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Abstract. Imaging in low light is difficult because the number of pho-
tons arriving at the sensor is low. Imaging dynamic scenes in low-light
environments is even more difficult because as the scene moves, pixels
in adjacent frames need to be aligned before they can be denoised. Con-
ventional CMOS image sensors (CIS) are at a particular disadvantage
in dynamic low-light settings because the exposure cannot be too short
lest the read noise overwhelms the signal. We propose a solution using
Quanta Image Sensors (QIS) and present a new image reconstruction al-
gorithm. QIS are single-photon image sensors with photon counting ca-
pabilities. Studies over the past decade have confirmed the effectiveness
of QIS for low-light imaging but reconstruction algorithms for dynamic
scenes in low light remain an open problem. We fill the gap by proposing
a student-teacher training protocol that transfers knowledge from a mo-
tion teacher and a denoising teacher to a student network. We show that
dynamic scenes can be reconstructed from a burst of frames at a photon
level of 1 photon per pixel per frame. Experimental results confirm the
advantages of the proposed method compared to existing methods.
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1 Introduction

Imaging in photon-starved situations is one of the biggest technological chal-
lenges for applications such as security, robotics, autonomous cars, and health
care. However, the growing demand for higher resolution, smaller pixels, and
smaller form factors have limited the photon sensing area of the sensors. This,
in turn, puts a fundamental limit on the signal-to-noise ratio that the sensors
can achieve. Over the past few years, there is an increasing amount of effort
in developing alternative sensors that have photon-counting ability. Quanta Im-
age Sensors (QIS) are one of these new types of image sensors that can count
individual photons at a very high frame rate and have a high spatial resolu-
tion [44, 45]. Various prototype QIS have been reported, and numerous studies
have confirmed their capability for high speed imaging [5], high dynamic range
imaging [19,28], color imaging [20,27], and tracking [33].

Despite the increasing literature on QIS sensor development [24, 44, 45] and
signal processing algorithms [10, 61], one of the most difficult problems in QIS
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(a) Real image by CIS, (b) Real image by QIS, (c) Our reconstruction

avg of 8 frames, 0.5 ppp avg of 8 frames, 0.5 ppp using 8 QIS frames

Fig. 1. Goal of this paper. The images above are the real captures by a CMOS
Image Sensor (CIS) and a QIS prototype [27] at the same photon level of 0.5 photons
per pixel (ppp) per frame. Our goal is to reconstruct images with dynamic content
from a burst of QIS frames.

is image reconstruction for dynamic scenes. Image reconstruction for dynamic
scenes is important for broad adoption of QIS: solving the problem can open
the door to a wide range of low-light applications such as videography, moving
object detection, non-stationary facial recognition, etc. However, motion in low
light is difficult because it must deal with two types of distortions: low light
causes shot noise which is random and affects the entire image, whereas motion
causes geometric warping which is often local. In this paper, we address this
problem with a new algorithm.

Figure 1 summarizes our objective. Figure 1(a) shows real data captured
by a conventional CMOS image sensor (CIS). The photon level is 0.5 photons
per pixel (ppp). Figure 1(b) shows the data captured by a QIS at the same
photon level. To illustrate the effect of motion, we show the average of 8 consec-
utive frames. Figure 1(c) shows the result of the proposed image reconstruction
algorithm applied to the 8 QIS frames. Although the scene is in motion, the
presented approach recovers most of the image details. This brings out the two
contributions of this paper:

(i) We demonstrate low-light image reconstruction of dynamic scenes at a pho-
ton level of 1 photon per pixel (ppp) per frame. This is lower than most of
the results reported in the computational photography literature.

(ii) We propose a student-teacher framework and show that this training method
is effective in handling noise and motion simultaneously.

2 Background

2.1 Quanta Image Sensors

Quanta Image Sensors (QIS) were originally proposed in 2005 as a candidate
solution for the shrinking pixel problem [22, 23]. The idea is to partition a CIS
pixel into many tiny cells called “jots” where each jot is a single-photon detec-
tor. By oversampling the scene in space and time, the underlying image can be
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recovered using a carefully designed image reconstruction algorithm. Numerous
studies have analyzed the theoretical properties of these sensors, including their
performance limit [62], photon statistics [24], threshold analysis [19], dynamic
range [28], and color filter array [20]. On the hardware side, a number of proto-
types have become available [17,18,44]. The prototype QIS we use in this paper
is based on [45].

As photon counting devices, QIS share many similarities with single-photon
avalanche diodes (SPAD) [17]. However, SPAD amplify signals using avalanche
multiplication. This requires a high electrical voltage (typically higher than 20V)
to accelerate the photoelectron. Because avalanche multiplication requires space
for electrons to multiply, SPAD have high dark current (> 10e−/pix/s), large
pitch (> 5µm), low fill-factor (< 70%), and low quantum efficiency (< 50%). In
contrast, QIS do not require avalanche multiplication. They have significantly
better fill-factor, quantum efficiency, dark current, and read noise. SPAD are
excellent candidates for resolving time-stamps, e.g., time-of-flight applications
[6, 26, 32, 40, 52], although new studies have shown other applications [46]. QIS
have higher resolution which makes them suitable for low-light photography.
Recent literature provides a more detailed comparison [27].

2.2 How Dark is One Photon Per Pixel?

All photon levels in this paper are measured in terms of photons per pixel (ppp).
“Photons per pixel” is the average number of photons a pixel detects during the
exposure period. We use photons per pixel as the metric because the amount
of photons detected by a sensor depends on the exposure time and sensor size.
A large sensor can collect more photons, and longer exposure time would allow
more photons to arrive at the sensor. Therefore, even for the same scene with
the same illuminance (measured in lux), the number of photons per pixel seen
by two sensors can be different. To give readers an idea of the amount of noise
we are dealing with in this paper, Figure 2(a,b) shows a pair of real images cap-
tured by CIS and QIS at 0.25 ppp. Note that the signal at this photon level is
significantly worse than what is commonly considered “heavy noise” in the de-
noising literature, illustrated in Figure 2(d). We should also highlight that while
QIS is a better sensor, at low light the signal-to-noise ratio is upper bounded by
the fundamental limit of the Poisson process. As shown in Figure 2(c), an ideal
sensor with zero read noise and zero dark current will still produce an image
contaminated by shot noise. Therefore, reconstruction algorithms are needed to
recover the images even though QIS have higher photon sensitivity than CIS.

2.3 Related Work

QIS Image Reconstruction. Image reconstruction for QIS is challenging be-
cause of the unique Poisson-Gaussian statistics of the sensor. Early reconstruc-
tion techniques are based on solving maximum-likelihoods using gradient de-
scent [61], dynamic programming [63], and convex optimization techniques [8,9].
The first non-iterative algorithm for QIS image reconstruction was proposed by
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(a) CIS (real) (b) QIS (real) (c) Ideal sensor (d) i.i.d. Gaussian
0.25 ppp 0.25 ppp 0.25 ppp σ = 50/255

Fig. 2. Photon level and sensor limitations. (a) and (b) show a pair of real images
captured by CIS and QIS at 0.25 ppp. (c) shows a simulated image acquired by an
“ideal sensor” which is free of read noise and dark current. The random shot noise
in this ideal image suggests that although QIS has higher sensitivity than CIS, image
reconstruction algorithms still play a critical role because there is a fundamental limit
due to the Poisson statistics. (d) shows an image distorted by i.i.d. Gaussian noise of
a strength σ = 50/255, considered high in the denoising literature.

Chan et al. [7]. It was shown that if one assumes spatial independence, then
the truncated Poisson likelihood can be simplified to Binomial. Consequently,
the Anscombe binomial transform can be used to stabilize the variance, and off-
the-shelf denoising (e.g., BM3D [15]) can be used to denoise the image. Choi et
al. [13] followed the idea by replacing the denoiser with a deep neural network.
Alternative solutions using end-to-end deep neural networks have also been pro-
posed for QIS [55] and SPAD [10]. To the best of our knowledge, ours is the first
dynamic scene reconstruction for QIS.

Low-light Denoising. The majority of existing denoising algorithms are de-
signed for CIS. Single-frame image denoising methods are abundant, e.g., non-
local means [4], BM3D [15], Poisson denoising [48], and many others [25, 31, 36,
49]. On the deep neural network side, there are numerous networks dedicated to
single-image denoising [43, 56, 64, 65]. However, recent benchmark experiments
found that BM3D is often better than deep learning methods for real sensor
data [53, 60]. Specific to low-light imaging, Chen et al. [11, 12] observed that
by modeling the entire image and signal processing pipeline using an end-to-end
network, better reconstruction results can be obtained from the raw sensor data.
However, since the images are still captured by CIS, the photon levels are much
higher than what we study in this paper.

For dynamic scenes, extensions of the static methods to videos are available,
e.g., based on non-local means [3, 16, 57], optical flow [41, 42, 58], and sparse
representation [37, 54]. The most relevant approach for this paper is the burst
photography technique [34], which can be traced back to earlier methods based
on optical flow [38, 41, 42]. Recent reports on burst photography have focused
on using deep neural networks [2,29,39,59]. Among these, the kernel prediction
network (KPN) by Mildenhall et al. [51] is the most relevant work for us. How-
ever, as we will demonstrate later in the paper, the performance of KPN is not
as satisfactory in the extreme noise conditions we deal with.
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3 Method

3.1 QIS Imaging Model

We first present the image formation model. Our model is based on the prototype
QIS reported in [45] and is more detailed than the models used in existing
literature such as [7, 62].

As light travels from the scene to the sensor, the main mathematical model is
the Poisson process which describes how photons arrive. However, due to various
sources of distortions, the measured QIS signal, xQIS, is given by

xQIS︸︷︷︸
observed

= ADC

{
Poisson︸ ︷︷ ︸

photon arrival

(
α︸︷︷︸

sensor gain

·
(
xtrue︸ ︷︷ ︸
scene

+ ηdc︸︷︷︸
dark current

))
+ ηr︸︷︷︸

read noise

}
. (1)

Here we assume that the sensor is monochromatic because the real data
reported in this paper are based on a monochromatic prototype QIS. To simulate
color data we need to include a sub-sampling step to model the color filter array.
ηdc denotes the dark current and ηr denotes the read noise arising from the read-
out circuit. The analog-to-digital converter (ADC) describes the sensor output.
In single-bit QIS, the output is a binary signal obtained by thresholding the
Poisson count [19]. In multi-bit QIS, the output is the Poisson count clipped to
the maximum number of bits. To image a dynamic scene, we use QIS to collect
a stack of short-exposure frames. Akin to previous work [7, 62], we assume that
noise is independent over time.

For the prototype sensor we use in this paper, the dark current ηdc in Equa-
tion (1) has an average value of 0.0068e−/pix/s and the read noise ηr takes
the value of 0.25e−/pix [45]. The sensor gain α controls the exposure time and
the dynamic range, which changes from scene to scene. For all experiments we
conduct in this paper, the analog-to-digital conversion is 3-bit. The spatial res-
olution of the sensor is 1024 × 1024, although we typically crop regions of the
image for analysis.

3.2 The Dilemma of Noise and Motion

At the heart of dynamic image reconstruction is the coexistence of noise and
motion. The dilemma here is that they are intertwined. To remove noise in a
dynamic scene, we often need to either align the frames or construct a steerable
kernel over the space-time volume. The alignment step is roughly equivalent to
estimating optical flow [35], whereas constructing the steerable kernel is equiv-
alent to non-local means [3,57] or kernel prediction [51]. However, if the images
are contaminated by noise, then both optical flow and kernel prediction will fail.
When this step fails, denoising will be difficult because we will not be able to
easily find neighboring patches for filtering.

Existing algorithms in the denoising literature can usually only handle one of
the two situations. For example, the kernel prediction network (KPN) [51] can ex-
tract motion information from a dynamic scene but its performance drops when
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(a) QIS raw data (b) KPN [51] (c) sRED [50] (d) Ours
8-frame avg 23.09 dB 17.74 dB 26.74 dB

Fig. 3. The dilemma of noise and motion. (a) A simulated QIS sequence at 2 ppp,
averaged over 8 frames. (b) Result of Kernel Prediction Network (KPN) [51], a burst
photography method that handles motion. (c) Result of a single-frame image denoiser
sRED [50] applied to the 8-frame avg. (d) Result of our proposed method.

noise becomes heavy. Similarly, the residual encoder-decoder networks RED-
Net [50] and DnCNN [64] are designed for static scenes. In Figure 3, we show
the results of a synthetic experiment. The results illustrate the limitations of the
motion-based KPN [51] and the single-frame REDNet (sRED) [50]. Our goal is
to leverage the strengths of both.

3.3 Student-Teacher Learning

If a kernel prediction network can handle clean image sequences well and a
denoising network can handle static image sequences well, is there a way we can
leverage their strengths to address the dynamic low-light setting? Our solution
is to develop a training scheme using the concept of student-teacher learning.

Figure 4 describes our method. There are three players in this training pro-
tocol: a teacher for motion (based on kernel prediction), a teacher for denoising
(based on image denoiser networks), and a student which is the network we are
going to use eventually. The two teachers are individually pretrained using their
respective imaging conditions. For example, the motion teacher is trained us-
ing sequences of clean and dynamic contents, whereas the denoising teacher is
trained using sequences of noisy but static contents. During the training step,
the teachers will transfer their knowledge to the student. During testing, only
the student is used.

To transfer knowledge from the two teachers to the student, the student
is first designed to have two branches, one branch duplicating the architecture
of the motion teacher and another branch duplicating the architecture of the
denoising teacher. When training the student, we generate three versions of
the training samples. The motion teacher sees training samples that are clean
and only contain motion, xmotion. The denoising teacher sees a training sample
containing no motion but corrupted by noise, xnoise. The student sees the noisy
dynamic sequence xQIS.

Because the student has identical branches to the teachers, we can compare
the features extracted by the teachers and the student. Specifically, if we denote



Dynamic Low-light Imaging with QIS 7

Fig. 4. Overview of the proposed method. The proposed student-teacher setup
consists of two teachers and a student. The motion teacher shares motion features,
whereas the denoising teacher shares denoising features. To compare the respective
feature differences, perceptual losses Lnoise and Lmotion are defined. The student net-
work has two encoders and one decoder. The final estimates are compared with the
ground truth using the MSE loss LMSE.

φ(·) as the feature extraction performed by the motion teacher, φ̂(·) the student
motion branch, ϕ(·) the denoising teacher, and ϕ̂(·) the student denoising branch,
then we can define a pair of perceptual similarities: the motion similarity

Lmotion = ‖ φ̂(xQIS)︸ ︷︷ ︸
motion student

− φ(xmotion)︸ ︷︷ ︸
motion teacher

‖2 (2)

and the denoising similarity

Lnoise = ‖ ϕ̂(xQIS)︸ ︷︷ ︸
denoising student

− ϕ(xnoise)︸ ︷︷ ︸
denoising teacher

‖2. (3)

Intuitively, what this pair of equations does is ensure that the features extracted
by the student branches are similar to those extracted by the respective teachers,
which are features that can be extracted in good conditions. If this can be
achieved, then we will have a good representation of the noisy dynamic sample
and hence we can do a better reconstruction.

The two student branches can be considered as two autoencoders which con-
vert the input images to codewords. As shown on the right side of Figure 4,
we have a “decoder” which translates the concatenated codewords back to an
image. The loss function of the decoder is given by the standard mean squared
error (MSE) loss:

LMSE = ‖f(xQIS)− xtrue‖2, (4)
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where f is the student network and so f(xQIS) denotes the estimated image.
The overall loss function is the sum of these losses:

Loverall = LMSE + λ1Lmotion + λ2Lnoise, (5)

where λ1 and λ2 are tunable parameters. Training the network is equivalent to
finding the encoders φ̂ and ϕ̂, and the decoder f .

3.4 Choice of Teacher and Student Networks

The proposed student-teacher framework is quite general. Specific to this paper,
the two teachers and the student are chosen as follows.

The motion teacher is the kernel prediction network (KPN) [51]. We modify
it by removing the skip connections to maintain the information kept by the
encoder. In addition, we remove the pooling layers and the bilinear upsampling
layers to maximize the amount of information being fed to the feature layer. With
these changes, the KPN becomes a fully convolutional-deconvolutional network.

The denoising teacher we use is a modified version of REDNet [50], which
is also used in another QIS reconstruction method [13]. To differentiate this
single-frame REDNet and another modified version (to be discussed in the ex-
periment section), we refer to this single-frame REDNet denoising teacher as
sRED. Like the motion teacher, we remove the residual connections since they
have a negative impact on the feature transfer in student-teacher learning.

The student network has two encoders and a decoder. The encoders have
exactly the same architectures as the teachers. The decoder is a stack of 15
layers where each layer is a 128-channel up-convolution. The entrance layer is
used to concatenate the motion and denoising features.

4 Experiments

4.1 Setting

Training Data. The training data consists of two parts. The first part is for
global motion. We use the Pascal VOC 2008 dataset [21] which contains 2000
training images. The second part is for local motion. We use the Stanford Back-
ground Dataset [30] which contains 715 images with segmentation. For both
datasets, we randomly crop patches of size 64 × 64 from the images to serve
as ground truth. An additional 500 images are used for validation. To create
global motion, we shift the patches according to a random continuous camera
motion where the number of pixels traveled by the camera range from 7 to 35
across 8 consecutive frames. This is approximately 1 m/s. For local motion, we
fix the background and shift the foreground using translations and rotations.
The implementation of the translation is the same as that of the global motion
but applied to foreground objects. The rotation is implemented by rotating the
object with an angle ranging from 0 to 15 degrees.
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Training the Teachers. The motion teacher is trained using a set of noise-
free and dynamic sequences. The loss function is the mean squared error (MSE)
loss suggested by [51]. The network is trained for 200 epochs using the dataset
described above. The denoising teacher is trained using a set of noisy but static
images. Therefore, for every ground-truth sequence we generate a triplet of se-
quences: A noise-free dynamic sequence for the motion teacher, a noisy static
image for the denoising teacher, and a noisy dynamic sequence for the student.
We remark that such a data synthesis approach works for our problem because
the simulated QIS data matches the statistics of real measurements.

Baselines. We compare the proposed methods with three existing dynamic
scene reconstruction methods: (i) BM4D [47], (ii) Kernel Prediction Network
(KPN) [51], and (iii) a modified version of REDNet [50]. Our modification gen-
eralizes REDNet to multi-frame inputs, by introducing a 3D convolution at the
input layer to pool the features. We refer to the modified version as multi-frame
RED (mRED). Note that mRED has residual connections while sRED (denois-
ing teacher) does not. We consider mRED a more fair baseline since it takes an
input of 8 consecutive frames rather than a single frame. For KPN, the original
method [51] suggested using a fixed kernel size of K = 5; we modify the setting
by defining K as the maximum number of pixels traveled by the motion.

Implementation. All networks are implemented using Keras [14] and Ten-
sorFlow [1]. The student-teacher training is done using a semi-annealing process.
Specifically, the regularization parameters λ1 and λ2 are updated once every 25
epochs such that λ1 and λ2 decay exponentially for the first 100 epochs. For the
next 100 epochs, λ1 and λ2 are set to 0 and the overall loss function becomes
Loverall = LMSE.

4.2 Synthetic Experiments

We begin by conducting synthetic experiments. We first visually compare the
reconstructed images of the proposed method and the competing methods. Fig-
ure 5 shows some results using global translation. The motion magnitude is 28
pixels across 8 frames, at 2 ppp. Figure 6 shows some results using arbitrary
global motion, at 4 ppp. The motion trajectory is shown in the inset in the fig-
ure. Figure 7 shows some results of local motion. We simulate QIS data with a
real motion video of 30 fps. The photon level is 1.5 ppp. The average inference
time of KPN on a 512× 512 patch is 0.0886 seconds using an NVIDIA GeForce
RTX 2080 Ti graphics card. For the same testing setting, mRED takes 0.0653
seconds, and the proposed method takes 0.1943 seconds. The average time for
BM4D (MATLAB version) is 23.6985 seconds.

To quantitatively analyze the performance, we use the linear global motion
to plot two sets of curves as shown in Figure 8. In the first plot, we show PSNR
as a function of the motion magnitude. The magnitude of the motion is defined
as the number of pixels traveled along the dominant direction, over 8 consecutive
frames. As shown in Figure 8(a), the proposed method has a consistently higher
PSNR compared to the three competing methods, ranging from 1.5 dB to 3 dB.
This suggests that the presence of both teachers has provided a positive impact
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(a) QIS raw data, (b) Avg of (c) BM4D (d) KPN (e) mRED (f) Ours (g)Ground

1 frame 8 frames 23.04 dB 25.45 dB 26.42 dB 29.39 dB Truth

Fig. 5. Simulated QIS data with linear global motion. (a) The raw QIS image
is simulated at 2 ppp, with a global motion of 28 pixels uniformly spaced across 8
frames. (b) An average 8 QIS raw frames. (c) BM4D [47]. (d) KPN [51]. (e) mRED, a
modification of REDNet [50]. (f) Proposed method. (g) Ground truth.

(a) QIS raw (b) avg 8 frames (c) Ours (d) Ground truth

Fig. 6. Simulated QIS data with arbitrary global motion. (a) QIS raw data
simulated at 4 ppp. The motion trajectory is shown in the inset. (b) Average of 8
frames. (c) Proposed method. (d) Ground truth.

(a) QIS raw (b) avg 8 frames (c) Ours (d) Ground truth

Fig. 7. Simulated QIS data with local motion. In this example, only the car moves.
The background is static. (a) Raw QIS frame assuming 1.5 ppp. (b) The average of 8
QIS frames. (c) Proposed method. (d) Ground truth.

on solving the motion and noise dilemma, which is difficult for both KPN and
mRED. The second set of curves is shown in Figure 8(b) and reports PSNR as
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(a) PSNR vs. Motion (b) PSNR vs. Photon Level

at photon level of 2 ppp at motion magnitude of 4 pixels

Fig. 8. Quantitative analysis using synthetic data. (a) PSNR as a function of the
motion magnitude, at a photon level of 2 ppp. The magnitude of the motion is defined as
the number of pixels traveled along the dominant direction, over 8 consecutive frames.
(b) PSNR as a function of photon level. The motion magnitude is fixed at 4 pixels, but
the photon level changes. Our method consistently outperforms BM4D [47], KPN [51],
and mRED (a modified version of [50]).

a function of the photon level. The curves in Figure 8(b) suggest that for the
photon levels we have tested, the performance gap between the proposed method
and the competing methods is consistent. This provides additional evidence of
the effectiveness of the proposed method.

4.3 Real Experiments

We verify the results using real QIS data. The real data is collected using a
prototype Gigajot PathFinder camera [45]. The camera has a spatial resolution
of 1024× 1024. The integration time of each frame is 75 µs. Each reconstruction
is based on 8 consecutive QIS frames. At the time this experiment is conducted,
the readout circuit of this camera is still a prototype that is not optimized for
speed. Thus, instead of demonstrating a real high-speed video, we capture a
slowly moving real dynamic scene where the motion is continuous but slow. We
make the exposure period short so that it is equivalent to a high-speed video.
We expect that the problem will be solved in the next generation of QIS.

The physical setup of the experiment is shown in Figure 9(a). We put the cam-
era approximately 1 meter away from the objects. The photon level is controlled
by a light source. To create motion, the objects are mounted on an Ashanks
SmoothONE C300S motorized camera slider, which allows us to control the lo-
cation of the objects remotely. The “ground truth” (reference images) in this
experiment is obtained by capturing a static scene via 8 consecutive QIS frames.
Since these static images are noisy (due to photon shot noise), we apply mRED
to denoise the images before using them as the references.
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(a) Experimental Setup (b) PSNR vs. motion (pixels)

Fig. 9. (a) Setup of QIS data collection. The QIS camera is placed 1 meter from
the object which is attached to a motorized slider. The horizontal field of view (FOV)
of the lens is 96.8◦. The motion is continuous but slow. (b) Quantitative analysis on
real data. The plot shows the PSNR values as a function of the motion magnitude,
under a photon level of 0.5 ppp. The “reference” in this experiment is determined
by reconstructing an image using a stack of static frames of the same scene. The
reconstruction method is based on [13].

(a) QIS raw (b) Average (c) KPN (d) mRED (e) Ours (f) Reference
1 frame 8 frames 25.08 dB 25.33 dB 30.97 dB

Fig. 10. Real QIS data. (a) A snapshot of a real QIS frame captured at 2 ppp per
frame. The number of pixels traveled by the object over the 8 frames is 28 pixels. (b)
The average of 8 QIS frames. Note the blur in the image. (c) Reconstruction result of
KPN [51]. (d) Reconstruction result of mRED, a modification of [50]. (e) Our proposed
method. (f) Reference image is a static scene denoised using mRED.

A visual comparison for this experiment is shown in Figure 10. The quan-
titative analysis is shown in Figure 9(b), where we plot the PSNR curves as
functions of the number of pixels traveled by the object. As we can see, the
performance of the proposed method and the competing methods are similar to
those reported in the synthetic experiments. The gap appears to be consistent
with the synthetic experiments. An additional real data experiment is shown in
Figure 11, where we use QIS to capture a rotating fan scene.
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(a) Real image by QIS (b) Real image by QIS (c) Our reconstruction

1 frame, 1.5 ppp avg of 8 frames, 1.5 ppp using 8 QIS frames

Fig. 11. Real QIS data with rotational motion. The image is captured at 1.5 ppp.
Note the motion blur in the 8-frame average.

(a) Config A (b) Config B (c) Ours-I (d) Ours-II (e) Ours-full

Fig. 12. Configurations for ablation study. (a) Config A: Uses pretrained teach-
ers. (b) Config B: Uses a single encoder instead of two smaller encoders. (c) Ours-I:
Uses denoising teacher only. (d) Ours-II: Uses motion teacher only. (e) Our-full: The
complete model. In this figure, blue layers are pretrained and fixed. Orange layers are
trainable.

4.4 Ablation Study

We conduct an ablation study to evaluate the significance of the proposed
student-teacher training protocol. Figure 12 summarizes the 5 configurations
we study. Config A is a vanilla baseline where the denoising and motion teachers
are pretrained. Config B uses a single encoder instead of two encoders. Ours-I
uses a student-teacher setup to train the denoising encoder. Ours-II is similar to
Ours-I, but we use the motion teacher in lieu of the denoising teacher. Ours-full
uses both teachers. All networks are trained using the same set of noisy and
dynamic sequences. The experiments are conducted using synthetic data, at a
photon level of 1 ppp and motion of 28 pixels across 8 frames. The results are
summarized in Table 1.

Is student-teacher training necessary? Configurations A and B do not
use any teacher. Comparing with Ours-full, the PSNR values of Config A and
Config B are worse by more than 1dB. Even if we compare with a single teacher,
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Configuration # of Encoders Which Teacher? Test PSNR
A 2 None 21.51 dB
B 1 None 22.74 dB

Ours-I 2 Denoising 23.53 dB
Ours-II 2 Motion 23.65 dB

Ours-full 2 Both 23.87 dB
Table 1. Ablation Study Results. This table summarizes the influence of different
teachers on the proposed method. The experiments are conducted using synthetic data,
at a photon level of 1 ppp and a motion of 28 pixels along the dominant direction.

e.g., Ours-I, it is still 0.8dB ahead of Config B. Therefore, the student-teacher
training protocol has a positive impact on performance.

Do teacher encoders extract meaningful information? Config A uses
two pretrained encoders and a trainable decoder. The network achieves 21.51dB,
which means that some features are useful for reconstruction. However, when
comparing with Ours-full, it is substantially worse (23.87dB compared to 21.51dB).
Since the network architectures are identical, the performance gap is likely caused
by the training protocol. This indicates that the student-teacher setup is a better
way to transfer knowledge from teachers to a student network.

Which teacher to use? Configurations Ours-I and Ours-II both use one
teacher. The results suggest that if we only use one teacher, the motion teacher
has a small gain (0.1dB) over the denoising teacher. However, if we use both
teachers as in the proposed method, we observe another 0.2dB improvement.
Thus, the presence of both teachers is helpful.

5 Conclusion

Dynamic low-light imaging is an important capability in application such as au-
tonomous driving, security, and health care. CMOS image sensors (CIS) have
fundamental limitations due to their inability to count photons. This paper con-
siders Quanta Image Sensors (QIS) as an alternative solution. By developing a
deep neural network using a new student-teacher training protocol, we demon-
strated the effectiveness of transferring knowledge from a motion teacher and
a denoising teacher to the student network. Experimental results indicate that
the proposed method outperforms existing solutions trained under the same
conditions. The proposed student-teacher protocol can also be applied to CIS
problems. However, at a photon level of 1 photon per pixel or lower, QIS are
necessary. Future work will focus on generalizing the reconstruction to more
complex motions.
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