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Abstract. In this paper, we propose the Deep Structured self-Driving
Network (DSDNet), which performs object detection, motion prediction,
and motion planning with a single neural network. Towards this goal, we
develop a deep structured energy based model which considers the inter-
actions between actors and produces socially consistent multimodal fu-
ture predictions. Furthermore, DSDNet explicitly exploits the predicted
future distributions of actors to plan a safe maneuver by using a struc-
tured planning cost. Our sample-based formulation allows us to overcome
the difficulty in probabilistic inference of continuous random variables.
Experiments on a number of large-scale self driving datasets demonstrate
that our model significantly outperforms the state-of-the-art.
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1 Introduction

The self-driving problem can be described as safely, comfortably and efficiently
maneuvering a vehicle from point A to point B. This task is very complex; Even
the most intelligent agents to date (i.e., humans) are very frequently involved in
traffic accidents. Despite the development of Advanced Driver-Assistance Sys-
tems (ADAS), 1.3 million people die every year on the road, and 20 to 50 million
are severely injured.

Avoiding collisions in complicated traffic scenarios is not easy, primarily due
to the fact that there are other traffic participants, whose future behaviors are
unknown and very hard to predict. A vehicle that is next to our lane and blocked
by its leading vehicle might decide to stay in its lane or cut in front of us. A
pedestrian waiting on the edge of the road might decide to cross the road at
any time. Moreover, the behavior of each actor depends on the actions taken
by other actors, making the prediction task even harder. Thus, it is extremely
important to model the future motions of actors with multi-modal distributions
that also consider the interactions between actors.

To safely drive on the road, a self-driving vehicle (SDV) needs to detect
surrounding actors, predict their future behaviors, and plan safe maneuvers.
Despite the recent success of deep learning for perception, the prediction task,
due to the aforementioned challenges, remains an open problem. Furthermore,
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there is also a need to develop motion planners that can take the uncertainty
of the predictions into account. Previous works have utilized parametric dis-
tributions to model multimodality of motion prediction. Mixture of Gaussians
[11,20] are a natural approach due to their close-form inference. However, it is
hard to decide the number of modes in advance. Furthermore, these approaches
suffer from mode collapse during training [22, 20, 38]. An alternative is to learn
a model distribution from data using, e.g., neural networks. As shown in [39,
25,46], a CVAE [44] can be applied to capture multi-modality, and the inter-
actions between actors can be modeled through latent variables. However, it is
typically hard/slow to do probabilistic inference and the interaction mechanism
does not explicitly model collision which humans want to avoid at all causes.
Besides, none of these works have shown the effects upon planning on real-world
datasets.

In this paper we propose the Deep Structured self-Driving Network (DSD-
Net), a single neural network that takes raw sensor data as input to jointly detect
actors in the scene, predict a multimodal distribution over their future behaviors,
and produce safe plans for the SDV. This paper has three key contributions:

— Our prediction module uses an energy-based formulation to explicitly cap-
ture the interactions among actors and predict multiple future outcomes
with calibrated uncertainty.

— Our planning module considers multiple possibilities of how the future might
unroll, and outputs a safe trajectory for the self-driving car that respects the
laws of traffic and is compliant with other actors.

— We address the costly probabilistic inference with a sample-based framework.

DSDNet conducts eflicient inference based on message passing over a sampled
set of continuous trajectories to obtain the future motion predictions. It then em-
ploys a structured motion planning cost function, which combines a cost learned
in a data-driven manner and a cost inspired by human prior knowledge on driv-
ing (e.g., traffic rules, collision avoidance) to ensure that the SDVs planned path
is safe. We refer the reader to Fig. 1 for an overview of our full model.

We demonstrate the effectiveness of our model on two large-scale real-world
datasets: nuScenes [6] and ATG4D, as well as one simulated dataset CARLA-
Precog [15,39]. Our method significantly outperforms previous state-of-the-art
results on both prediction and planning tasks.

2 Related Work

Motion Prediction: Two of the main challenges of prediction are modeling
interactions among actors and making accurate multi-modal predictions. To ad-
dress these, [1,18,25,39,46,57,7,26] learn per-actor latent representations and
model interactions by communicating those latent representations among ac-
tors. These methods can naturally work with VAE [23] and produce multi-modal
predictions. However, they typically lack interpretability and it is hard to en-
code prior knowledge, such as the traffic participants’ desire to avoid collisions.
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Fig.1: DSDNet overview: The model takes LiDAR and map as inputs, pro-
cesses them with a CNN backbone, and jointly performs object detection, multi-
modal socially-consistent prediction, and safe planning under uncertainty. Rain-
bow patterns mean highly likely actors’ future positions predicted by our model.

Different from building implicit distributions with VAE, [11,27] build explicit
distributions using mixture of modes (e.g., GMM) where it is easier to perform
efficient probabilistic inference. In this work, we further enhance the model ca-
pacity with a non-parametric explicit distribution constructed over a dense set
of trajectory samples. In concurrent work [36] use similar representation to ours,
but they do not model social interactions and do not demonstrate how such a
representation can benefit planning.

Recently, a new prediction paradigm of performing joint detection and pre-
diction has been proposed [54, 28,47, 29,10, 8, 9], in which actors’ location infor-
mation is not known a-priori, and needs to be inferred from the sensors. In this
work, we will demonstrate our approach in both settings: using sensor data or
history of actors’ locations as input.

Motion Planning: Provided with perception and prediction results, planing
is usually formulated as a cost minimization problem over trajectories. The cost
function can be either manually engineered to guarantee certain properties [5, 16,
33,61], or learned from data through imitation learning or inverse reinforcement
learning [41, 49, 54, 60]. However, most of these planners assume detection and
prediction to be accurate and certain, which is not true in practice. Thus, [2, 19,
40, 56] consider uncertainties in other actors’ behaviors, and formulate collision
avoidance in a probabilistic manner. Following this line of work, we also conduct
uncertainty-aware motion planning.

End-to-end self-driving methods try to fully utilize the power of data-driven
approaches and enjoy simple inference. They typically use a neural network to
directly map from raw sensor data to planning outputs, and are learned through
imitation learning [4, 37], or reinforcement learning [13, 34] when a simulator [15,
30] is available. However, most of them lack interpretability and do not explicitly
ensure safety. While our method also benefits from the power of deep learning,
in contrast to the aforementioned approaches, we explicitly model interactions
between the SDV and the other dynamic agents, achieving safer planning. Fur-
thermore, safety is explicitly accounted for in our planning cost functions.
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Fig.2: Details of the multimodal social prediction module: For each ac-
tor, we sample a set of physically valid trajectories, and use a neural network
E\rq; to assign energies (probabilities) to them. To make different actors’ behav-
iors socially consistent, we employ message passing steps which explicitly model
interactions and can encode human prior knowledge (collision avoidance). The
final predicted socially-consistent distribution is shown on top right.

Structured models and Belief Propagation: To encode prior knowledge,
there is a recent surge of deep structured models [3,12,17,43], which use deep
neural networks (DNNs) to provide the energy terms of a probabilistic graph-
ical models (PGMs). Combining the powerful learning capacity of DNNs and
the task-specific structure imposed by PGMs, deep structured models have been
successfully applied to various computer vision problems, e.g., semantic seg-
mentation [43], anomaly detection [55], contour segmentation [31]. However, for
continuous random variables, inference is very challenging. Sample-based belief
propagation (BP) [48,53,21,45,51,50], address this issue by first constructing
the approximation of the continuous distribution via Markov Chain Monte Carlo
(MCMC) samples and then performing inference via BP. Inspired by these works,
we design a deep structured model that can learn complex human behaviors from
large data while incorporating our prior knowledge. We also bypass the difficulty
in continuous variable inference using a physically valid sampling procedure.

3 Deep Structured self-Driving Network

Given sensor measurements and a map of the environment, the objective of a
self-driving vehicle (SDV) is to select a trajectory to execute (amongst all feasible
ones) that is safe, comfortable, and allows the SDV to reach its destination. In
order to plan a safe maneuver, a self-driving vehicle has to first understand its
surroundings as well as predict how the future might evolve. It should then plan
its motion by considering all possibilities of the future weighting them properly.
This is not trivial as the future is very multi-modal and actors interact with each
other. Moreover, the inference procedure needs to be performed in a fraction of
a second in order to have practical value.

In this paper we propose DSDNet, a single neural network that jointly de-
tects actors in the scene, predicts a socially consistent multimodal distribution
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over their future behaviors, and produces safe motion plans for the SDV. Fig. 1
gives an overview of our proposed approach. We first utilize a backbone network
to compute the intermediate feature-maps, which are then used for detection,
prediction and planning. After detecting actors with a detection header, a deep
structured probabilistic inference module computes the distributions of actors’
future trajectories, taking into account the interactions between them. Finally,
our planning module outputs the planned trajectory by considering both the
contextual information encoded in the feature-maps as well as possible futures
predicted from the model.

In the following, we first briefly explain the input representation, backbone
network and detection module. We then introduce our novel probabilistic predic-
tion and motion planning framework in sections 3.2 and 3.3 respectively. Finally,
we illustrate how to train our model end-to-end in section 3.4.

3.1 Backbone Feature Network and Object Detection

Let X be the LiDAR point clouds and the HD map given as input to our sys-
tem. Since LiDAR point clouds can be very sparse and the actors’ motion is an
important cue for detection and prediction, we use the past 10 LiIDAR sweeps
(e.g., 1s of measurements) and voxelize them into a 3D tensor [29,52, 58, 54].
We utilize HD maps as they provide a strong prior about the scene. Follow-
ing [54], we rasterize the lanes with different semantics (e.g., straight, turning,
blocked by traffic light) into different channels and concatenate them with the
3D LiDAR tensor to form our input representation. We then process this 3D
tensor with a deep convolutional network backbone and compute a backbone
feature map F € REXWXC where H, W correspond to the spatial resolution
after downsampling (backbone) and C' is the channel number. We then employ
a single-shot detection header on this feature map to output detection bounding
boxes for the actors in the scene. We apply two Conv2D layers separately on F,
one for classifying if a location is occupied by an actor, the other for regressing
the position offset, size, orientation and speed of each actor. Our prediction and
planning modules will then take these detections and the feature map as input
to produce both a distribution over the actors’ behaviors and a safe planning
maneuver. For more details on our detector and backbone network please refer
to the supplementary material.

3.2 Probabilistic Multimodal Social Prediction

In order to plan a safe maneuver, we need to predict how other actors could
potentially behave in the next few seconds. As actors move on the ground, we
represent their possible future behavior using a trajectory defined as a sequence
of 2D waypoints on birds eye view (BEV) sampled at T discrete timestamps.
Note that T is the same duration as our planning horizon, and we compute
the motion prediction distribution and a motion plan each time a new sensor
measurement arises (i.e., every 100ms).
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Output Parameterization: Let s; € RT*2 be the future trajectory of the
i-th actor. We are interested in modeling the joint distribution of all actors
condition on the input, that is p(s1,---,sny|X). Modeling this joint distribu-
tion and performing efficient inference is challenging, as each actor has a high-
dimensional continuous action space. Here, we propose to approximate this high-
dimensional continuous space with a finite number of samples, and construct a
non-parametric distribution over the sampled space. Specifically, for each actor,
we randomly sample K possible future trajectory {8}, --- 85} from the original
continuous trajectory space R7*2. We then constrain the possible future state of
each actor to be one of those K samples. To ensure samples are always diverse,
dense® and physically plausible, we follow the Neural Motion Planner (NMP)
[54] and use a combination of straight, circle, and clothoid curves. More details
and analysis of the sampler can be found in the supplementary material.

Modeling Future Behavior of All Actors: We employ an energy formula-
tion to measure the probability of each possible future configuration of all actors
in the scene: a configuration (s1,--- ,sy) has low energy if it is likely to happen.
We can then compute the joint distribution of all actors’ future behaviors as

1

p(sh T 7SN|X7W) = E €xXp (_E(Sh e 7SN|X7W)) ) (1)
where w are learnable parameters, X is the raw sensor data and Z is the partition
function Z = 3" exp(—E(8}",--- ,8%")) summing over all actors’ possible states.
We construct the energy E(sq,---,sy|X,w) inspired by how humans drive,
e.g., following common sense as well as traffic rules. For example, humans drive
smoothly along the road and avoid collisions with each other. Therefore, we
decompose the energy F into two terms. The first term encodes the goodness of
a future trajectory (independent of other actors) while the second term explicitly

encodes the fact that pairs of actors should not collide in the future.

N N N
E(Sla e vSN|X7 W) = Z Etraj (Si|Xa Wtraj) + Z Z Ecoll(si; sj‘Xv Wcoll) (2)
i=1 i=1 i#j

where N is the number of detected actors and wy,.q; and wy; are the parameters.

Since the goodness Etyq;(si|X, Wipq;) is hard to define manually, we use a
neural network to learn it from data (see Fig. 3). Given the sensor data X
and a proposed trajectory s;, the network will output a scalar value. Towards
this goal, we first use the detected bounding box of the i-th actor and apply
ROIAlign to the backbone feature map, followed by several convolution lay-
ers to compute the actor’s feature. Note that the backbone feature map is ex-
pected to encode rich information about both the environment and the actor.

3 We would like the samples to cover the original continuous space and have high recall
wrt the ground-truth future trajectories.
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We then index (bilinear interpolation) T' features
on the backbone feature map at the positions
of trajectory’s waypoints, and concatenate them

Etrzzj / Ct'raj
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Trajectory
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together with (x¢,y:, cos(0:), sin(0;), distance;) to
form the trajectory feature of s;. Finally, we feed
both actor and trajectory features into an MLP
which outputs Etyq;(si|X, Wipe;). Fig.. 3 shows an
illustration of the architecture.

We use a simple yet effective collision energy:
E(s;,s;) = v ifs; collides with s;, and E(s;,s;) =0
otherwise, to explicitly model the collision avoid-
ance interaction between actors as explained in
the next paragraph. We found this simple pairwise
energy empirically works well, the exploration of
other learnable pairwise energy is thus left as fu-
ture work.

Actor
Feature

Indexing
eature

Backbone Feature Map ‘

Fig.3: Neural header for
evaluating Fypq; and Cirq;.

Message Passing Inference: For safety, our motion planner needs to take all
possible actor’s future into consideration. Therefore, motion forecasting needs
to infer the probability of each actor taking a particular future trajectory:
p(s; = 8¥|X,w). We thus conduct marginal inference over the joint distribu-
tion. Note that the joint probability defined in Eq. (2) represents a deep struc-
tured model (i.e., a Markov random field with potentials computed with deep
neural networks). We utilize sum-product message passing [53] to estimate the
marginal distribution per actor, taking into account the effects of all other actors
by marginalization. The marginal p(s;|X, w) reflects the uncertainty and multi-
modality in an actor’s future behavior and will be leveraged by our planner. We
use the following update rule in an iterative manner for each actor (s;):

§ : e~ Etraj(si)=Eeou(si;s;) H mm Sz

sie{sf} n#i,j

mi;(s;)

3)

where m;; is the message sent from actor ¢ to actor j and oc means equal up
to a normalization constant. Through this message passing procedure, actors
communicate with each others their future intentions s; and how probable those
intentions are Ej,q;(s;). The collision energy E..y; helps to coordinate intentions
from different actors such that the behaviors are compliant and do not result in
collision. After messages have been passed for a fixed number of iterations, we
compute the approximated marginal as

e—Etraj(éf) H mj; (éz )
J#i

p(si = 871X, w) o (4)

Since we typically have a small graph (less than 100 actors in a scene) and each s;
only has K possible values {8},---,85}, we can efficiently evaluate Eq. (3) and
Eq. (4) via matrix multiplication on GPUs. In practice we find that our energy
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in Eq. (2) usually results in sparse graphs: most actor will only interact with
nearby actors, especially the actors in the front and in the back. As a result, the
message passing converges within 5 iterations . With our non-highly-optimized
implementation, the prediction module takes less than 100 ms on average, and
thus it satisfies our real-time requirements.

3.3 Safe Motion Planning under Uncertain Future

The motion planning module fulfills our final goal, that is, navigating towards a
destination while avoiding collision and obeying traffic rules. Towards this goal,
we build a cost function C', which assigns lower cost values to “good” trajectory
proposals and higher values to “bad” ones. Planning is then performed by finding
the optimal trajectory with the minimum cost

T = arggleigC(ﬂp(sh - ,8N), X, W), (5)

with 7* the planned optimal trajectory and P the set of physically realizable tra-
jectories that do not violate the SDV’s dynamics. In practice, we sample a large
number of future trajectories for the SDV conditioned on its current dynamic
state (e.g., velocity and acceleration) to form P, which gives us a finite set of
feasible trajectories P = {'f'l, e ,?K}. We use the same sampler as described in
section 3.2 to ensure we get a wide variety of physically possible trajectories.

Planning Cost: Given a SDV trajectory 7, we compute the cost based on
how good T is 1) conditioned on the scene, (e.g., traffic lights and road topol-
ogy); 2) considering all other actors’ future behaviors (i.e., marginal distribution
estimated from the prediction module). We thus define our cost as

N
C(T|p(51, e 7SN)7 X7 W) = CfTaj (T|X7 W) + ZEP(SHX,W) [CCOll(Ta Si|X7 W)] ) (6)

=1

where Cyyq; models the goodness of a SDV trajectory using a neural network.
Similar to Fiq; in the prediction module, we use the trajectory feature and
ROIAlign extracted from the backbone feature map to compute this scalar cost
value. The collision cost C.,; is designed for guaranteeing safety and avoid col-
lision: i.e., Ceon(T,s;) = X if 7 and s; colide, and 0 otherwise. This ensures a
dangerous trajectory 7 will incur a very high cost and will be rejected by our cost
minimization inference process. Furthermore, Eq. (6) evaluates the expected col-
lision cost Eys, x,w) [Ceo]- Such a formulation is helpful for safe motion planning
since the future is uncertain and we need to consider all possibilities, properly
weighted by how likely they are to happen.

4 Although the sum-product algorithm is only exact for tree structures, it is shown to
work well in practice for graphs with cycles [35, 48].
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Inference: We conduct exact minimization over P. Cyq; is a neural network
based cost and we can evaluate all K possible trajectories with a single batch
forward pass. C.o;; can be computed with a GPU based collision checker. As a
consequence, we can efficiently evaluate C(7) for all K samples and select the
trajectory with minimum-cost as our final planning result.

3.4 Learning

We train the full model (backbone, detection, prediction and planning) jointly
with a multi-class loss defined as follows

L= £planning + CV‘Cprediction + Bﬁdetection- (7)

where «, 8 are constant hyper-parameters. Such a multi-task loss can fully exploit
the supervision for each task and help the training®.

Detection Loss: We employ a standard detection loss Lgetection, Which is a
sum of classification and regression loss. We use a cross-entropy classification
loss and assign an anchor’s label based on its IoU with any actor. The regression
loss is a smooth ¢; between our model regression outputs and the ground-truth
targets. Those targets include position, size, orientation and velocity. We refer
the reader to the supplementary material for more details.

Prediction Loss: As our prediction module outputs a discrete distribution for
each actor’s behavior, we employ cross-entropy between our discrete distribution
and the true target. as our prediction loss. Once we sampled K trajectories
per actor, this loss can be regarded as a standard classification loss over K
classes (one for each trajectory sample). The target class is set to be the closest
trajectory sample to the ground-truth future trajectory (in 5 distance).

Planning Loss: We expect our model to assign lower planning costs to better
trajectories (e.g., collision free, towards the goal), and higher costs to bad ones.
However, we do not have direct supervision over the cost. Instead, we utilize a
max-margin loss, using expert behavior as positive examples and randomly sam-
pled trajectories as negative ones. We set large margins for dangerous behaviors
such as trajectories with collisions. This allows our model to penalize dangerous
behaviors more severely. More formally, our planning loss is defined as

Lplanning = Y _ max qc (r9'X) - C (i—HX) +dF+ ykL) ;

data

where [-]; is a ReLU function, 79¢ is the expert trajectory and 7% is the k-th
trajectory sample. We also define d* as the £, distance between #* and 79t and
~* is a constant positive penalty if #* behave dangerously, €.9., Yeollision if T

collides with another actor and 0 otherwise.

5 We find that using only Lpianning Without the other two terms prevents the model
from learning reasonable detection and prediction.
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nuScenes L2 (m) Col (%) ATG4D L2 (m) Col (%)
Method Is 28 3s 1s 2s 3s Method Is 2s 3s 1s 2s 3s
Social-LSTM [1] 0.71 - 1.85 0.8 - 9.6 FaF [29] 0.60 1.11 1.82 - - -
CSP [14] 0.70 - 1.74 0.4 - 5.8|IntentNet [10] 0.51 0.93 1.52 - - -

CAR-Net [42] 0.61 - 158 04 - 49| NMP [54] 0.45 0.80 1.31 0.2 1.1 5.9
NMP [54] 0.43 0.83 1.40 0.0 1.4 6.5

DSDNet 0.40 0.76 1.27 0.0 0.0 0.2 DSDNet 0.43 0.75 1.22 0.1 0.1 0.2

(a) Prediction from raw sensor data: £2 and Col (collision rate), lower the better.

CARLA DESIRE Social GAN R2P2-MA MultiPath ESP (Flex) MFP-4 DSDNet
Town 1 2.422 1.141 0.770 0.68 0.447 0.279  0.195
Town 2 1.697 0.979 0.632 0.69 0.435 0.290 0.213

(b) Prediction from ground-truth perception: minMSD with K = 12, lower the better.

Table 1: Prediction performance on nuScenes, ATG4D and CARLA

4 Experimental Evaluation

We evaluate our model on all three tasks: detection, prediction, and planning.
We show results on two large scale real-world self-driving datasets: nuScenes
[6] and our in-house dataset ATG4D, as well as the CARLA simulated dataset
[15,39]. We show that 1) our prediction module largely outperforms the state-
of-the-art on public benchmarks and we demonstrate the benefits of explicitly
modeling the interactions between actors. 2) Our planning module achieves the
safest planning results and largely decreases the collision and lane violation rate,
compared to competing methods. 3) Although sharing a single backbone to
speedup inference, our model does not sacrifice detection performance compared
to the state-of-the-art. We provide datasets’ details and implementation details
in the supplementary material.

4.1 Multi-modal Interactive Prediction

Baselines: On CARLA, we compare with the state-of-the-art reproduced and
reported from [11, 39, 46]. On nuScenes®, we compare our method against several
powerful multi-agent prediction approaches reproduced and reported from [7]7:
Social-LSTM [1], Convolutional Social Pooling (CSP) [14] and CAR-
Net [42]. On ATG4D, we compare with LiDAR-based joint detection and pre-
diction models, including FaF [29] and IntentNet [10]. We also compare with
NMP [54] on both datasets.

5 Numbers are reported on official validation split, since there is no joint detection
and prediction benchmark.

7 [7] replaced the original encoder (taking the ground-truth detection and tracking as
input) with a learned CNN that takes LiDAR as input for a fair comparison.
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Model Collision Rate (%) Lane Violation Rate (%) L2 (m)
1s 2s 3s 1s 2s 3s Is 25 3s
Ego-motion 0.01 054 1.81 0.51 2.72 6.73  0.28 0.90 2.02
IL 0.01 0.55 1.72 0.44 2.63 5.38 0.23 0.84 1.92

Manual Cost 0.02 0.22 221 0.39 2.73 5.02 0.40 1.43 2.99
Learnable-PLT [41] 0.00 0.13 0.83 - - - - -
NMP [54] 0.01 0.09 0.78 0.35 0.77 2.99 0.31 1.09 2.35
DSDNet 0.00 0.05 0.26 0.11 0.57 1.55 0.29 0.97 2.02
Table 2: Motion planning performance on ATG4D. All metrics are computed
in a cumulative manner across time, lower the better.

Metrics: Following previous works [1, 18,25, 29, 54], we report L2 Displace-
ment Error between our prediction (most likely) and the ground-truth at differ-
ent future timestamps. We also report Collision Rate, defined as the percentage
of actors that will collide with others if they follow the predictions. We argue
that a socially consistent prediction model should achieve low collision rate, as
avoiding collision is always one of the highest priorities for a human driver. On
CARLA, we follow [39] and use minMSD as our metric, which is the minimal
mean squared distance between the top 12 predictions and the ground-truth.

Quantitative Results: As shown in Table 1la, our method achieves the best
results on both datasets. This is impressive as most baselines use /5 as train-
ing objective, and thus are directly favored by the f5 error metric, while our
approaches uses cross-entropy loss to learn proper distributions and capture
multi-modality. Note that multimodal techniques are thought to score worst in
this metric (see e.g., [11]). Here, we show that it is possible to model multi-
modality while achieving lower /s error, as the model can better understand
actors’ behavior. Our approach also significantly reduces the collisions between
the actors’ predicted trajectories, which justifies the benefit of our multi-agent
interaction modeling. We further evaluate our prediction performance when as-
suming ground-truth perception / history are known, instead of predicting using
noisy detections from the model. We conduct this evaluation on CARLA where
all previous methods use this settings. As shown in Table 1b, our method again
significantly outperforms previous best results.

4.2 Motion Planning

Baselines: We implement multiple baselines for comparison, including both
neural-based and classical motion planners: Ego-motion takes past 1 second
positions of the ego-car and use a 4-layer MLP to predict the future locations,
as the ego-motion usually providse strong cues of how the SDV will move in
the future. Imitation Learning (IL) uses the same backbone network as our
model but directly regresses an output trajectory for the SDV. We train such a re-
gression model with ¢ loss w.r.t. the ground-truth planning trajectory. Manual
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nuScenes Det AP @ meter ATG4D Det AP @ IoU
Method 05 1.0 2.0 4.0 Method 05 0.6 0.7 0.8
Mapillary[32] 10.2 36.2 64.9 80.1 FaF [29] 89.8 82.5 68.1 35.8
PointPillars [24] 55.5 71.8 76.1 78.6 |IntentNet [10] 94.4 89.4 78.8 43.5
NMP [54]  71.7 82.5 85.5 87.0| Pixor [52] 93.4 89.4 78.8 52.2
Megvii [59] 72.9 82.5 85.9 87.7| NMP [54] 94.290.8 81.1 53.7
DSDNet 72.1 83.2 86.2 87.4| DSDNet 92.5 90.2 81.1 55.4

Table 3: Detection performance: higher is better. Note that although our
method uses single backbone for multiple challenging tasks, our detection module
can achieve on-par performance with the state-of-the-art.

Cost is a classical sampling based motion planner based on a manually designed
cost function encoding collision avoidance and route following. The planned tra-
jectory is chosen by finding the trajectory sample with minimal cost. We also
include previously published learnable motion planning methods: Learnable-
PLT [41] and Neural Motion Planner (NMP) [54]. These two method uti-
lize a similar max-margin planning loss as ours. However, Learnable-PLT only
consider the most probable future prediction, while NMP assumes planning is
independent of prediction given the features.

Metrics: We exploit three metrics to evaluate motion planning performance.
Collision Rate and Lane Violation rate are the ratios of frames at which
our planned trajectory either collides with other actors’ ground-truth future be-
haviors, or touches / crosses a lane boundary, up to a specific future timestamp.
Those are important safety metrics (lower is better). L2 to expert path is
the average {5 distance between the planning trajectory and the expert driving
path. Note that the expert driving path is just one among many possibilities,
thus rendering this metric not perfect.

Quantitative Results: The planning results are shown in Table 2. We can
observe that: 1) our proposed method provides the safest plans, as we achieve
much lower collision and lane violation rates compared to all other methods.
2) Ego-motion and IL achieves the best £ metric, as they employ the power
of neural networks and directly optimize the ¢35 loss. However, they have high
collision rate, which indicates directly mimicking expert demonstrations is still
insufficient to learn a safety-aware self-driving stack. In contrast, by learning in-
terpretable intermediate results (detection and prediction) and by incorporating
prior knowledge (collision cost), our model can achieve much better results. The
later point is further validated by comparing to NMP, which, despite learning
detection and prediction, does not explicitly condition on them during planning.
3) Manual-Cost and Learnable-PLT explicitly consider collision avoidance and
traffic rules. However, unlike our approach, they only take the most likely motion
forecast into consideration. Consequently, these methods have a higher collision
rate than our approach.
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Multi-modal  Interaction|Pred Col (%o) Pred L2 (m)

4.9 1.28
v 2.4 1.22
v v 0.2 1.22

(a) Prediction ablation studies on multi-modality and pairwise interaction modeling.

w/ Prediction (Type)|Plan Col (%) Lane Vio (%)
N/A 0.60 1.64
most likely 0.45 1.60
multi-modal 0.26 1.55

(b) Motion planning ablation studies on incorporating different prediction results.

(c) Ablation Study for prediction and planning modules

4.3 Object Detection Results

We show our object detection results on nuScenes and ATG4D. Although
we use a single backbone for all three challenging tasks, we show in Table 3
that our model can achieve similar or better results than state-of-the-art LiDAR
detectors on both datasets. On nuScenes®, we follow the official benchmark and
use detection average precision (AP) at different distance (in meters) thresholds
as our metric. Here Megvii [59] is the leading method on the leaderboard at
the time of our submission. We use a smaller resolution (Megvii has 1000 pixels
on each side while ours is 500) for faster online inference, yet achieve on-par
performance. We also conduct experiments on ATG4D. Since our model uses the
same backbone as Pixor [52], which only focuses on detection, we demonstrate
that a multi-task formulation does not sacrifice detection performance.

4.4 Ablation Study and Qualitative Results

Table 4a compares different prediction modules with the same backbone net-
work. We can see that explicitly modeling a multi-modal future significantly
boosts the prediction performance in terms of both collision rate and ¢y error,
comparing to a deterministic (unimodal) prediction. The performance is further
boosted if the prediction module explicitly models the future interaction be-
tween multiple actors, particularly in collision rate. Table 4c compares motion
planners that consider different prediction results. We can see that explicitly
incorporating future prediction, even only the most likely prediction, will boost
the motion planning performance, especially the collision rate. Furthermore, if
the motion planner takes multi-modal futures into consideration, it achieves the
best performance among the three. This further justifies our model design.

8 We conduct the comparison on the official validation split, as our model currently
only focuses on vehicles while the testing benchmark is built for multi-class detection.
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Fig. 4: Qualitative results on ATG4D. Our prediction module can capture multi-
modalities when vehicles approach intersections, while being certain and accurate
when vehicles drive along a single lane (top). Our model can produce smooth
trajectories which follow the lane and are compliant with other actors (bottom).
Cyan boxes: detection. Cyan trajectory: prediction. Red box: ego-car. Red trajec-
tory: our planning. We overlay the predicted marginal distribution for different
timestamps with different colors and only show high-probability regions.

We show qualitative results in Fig. 4, where we visualize our detections,
predictions, motion planning trajectories, and the predicted uncertainties. We
use different colors for different future timestamps to visualize high-probability
actors’ future positions estimated from our prediction module. Thus larger ‘rain-
bow’ areas mean more uncertain. On the first row, we can see the predictions are
certain when vehicles drive along the lanes (left), while we see multi-modal pre-
dictions when vehicles approach an intersection (middle, right). On the second
row, we can see our planning can nicely follow the lane (left), make a smooth left
turn (middle), and take a nudge when an obstacle is blocking our path (right).

5 Conclusion

In this paper, we propose DSDNet, which is built on top of a single backbone
network that takes as input raw sensor data and an HD map and performs per-
ception, prediction, and planning under a unified framework. In particular, we
build a deep energy based model to parameterize the joint distribution of future
trajectories of all traffic participants. We resort to a sample based formulation,
which enables efficient inference of the marginal distribution via belief propaga-
tion. We design a structured planning cost which encourages traffic-rule following
and collision avoidance for the SDV. We show that our model outperforms the
state-of-the-art on several challenging datasets. In the future, we plan to explore
more types of structured energies and cost functions.
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