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Abstract. To get clear street-view and photo-realistic simulation in au-
tonomous driving, we present an automatic video inpainting algorithm
that can remove traffic agents from videos and synthesize missing regions
with the guidance of depth/point cloud. By building a dense 3D map
from stitched point clouds, frames within a video are geometrically cor-
related via this common 3D map. In order to fill a target inpainting area
in a frame, it is straightforward to transform pixels from other frames
into the current one with correct occlusion. Furthermore, we are able to
fuse multiple videos through 3D point cloud registration, making it possi-
ble to inpaint a target video with multiple source videos. The motivation
is to solve the long-time occlusion problem where an occluded area has
never been visible in the entire video. To our knowledge, we are the first
to fuse multiple videos for video inpainting. To verify the effectiveness of
our approach, we build a large inpainting dataset in the real urban road
environment with synchronized images and Lidar data including many
challenge scenes, e.g., long time occlusion. The experimental results show
that the proposed approach outperforms the state-of-the-art approaches
for all the criteria, especially the RMSE (Root Mean Squared Error) has
been reduced by about 13%.

Keywords: Video Inpainting, Autonomous Driving, Depth, Image Syn-
thesis, Simulation

1 Introduction

As computational power increases, multi-modality sensing has become more and
more popular in recent years. Especially in the area of Autonomous Driving
(AD), multiple sensors are combined to overcome the drawbacks of individual
ones, which can provide redundancy for safety. Nowadays, most self-driving cars
are equipped with lidar and cameras for both perception and mapping. Simu-
lation systems have become essential to the development and validation of AD
technologies. Instead of using computer graphics to create virtual driving sce-
narios, Li et al. [11] proposed to augment real-world pictures with simulated
traffic flow to create photorealistic simulation images and renderings. One key
component in their pipeline is to remove those moving agents on the road to gen-
erate clean background street images. AutoRemover [27] generated those kinds
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of data using the augmented platform and proposed a video inpainting method
based on the deep learning techniques. Those map service companies, which dis-
play street-level panoramic views in their map Apps, also choose to place depth
sensors in addition to image sensors on their capture vehicles. Due to privacy
protection, those street view images have to be post-processed to blur human
faces and vehicle license plates before posted for public access. There is a strong
desire to totally remove those agents on the road for better privacy protection
and more clear street images.

Significant progress has been made in image inpainting in recent years. The
mainstream approaches [4,6,21] adopt the patch-based method to complete miss-
ing regions by sampling and pasting similar patches from known regions or other
source images. The method has been naturally extended to video inpainting,
where not only spatial coherence but also temporal coherence are preserved.

The basic idea behind video inpainting is that the missing regions/pixels
within a frame are observed in some other frames of the same video. Under
this observation, some prior works [8, 23, 24] use optical flow as guidance to fill
the missing pixels either explicitly or implicitly. They are successfully applied in
different scenarios with seamless inpainting results. However, flow computation
suffers from textureless areas, no matter it’s learning based or not. Furthermore,
perspective changes in the video could also degrade the quality of optical flow
estimation. These frame-wise flow errors are accumulated when we fill missing
pixels from a temporally distant frame, resulting in distorted inpainting results,
which will be shown in the experiment section.

The emergence of deep learning, especially Generative Adversarial Networks
(GAN), has provided us a powerful tool for inpainting. For images, [9, 15, 25]
formulate inpainting as a conditional image generation problem. Although for-
mulated differently, GAN based inpainting approaches are essentially the same
as the patch-based approach, since the spirit is still looking for similar textures
in the training data and fill the holes. Therefore, they have to delicately choose
their training data to match the domain of the input images. And domain adap-
tation is not an easy task once the input images come from different scenarios.
Moreover, GAN-based approaches share the same problem as the patch-based
methods that they are poor at handling perspective changes in images.

As image+depth sensors become standard for AD cars, we propose a method
to inpaint street-view videos with the guidance of depth. Depending on the tasks,
target objects are either manually labeled or automatically detected in color im-
ages, and then removed from their depth counterpart. A 3D map is built by
stitching all point clouds together and projected back onto individual frames.
Most of the frame pixels are assigned with a depth value via 3D projection and
those remaining pixels get their depth by interpolation. With a dense depth map
and known extrinsic camera parameters, we are able to sample colors from other
frames to fill holes within the current frame. These colors serve as an initial guess
for those missing pixels, followed by regularization enforcing spatial and photo-
metric smoothness. After that, we apply color harmonization to make smooth



Depth Guided Video Inpainting 3

and seamless blending boundaries. In the end, a moving average is applied along
the optical flow to make the final inpainted video look smooth temporally.

Unlike learning-based methods, our approach can’t inpaint occluded areas
if they are never visible in the video. To solve this problem, we propose fusion
inpainting, which makes use of multiple video clips to inpainting a target region.
Compared to state-of-the-art inpainting approaches, we are able to preserve bet-
ter details in the missing region with correct perspective distortion. Temporal
coherence is implicitly enforced since the 3D map is consistent across all frames.
We are even able to inpaint multiple video clips captured at different times by
registering all the frames into a common 3D point map. Although our experi-
ments are conducted on datasets captured from a self-driving car, the proposed
method is not limited to this scenario only. It can be generalized to both indoor
and outdoor scenarios, as long as we have synchronized image+depth data.

In this paper, we propose a novel video inpainting method with the guidance
of 3D maps in AD scenarios. We avoid using deep learning-based methods so
that our entire pipeline only runs on CPUs. This makes it easy to be generalized
to different platforms and different use cases because it doesn’t require GPUs
and domain adaptation of training data. 3D map guided inpainting is a new
direction for the inpainting community to explore, given that more and more
videos are accompanied with depth data. The main contributions of this paper
are listed as follows:

1. We propose a novel approach of depth guided video inpainting for autonomous
driving;

2. We are the first to fuse multiple videos for inpainting, in order to solve the
long time occlusion problem;

3. We collect a new dataset in the urban road with synchronized images and
Lidar data including many challenge inpainting scenes such as long time
occlusion;

4. Furthermore, we designed Candidate Color Sampling Criteria and Color Har-
monization for inpainting. Our approach shows smaller RMSE compared
with other state-of-art methods.

2 Related Work

The principle of inpainting is essentially filling the target holes by borrowing
appearance information from known sources. The sources could be regions other
than the hole in the same image, images from the same video or images/videos
of similar scenarios. It’s critical to reduce the search space for the right pixels.
Following different cues, prior works can be categorized into 3 major classes:
propagation-based inpainting, patch-based inpainting, and learning-based in-
painting.

Propogation-based Inpainting. Propagation-based methods [1,5] extrap-
olate boundary pixels around the holes for image completion. These approaches
are successfully applied to regions of uniform colors. However, it has difficulties to
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fill large holes with rich texture variations. Thus, Propagation-based approaches
usually repair small holes and scratches in an image.

Patch-based Inpainting. Patch-based methods [2, 4, 6, 21] on the other
hand, not only look at the boundary pixels but also search in the other re-
gions/images for similar appearance in order to complete missing regions. This
kind of approach has been extended to the temporal domain for video inpaint-
ing [13, 14, 20]. Huang et al. [8] jointly estimate optical flow and color in the
missing regions to address the temporal consistency problem. In general, patch-
based methods can better handle non-stationary visual data. As suggested by
its name, Patch-based methods depend on reliable pixel matches to copy and
paste image patches to missing regions. When a pixel match can’t be robustly
obtained, for example in cases of big perspective changes or illumination changes,
the inpainting results are problematic.

Learning-based Inpainting. The success of deep learning techniques in-
spires recent works on applying it for image inpainting. Ren et al. [19] adds a
few feature maps in the new Shepard layers, achieving stronger results than a
much deeper network architecture. Generative Adversarial Networks(GAN [7])
was first introduced to generate novel photos. It’s straightforward to extend it
to inpainting by formulating inpainting as a conditional image generation prob-
lem [9, 15, 25]. Pathak et al. [15] proposed context encoders, which is a convo-
lutional neural network trained to generate the contents of an arbitrary image
region conditioned on its surroundings. The context encoders are trained to both
understand the content of the entire image, and produce a plausible hypothesis
for the missing parts. Iizuka et al. [9] used global and local context discrimina-
tors to distinguish real images from fake ones. The global discriminator looks at
the entire image to ensure it is coherent as a whole, while the local discriminator
looks only at a small area centered at the completed region to ensure the lo-
cal consistency of the generated patches. More recently, Yu et al. [25] presented
a contextual attention mechanism in a generative inpainting framework, which
further improves the inpainting quality. For video inpainting, Xu et al. [24] for-
mulated an effective framework that is specially designed to exploit redundant
information across video frames. They first synthesize a spatially and temporally
coherent optical flow field across video frames, then the synthesized flow field
is used to guide the propagation of pixels to fill up the missing regions in the
video.

3 Proposed Approach

Fig. 1 shows a brief pipeline of our approach. A 3D map is first built by stitch-
ing all point clouds together, and projected back onto individual frames. With
dense depth map and known extrinsic camera parameters, we are able to sam-
ple candidate colors from other frames to fill holes within current frame. Then,
a belief propagation based regularization is applied to make sure pixel colors
within the inpainting region are consistent with each other. It is followed by a
color harmonization step which ensures that colors within inpainting region are
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Fig. 1. Frame-wise point clouds (a) are stitched into a 3D map (b) using LOAM. The
3D map is projected onto a frame (c) to generate a depth map. For each pixel in the
target region (e), we use its depth (d) as guidance to sample colors from other frames
(f). Final pixel values are determined by BP regularization and color harmonization to
ensure photometric consistency. (g) shows the final inpainting result.

consistent with outside regions. More details will be described in the following
subsections.

3.1 3D Depth Map

Dynamic Object Removal. We first remove the moving objects from the point
cloud, only keep the background points in the final 3D map. It is straight-forward
to do so once the calibration between the depth sensor and the image sensor
is performed. All points that are projected in the bounding box of the image
are removed. The bounding boxes can be automatically detected or manually
labeled. Alternatively, we can use PointNet++ [18] to detect and remove those
typical moving objects directly from the point cloud.

3D Map Stitching. For lidar sensors, LOAM [26] is a quite robust tool to
fuse the multiple frames to build the 3D map. It is capable to match and track
geometric features even with a sparse 16-beam lidar. For other dense depth
sensors, such as Kinect, [10] and [22] proposed real-time solutions to reconstruct
a 3D map which can be further down-sampled to generate the final point cloud
with a reasonable resolution.

Camera Pose Refinement. The relative poses between depth sensor and
image sensor can be calibrated in advance, but there are still some misalign-
ments between the point cloud and image pixels, as shown in Fig. 2. Vibrations,
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Fig. 2. The point cloud is projected into the target region (red box) with colors. The
left image shows projection by calibration result. Obvious misalignment can be seen at
boundaries. The right image shows projection by optimized rotation R, where points
match much better with surrounding pixels. The region between yellow and red boxes
is where we compare colors of projected 3D points and image pixels to optimize camera
rotation matrix R.

inaccurate synchronization, and accumulative errors from point cloud stitching
cause pose offset between the image sensor and depth sensor.

In order to produce seamless inpainting results, such offset should be com-
pensated even if it’s minor in most times. From the initial extrinsic calibration
between the image sensor and depth sensor, we optimize their relative rotation
R and translation T by minimizing the photometric projection error. The error
is defined as:

E =
∑
p∈Ω
|c(p)− c(q)|2, (1)

where p is a pixel projection from 3D map. Ω is an area surrounding the target
inpainting region, which is illustrated in Fig. 2 as the region between red and
yellow boxes. q is original pixel in the image overlaid by p. The function c(·)
returns the value of a pixel.

Note that the colors and locations of a pixel are discrete values, making the
error function E not continuous on R and T. We can’t solve the following equa-
tion directly using the standard solvers, such as Levenberg-Marquardt algorithm
or Gauss-Newton algorithm. Instead, we search discrete spaces of R and T to
minimize E. However, R and T have 6 degrees of freedom (DoF) in total, mak-
ing the searching space extremely large. We choose to fix T and only optimize
R because R is dominant at determining projection location when the major-
ity of the 3D map are distant points. Moreover, in most cases, we only need to
move projection pixels slightly in vertical and horizontal directions in the image
space, which are determined by pitch and yaw angles of the camera. We finally
reduce our search space to 2 DoF, which significantly speed up the optimization
process.

Depth Map. Once the camera pose is refined, we project the 3D map onto
each image frame to generate the corresponding depth map. Note that some
point clouds are captured far from the current image, which can be occluded
and de-occluded during the projection process. Hence, we employ z-buffer to get
the nearest depth.
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Fig. 3. A color image and its corresponding dense depth map. Note that the depth is
only rendered for background points and all moving objects have been removed.

To get a fully dense depth map, we could definitely borrow some of the fancy
algorithms (e.g. [3]) that learn to produce dense depth maps from sparse ones.
However, we find that the simple linear interpolation is good enough to generate
the dense 3D map in our cases. We further apply a 5×5 median filter to remove
some individual noise points. The final depth map is shown in Fig. 3.

3.2 Candidate Color Sampling Criteria

As every pixel is assigned a depth value, it is possible to map a pixel from one
image to other images. There are multiple choices of colors to fill in the pixels
of the target inpainting region, a guideline should be followed to find the best
candidate color. We have 2 principles to choose the best color candidate: 1)
always choose from the frame that is closer to the current frame temporally
and 2) always choose from the frame where the 3D background is closer to
the camera. Please refer to Fig. 4 for an example of our candidate selection
criteria. The first requirement ensures our inpainting approach suffers less from
perspective distortion and occlusion. And the second requirement is because
image records more texture details when it’s closer to objects, so that we can
retain more details in the inpainting regions.

Under this guideline and the fact that sensors only move forwards during
capture, our algorithm works by first searching forwards temporally to the end
of video and then backwards until beginning. The first valid pixel is chosen as
the candidate. And the valid pixel means its location doesn’t fall into the target
inpainting regions.

3.3 Regularization with Belief Propagation

At this point, every pixel gets color value individually. If the camera pose and
depth value are 100% correct, we can generate perfect inpainting results with
smooth boundaries and neighbors. However, it’s not the case in the real world,
especially, the depth map always carries errors. Therefore, we have to explicitly
enforce some smoothness constraints.

We formulate the color selection as a discrete global optimization problem
and solve it using belief propagation (BP). Before explaining the formulation,
we first define the color space and neighbors of a target pixel. As shown in left



8 M. Liao et al.

Fig. 4. Color candidate selection criteria. Top row: a pixel finds its candidate colors
in 2 later frames where road texture appears clear in both images. In this case, we
choose the frame that is temporally close to the current frame, in order to minimize
the impact of perspective change and potential occlusion or de-occlusion. Bottom row:
a pixel finds its candidate colors in one previous frame and one later frame. In this
case, we prefer the later frame over the previous one, since road texture is lost in the
previous frame.

Fig. 5. Left image pair: potential color choices for a target pixel. a pixel within in-
painting region find its candidate pixel (red box) from a source image. A small window
of pixels around this candidate (yellow boxes) are all potential colors to fill the target
pixel. Right image pair: the 4 neighbors of a target pixel are not necessarily neighbors
in the source image due to perspective change. In order to get neighbor colors, we need
to warp neighbor pixels into the source image by their depth value.

image pair in Fig. 5, a target pixel (left red box) finds its candidate pixel (right
red box) from a source image, due to depth inaccuracy, the true color might not
lie exactly on the candidate pixel, but a small window around. So we collect all
pixel colors from this small n by n window to form the color space for the target
pixel. The right image pair in Fig. 5 illustrates how to find out the expected
colors of neighbors. Because of perspective changes, the 4 neighbors of a target
pixel are not necessarily neighbors in the source image. Hence, we warp neighbor
pixels into the source image by their depth value to sample the expected colors.

Let P be the set of pixels in the target inpainting region and L be a set of
labels. The labels correspond to the indices of potential colors in the color space.
A labeling function l assigns a lp ∈ L to each pixel p ∈ P . We assume that the
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labels should vary smoothly almost everywhere but may change dramatically at
some places such as object boundaries. The quality of labeling is given by an
energy function as

E =
∑

(p,q)∈N

V (lp, lq) +
∑
p∈P

Dp(lp), (2)

where N are the number of edges in the four-connected image grid graph.
V (lp, lq) is the cost of assigning labels lp and lq to two neighboring pixels, and is
normally referred to as the discontinuity cost. Dp(lp) is the cost of assigning label
lp to pixel p, which is referred to as the data cost. Determining a labeling with
minimum energy corresponds to the Maximum A Posteriori (MAP) estimation
problem.

We incorporate boundary smoothness constraint into the data cost as follow-
ing:

Dp(lp) =



|Cpl(lp)− I(q)|, if p is left boundary pixel

|Cpr(lp)− I(q)|, if p is right boundary pixel

|Cpt(lp)− I(q)|, if p is top boundary pixel

|Cpb(lp)− I(q)|, if p is bottom boundary pixel

α, otherwise

, (3)

where Cpl, Cpr, Cpt, Cpb return expected colors of pixel p’s left, right, top and
bottom neighbors respectively. q is the neighbor pixel of p outside of the inpaint-
ing region in the target image, so it has known color, which is returned by the
function I(q). Here we take the difference of true neighbor color and expected
neighbor color as a measure of labeling quality. For those pixels not on the in-
painting boundary, we give equal opportunities to all the labels by assigning a
constant value of α. The discontinuity cost is defined as

V (lp, lq) =


|Cpl(lp)− Cq(lq)|+ |Cp(lp)− Cqr(lq)| if L

|Cpr(lp)− Cq(lq)|+ |Cp(lp)− Cql(lq)| if R

|Cpt(lp)− Cq(lq)|+ |Cp(lp)− Cqb(lq)| if T

|Cpb(lp)− Cq(lq)|+ |Cp(lp)− Cqt(lq)| if B

. (4)

Here, Cp(·) and Cq(·) fetch colors for p and q at label lp and lq. L,R, T,B stand
for q is on left, on right, on top and on bottom respectively. For a pair of 2
neighboring pixels p and q, we compute differences between p’s color and q’s
expected color of p and vice versa.

3.4 Color Harmonization

Pixels from different frames may have different colors due to changing camera
exposure time and white balance, causing color discontinuities (Fig. 6). We bor-
row Poisson image editing [17] to solve these problems. Poisson image editing is
originally proposed to clone an image patch from source image into a destination
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Fig. 6. Left image: input image. Middle image: inpainting result. Note the color dis-
continuity in yellow box and blank pixels in red box. Right image: result after color
harmonization.

image with seamless boundary and original texture. It achieve this by solving
the following minimization problem

min
f

∫ ∫
Ω

|∆f − v| with f |∂Ω = f∗|∂Ω . (5)

Here all the notations are inherited from [17]. Ω is the inpainting region with
boundary ∂Ω. f∗ is color function of destination image and f is color function
of the target inpainting region within destination image. ∆. = [∂./∂x, ∂./∂y] is
gradient operator. v is the desired color gradient defined over Ω.

In our case, v is computed using the output from the belief propagation
step, with one exception. If two neighboring pixels within Ω are from different
frames, we set their gradient to 0. This guarantee color consistency within the
inpainting regions. The effectiveness of this solution is demonstrated in Fig. 6.
Note that the blank-pixel region is also filled up. Since blank pixels have 0
gradient values, solving the Poisson equation on this part is equivalent to smooth
color interpolation.

3.5 Video Fusion

Our algorithm has an implicit assumption that the inpainting regions must be
visible in some other frames. Otherwise, some pixels will remain blank, as can
be seen from Fig. 6. Learning-based methods can hallucinate inpainting colors
from their training data. In contrast, our approach can’t inpaint occluded areas
if they are never visible in the video, leaving blank pixels.

For small areas of blank pixels, a smooth interpolation is sufficient to fill the
hole. However, in some cases, a vehicle in front could block a wide field of view
for the entire video duration, leaving big blank holes. A simple interpolation will
not be capable of handling this problem. A better way to address this issue would
be capturing another video of the same scene, where the occluded parts become
visible. Fortunately, it is straightforward to register newly captured frames into
an existing 3D map using LOAM [26]. Once new frames are registered and
merged into the existing 3D map, inpainting is performed exactly the same way.
Some of our results of video fusion can be found in the next section as well as
in supplemental materials.
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3.6 Temporal Smoothing

Finally, we compute both forward and backward optical flows for all the result
frames. For every pixel in the target inpainting areas, we trace it into neighboring
frames using the optical flow and replace its original color with average of colors
sampled from neighbor frames.

4 Experiments and Results

To our best knowledge, all the public datasets (including DAVIS Dataset [16]) for
video inpainting don’t come with depth, which is a must for our algorithm. Au-
tonomous driving dataset ApolloScape [12] indeed have both camera images and
point clouds, but it’s not adopted by research community to evaluate video in-
painting. Plus, its dataset was captured by a professional mapping Lidar RIEGL,
which is not a typical setup for an autonomous driving car. Thus, we captured
our own dataset and compare to previous works on our dataset.

4.1 Inpainting Dataset

We use an autonomous driving car to collect large-scale datasets in urban streets.
The data is generated from a variety of sensors, including Hesai Pandora all in
one sensor (40-beam LiDAR, 4 mono cameras covering 360 degrees, 1 forward-
facing color camera), and a localization system working at 10 HZ. The LiDAR is
synchronized with embedded frontal facing wide-angle color camera. We recorded
a total of 5 hours length of RGB videos includes 100K synchronized 1280 ×
720 images and point cloud. The dataset includes many challenging scenes e.g.
background is occluded by large bus, shuttle or truck in the intersection and the

Inputs

Ours

Yu [25]

Xu [24]

Huang [8]

Fig. 7. 5 frames from different video clips are demonstrated to compare our results
with others.



12 M. Liao et al.

front car is blocking the front view all the time. For those long time occlusion
scenarios, the background is missing in the whole video sequence. We captured
these difficult streets/intersections more than once, providing us the data for
video fusion inpainting. Our new dataset will be published with the paper.

4.2 Comparisons

We qualitatively and quantitatively compare our results to three state-of-the-
art works: two video inpainting approaches [8, 24] and one image inpainting
approach [25]. For those two deep learning-based approaches [24] and [25], we
re-train their models on our dataset by randomly sampling missing regions on
input frames to perform a fair comparison.

Qualitative Comparison. In Fig. 7, we compare our results with three
other methods. It is clear that our method produces better results than others.
Even though Huang [8] got smooth inpainting results, almost all the texture
details are missing in their results. As shown, Yu [25] and Xu [24] sometimes fill
totally messy texture in the target regions.

Fig. 8 illustrates our capability to handle perspective change between source
and target frames. Since our method is based on 3D geometry, perspective
changes are inherently handled correctly. However, existing methods have a hard
time overcoming this issue. They either fail to recover detailed texture or fail to
place the texture in the right place.

Quantitative Comparison. To quantitatively compare our method with
other methods, we manually labeled some background areas as the target in-
painting regions and use them as the ground truth. We utilize four metrics for the

Fig. 8. Top row: a patch from source image needs to be used to inpaint an occluded
region in target image. Although there is significant perspective change from source to
target images, our method produces geometrically and visually correct results. While
other methods either fail to recover detailed texture or fail to place the texture in the
right place.
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Methods MAE RMSE PSNR SSIM

Yu [25] 10.961 16.848 20.821 0.850
Xu [24] 7.569 12.932 19.220 0.594
Huang [8] 6.924 11.017 20.022 0.762
Ours 6.135 9.633 21.631 0.895

Table 1. Quantitative comparison with other methods, where the best results are
highlighted in bold. To be clear, the values of “MAE” and “RMSE” are the lower the
better while the values of “PSNR” and “SSIM” are the higher the better.

evaluations: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM).
Tab. 1 shows the evaluation results of the baseline methods and our method.
Note that our method outperforms others on all four metrics. Our method re-
duce RMSE by 13% compared to SOTA method.

4.3 Ablation Study

Poisson Image Blending Fig. 9 shows the effectiveness of applying Poisson
image blending. Visible seams are obvious at boundaries of pixels coming from
different frames. This is because our capturing camera is working under auto
exposure and auto white balance mode. A same object may have different color
tones in different frames from the same video, not to mention videos captured on
different days. Tab. 2 shows the quantitative results with and without Poisson
color blending. It is clear that color blending indeed improves the results.

Strategies MAE RMSE PSNR SSIM

no blending 9.410 17.484 21.783 0.911
blending 6.497 13.009 22.312 0.917
Table 2. Ablation study on Poisson color
blending, where the best results are high-
lighted in bold. To be clear, the values of
“MAE” and “RMSE” are the lower the
better while the values of “PSNR” and
“SSIM” are the higher the better.

Strategies MAE RMSE PSNR SSIM

no fusion 10.427 14.967 20.941 0.879
fusion 6.059 8.333 21.195 0.882

Table 3. Ablation study on multiple
video fusion, where the best results are
highlighted in bold. To be clear, the values
of “MAE” and “RMSE” are the lower the
better while the values of “PSNR” and
“SSIM” are the higher the better.

Video Fusion. Fig. 9 shows fusion of 2 videos. 1st row shows four frames
from a video and the 2nd row shows 4 frames from another video captured
on a different day at the same traffic intersection. Here, our goal is to inpaint
those foreground objects in the 2nd video. 3rd row shows output using video
2 only, where exists large blank regions. That is because front vehicles keep
blocking certain areas during the entire capture time. It is clear that Poisson
image blending is not capable of completing large blank holes. 4th row shows
BP output after we fuse the 1st video into the 2nd one, where the blank holes
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Fig. 9. 1st row: frames from video 1; 2nd row: frames from video 2 captured on a
different day; 3rd row: results after Poisson color blending using video 2 only; 4th
row: direct inpainting results by fusing both videos; 5th row: results after Poision
color blending using both videos.

are all gone. 5th row shows the final results after color blending and optical flow
temporal smoothing. Tab. 3 demonstrates effectiveness of video fusion.

The fusion of multiple videos for inpainting demonstrates another advan-
tage of our proposed approach. For those existing video inpainting works, they
haven’t address the issue of long-time occlusion, neither did they proposed to
fuse multiple videos for inpainting purpose. Please checkout video demos here:
https://youtu.be/iOIxdQIzjQs .

5 Conclusion

In this paper, we propose an automatic video inpainting algorithm that removes
object from videos and synthesizes missing regions with the guidance of depth.
It outperforms existing state-of-the-art inpainting methods on our inpainting
dataset by preserving accurate texture details. The experiments indicate that
our approach could reconstruct cleaner and better background images, espe-
cially in the challenging scenarios with long time occlusion scenes. Furthermore,
our method may be generalized to any videos as long as depth exists, in con-
trast to those deep learning-based approaches whose success heavily depend on
comprehensiveness and resemblance of training dataset.
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