then we change one dimension of the latent vector z inferred
by g.(z|x) while fixing the others. We present the results in Figure 3. We observe
that the latent variables z only represents the hand writing styles instead of
digital types in the images.

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449



ECCV-20 submission ID 3615 11

MNIST and Fashion
Methods Lifelong Dataset Acc
L-VAEGAN M-F MNIST 91.26
L-VAEGAN M-F Fashion 91.12
L-VAEGAN F-M MNIST 94.25
L-VAEGAN F-M Fashion 97.48

Table 2. Task inference accuracy on MNIST and Fashion.

7
7
7
7
7
7
7
/-‘r

e N N N N NN
NN N N N N NN
NN N N N NN

a) MNIST.

Fig. 3. The reconstruction results on MNIST when changing a single continuous latent
variable and fixing all the others. We change a latent variable from -2 to 2 for MNIST
and from -1 to 1 for SVHN.

H.3 Generalization bounds for the generative replay

In the following we provide numerical results for the generalization bounds for the
generative replay mechanism described in the Section 3.3 of the paper. Firstly,
we train the proposed model under the MNIST-Fashion lifelong learning, where
we separately calculate the observed risk E;(h') (the objective function loss)
for the drawing samples from p(x!) and the risk Ey/(h!) for samples draw from
p(x') during the second task learning. We plot the results in Figure 4-a, where
risk1 and risk2 denote Ey/(h') and Ej(h'), respectively. We find that Ey.(h!) is
closer to E;(h') and still a bound on E;(h') during the course of training. And
then we observe that both E1(h!) and Ey/(h!) are increased due to the model’s
capacity (the learning adapts the weights of the model in order to perform the
task associated to both MNIST and Fashion databases).

We also train the model under the MNIST-MNIST lifelong learning, where
the dataset associated with the second task is comprised of generative replay data
samples produced by the model trained on the first task. Figure 4-b provides
the numerical results. We observe that Ey/(h') is a bound on E;(h') and this
bound is gradually slightly increased during the course of training. The reason is
that the model is gradually adapting p(X!) to the underlying distribution, and
the bound is depending on the distance between p(X!) and p(x!).

454
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375 | — Riski 220 | — Riski
Risk2 Risk2
350
9 218

0 20 40 60 80 100 0 20 40 60
Training iterations ‘Training iterations

(a) MNIST-Fashion (b) MNIST-MNIST

80 100

Fig. 4. Observed risks during the lifelong learning.

H.4 Is the two-step optimization necessary?

The proposed two-step optimization algorithm contains two independent op-
timization paths. However, if the proposed model would use only one of the
optimization paths, then it would not be able to learn the representation of data
on one hand or it would lack higher-quality generative replay samples on the
other hand. In order to investigate these assumptions, we firstly assume that
the proposed model is only trained through the ”wake” phase. In this situation,
the inference network would not be trained and therefore would not learn data
representations. On the other hand, we consider to train the proposed model
by using only the ”dreaming” phase as our baseline. We report the results in
Table 3. From these results we observe that without the ”wake” phase, the pro-
posed model can not learn good latent representations when compared with the
model trained with both ”"wake” and ”dreaming” phases. The reason for this
is that the log-likelihood optimization can not provide high-quality generative
replay samples, and this would result in a deterioration of the performance.

Table 3. The reconstruction error and classification accuracy after MNIST to Fashion
lifelong learning.

MNIST and Fashion
Methods Lifelong Dataset Reco Acc

L-VAEGAN M-F MNIST 4.75 92.53
baseline M-F MNIST 8.94 90.13

L-VAEGAN M-F Fashion 17.44 67.66
baseline M-F Fashion 21.35 63.89

L-VAEGAN F-M MNIST 4.92 93.29
baseline F-M MNIST 8.32 89.56

L-VAEGAN F-M Fashion 13.16 66.97
baseline F-M Fashion 19.98 61.49
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H.5 Reducing memory use

Instead of generating a collection of data samples from the generator before the
next task learning, we can use a small buffer to preserve the current model’s
parameters before the next task learning. Then the preserved model is used to
sample a batch of images, which is used in the next task learning. The learning
structure is shown in Figure 5, where the buffer is always fixed when increasing
the number of tasks to be learnt. After the current task learning, the old model
parameters stored in the buffer will be replaced by the current model parameters.
And then in the new task learning, this buffer is used to generate a batch of
images from the stored model. The buffer used in our model can achieve a similar
performance without the need to increase the required memory when increasing
the number of tasks to be learnt. This mechanism provides a reduced memory
requirement in the proposed model.

Match the two distributions

®
sampling | @ ‘ e
o ©

Learn cross-domain representations

(X X5
\ q(t |x)

Fig. 5. The structure of the proposed model with the buffer.
H.6 Is the Generative Replay Mechanism (GRM) important?

In the following experiments we consider the proposed model without using
the generative replay mechanism as the baseline in unsupervised experiments.
We use the same hyperparameter setting for the baseline and for the approach
proposed in the paper. We train the baseline under the CelebA to 3D-Chair
lifelong learning and the results are shown in Figure 6. It can be observed from
these results, that when we would not use GRM the model quickly forgets the
knowledge learned from the previous databases and cannot give appropriate
image generations and accurate reconstructions for the images from previous
tasks.

,\‘m?;”f 'r .%M M e 4 sFom i

(a ) Generatlons. (b) Reconstructions.

Fig. 6. Reconstruction and generation results when considering CelebA to 3D-chair
lifelong learning without using the generative replay mechanism.
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I Image quality evaluation using the FID and IS score

In the following, we introduce to use the Inception score (IS) [6] and Fréchet
Inception Distance (FID) [1] in order to evaluate the quality of generated im-
age results. We train various methods considering the Cifarl0 [2] to MNIIST
database lifelong learning. After training, we calculate the IS score on 5,000
generated images, some of which are shown in Figure 7-a, where we compare our
results with four popular lifelong learning approaches : LGAN [7], LifelongGAN
[8], VAEGAN [3] and LGM [4]. The visual results are reported in Figure 8. We
can observe that LifelongGAN [8] requires to use previous real data samples to
prevent forgetting, when is applied in generation tasks. The results show that
GAN based lifelong approaches achieve higher IS score than VAE based methods
and this it can be observed in the quality of the images generated, where VAEs
usually generate blurred images. The approach proposed in this paper not only
produces higher-quality generative replay images but also learns representations
of data that other GAN based lifelong learning approaches can not model. We
also train various methods under the CelebA to CACD lifelong learning setting.
The FID scores are calculated between 5,000 target images and 5,000 generated
images, which are displayed in Figure 7-b. We sample 5,000 images from both
CelebA and CACD databases as target images for calculating FID.

Evaluation results Evaluation results

Ny N

FID score

N
5 & . §

L-VAEGAN LGAN  LifelongGAN ~ VAEGAN LGM L-VAEGAN LGAN  LifelongGAN  VAEGAN LGM
Methods Methods

(a) IS evaluation. (b) FID evaluation.
Fig. 7. IS and FID evaluations.

In order to further compare the representation ability of the proposed meth-
ods with other approaches, we represent and reconstruct 5,000 images from Ci-
far1l0 database and then calculate the IS score as a measure of image quality.
The results are provided in Figure 9. We are not considering comparisons with
GAN based approaches because these methods can not provide reconstructions
of original images. These results demonstrate that the proposed L-VAEGAN
learns better lifelong representations than other VAE based lifelong approaches.
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Fig. 8. The generation and reconstruction produced by L-VAEGAN after CIFARI10 to
MNIST lifelong learning.

Evaluation results

L-VAEGAN VAEGAN LGM
Methods

(a) IS score.

Fig. 9. IS evaluations.

J Additional experimental results

In this section, we present additional results to those shown and discussed in the
Section 6, “Experimental results” from the paper.

J.1 TUnsupervised learning

In the following we present a series of additional results, which add to those
provided in Section 6.1, “Unsupervised learning” of the paper. The results from
Figures 12a, 12b and 12¢ contain examples of real images from CelebA to CACS
dataset, their generations and reconstructions, respectively. The results from
Figures 13a, 13b and 13c contain examples of real images from CelebA to 3D-
chairs dataset, their generations and reconstructions, respectively. These results
are supplementary to the results shown in Figure 7 from page 7 in the paper. We
also show that the proposed approach is able to discover four and two disentan-
gled representations for CelebA and 3D-chair, respectively, which are illustrated
in Figure 10. The results from Figure 10 show visual disentangled results, which
display variations in the gender of the person whose face is shown in the image
from Figure 10a, of the width of the faces in Figure 10b, skin colour variations in
Figure 10c and face orientation, as shown in Figure 10d. The visual disentangled
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results in the 3D Chairs show variations in the chair style in Figure 10e and in
the 3D chair size in Figure 10f.

m

&d) I;OSG‘

4
A
" " ®
s “\WWW

(e) Chair style in 3D chairs (f) Chair size variation in 3D chairs

Fig.10. Results when manipulating latent variables under the CelebA to 3D-chairs
lifelong learning procedure. We change a single latent variables in the latent space
from -3.0 to 3.0 while fixing the other latent variables.

In the following we evaluate further results for interpolating in the latent
space between different domains. These results are additional to those discussed
in Section 6.1 from the paper and add to the results presented in Figures 8, 10
and 11 from the paper. The visual results are provided in Figure 11.

J.2 Lifelong learning of several databases

In the following we provide results when considering lifelong training using the
proposed L-VAEGAN model on 4 databases: MNIST, SVHN, Fashion and In-
verseFashion lifelong learning, where each database is trained for 100 epochs.
We evaluate the classification accuracy and average reconstruction errors of all
MNIST testing samples during the lifelong learning in order to measure the loss
of information. The plots showing the classification and image reconstruction are
provided in Figures 14a and 14b, respectively. We observe that the proposed L-
VAEGAN approach performs well when learning the first three databases while
is losing some information storage capacity when training during the follow-
ing stages. These results show the limitations of the generative replay mecha-
nisms when learning a long series of tasks by training consecutively with several
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Fig. 11. Interpolation results after lifelong learning.

(a) Real samples. (b) Generations. (c¢) Reconstructions.
Fig.12. The reconstruction and generation results on under the CelebA to CACD
lifelong learning.

(a) Real samples. (b) Generations. (c¢) Reconstructions.
Fig. 13. The reconstruction and generation results on under the CelebA to 3D-chairs
lifelong learning.
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databases. A set of original images are shown in Figure 15a, while their recon-
structions and generations are shown in Figures 15b and 15c. From these results
we can observe that the L-VAEGAN can give higher-quality reconstructions even
if learning four different tasks in a sequential manner.

Catastrophic forgetting during the lifelong learning Catastrophic forgetting during the lifelong leaming

Reconstruction error

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Epochs Epochs

(a) Reconstruction errors (b) Classification accuracy

Fig. 14. Forgetting curve during MNIST-SVHN-Fashion-IFashion lifelong learning.

(a) Testing samples (b) Reconstructions (c) Generation

Fig. 15. The generation and reconstruction after lifelong learning.

We also train the model on the high dimensional datasets under the lifelong
learning framework. The results are shown in Figures 16a, 16b and 16¢ for a set
of original images, their reconstructions and corresponding generations, respec-
tively. From these results we can observe that the generator network can not
produce all images from the three different domains. This may due to the model
collapse problem. The proposed approach still provides reasonable reconstruc-
tions for the given inputs, which demonstrates that it learns reasonable latent
representations from previously learnt distributions of the 3D-chairs dataset.

J.3 Transfer metric and transfer learning

By using the generative replay mechanism, the proposed approach can accelerate
the training speed for learning the next task by transferring previously learned
knowledge when learning a new task. If the current task is related to previously
learnt data distributions, the model should adapt to the new task quickly. In
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. : Fokd B
(a) Testing images (b) Reconstructed images (c) Generated images
Fig. 16. The generations and reconstructions after lifelong learning.
order to measure such transfer ability in the network, we consider defining a
performance score calculated by testing the data from each task in the beginning
stage of training :
1N
Pr,i = N Z ¢(xk,j7 fek,i(xk1j)) (21)
j=1
where py, ; is the performance score evaluated by the model updated after i-th
batch learning in k-th task, defining the corresponding database. xy, ; is the j-th
testing sample of the k-th task. ¢ is the performance metric which can be either
the Mean Square Error (MSE) or the classification accuracy, depending on the
type of task being learnt. fg, () is the model updated at i-th batch learning
for k-th task. This performance criterion has the ability to compare the learning
transfer ability.

Transfer ability of models

proy
elin

Transfer abilty of models
12000
% 1000

’1 - = e
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4000

2000

(a) Average reconstruction er-
rors on CACD during the life-
long CelebA to CACD

(b) Average reconstruction er-
rors on 3D-Chair during the
lifelong CelebA to 3D-chair

Fig.17. The transfer ability for the L-VAEGAN proposed model under the CelebA
to CACD, and for CelebA to 3D-chair lifelong learning, when considering (21). The
average reconstruction errors are calculated based on samples from the CACD and
3D-chair datasets during the second task learning, respectively.

In the following we train the proposed model under the CelebA to CACD
and CelebA to 3D-Chair lifelong learning frameworks, respectively. We consider
that the baseline is our model to be trained only on the CACD and 3D-chair
datasets. During the training, we evaluate the performance score py, ; from equa-
tion (21) for each batch learning and we use the average reconstruction error as
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the performance metric ¢(-). The results are shown in Figures 17a and 17b for
the CelebA to CACD database and CelebA to 3D-chairs, respectively. From the
Figure 17a we observe that the model gives reasonable reconstruction errors in
the initial training phase of the second task. However, the baseline learns data
samples rather slowly. This is due to the fact the CACD and CelebA are both
human face datasets, which means that they share similar facial feature infor-
mation with each other. So the model can quickly adapt to the new task as we
can observe in the decrease of average reconstruction errors during the learn-
ing steps. From Figure 17a we observe that the proposed L-VAEGAN approach
achieves lower reconstruction errors than the baseline in the beginning stage of
the training procedure. Then the baseline learns faster than the proposed ap-
proach. The reason behind this is that the human face image dataset shares few
features with the 3D-chair images, which have completely distinct appearance.
The knowledge learned by the CelebA cannot have a positive transferable effect
when learning an entire different dataset.
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