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A On using cosine similarity in assignment predictor

In the assignment predictor we use cosine similarity to predict the K-dimensional

soft-assignment vector p
(h,w)
S from the feature vector f

(h,w)
S (Eq. 5). The reason

for choosing this similarity measure over the Euclidean distance is that the former
L2-normalizes the features and the visual word weights, which we observed
to lead to better behavior. We believe that this is due to the fact that the
L2-normalization acts as a regularizer for the weights of the visual words in
the assignment predictor in case of unbalanced k-means clusters: without the
L2-normalization, more frequent teacher-words would lead to bigger weight
magnitudes for the corresponding student-words. Also, with cosine similarity, it
is easier to control the peakiness of the predicted word distribution since the
range of its output values is fixed and a priori known (i.e., between -1 and 1).

B Implementation details for vector quantization

In our quantization-based distillation method we use k-means to learn the visual
teacher-words vocabulary V . Here we provide implementation details regarding
how we apply the k-means clustering algorithm.

k-means implementation. For k-means, we use the implementation pro-
vided by the publicly available FAISS [3] library.

Applying k-means on ImageNet. The training set of ImageNet is quite
large (i.e., it has around 1.28M images). Therefore, when evaluating our distillation
method on it, to learn efficiently the visual teacher-words vocabulary V , we apply
k-means only to a randomly sampled subset of 0.2M images from this set. Given
the spatial size of feature maps, this subset provides a sufficiently large corpus of
vectors to learn a vocabulary of size K = 4096, as we use in our experiments.

Applying k-means on CIFAR-100 and CIFAR-10. For CIFAR-100 and
CIFAR-10 experiments, we apply k-means to the entire training sets.
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C Training details

C.1 Model compression

For the ImageNet experiments in Section 4.1, following [4] and [2], we train for
100 epochs with the initial learning rate of 0.1 which is reduced every 30 epochs
with a decay rate of 0.1. For ResNet34 to ResNet18, we use a batch size of 256,
while for ResNet50 to MobileNet we use 210 as batch size due to GPU memory
constraints. For the hyper-parameters of our distillation method, we use α = 1,
β = 1, τ = 0.2 and K = 4096.

For all the experiments on CIFAR-100, we follow the protocol of [4] for training
the student networks. Specifically, in all cases we train the student for 240 epochs
with batch size of 64 and an initial learning rate of 0.05, which we drop by a
factor of 0.1 after 150, 180, and 210 epochs. The only exception is MobileNetV2
and ShuffleNetV1/V2, as in [4], where the learning rate is initialized to 0.01. The
hyper-parameters of our method are α = 1, β = 1, τ = 0.2 and K = 4096.

For the CIFAR-10 experiments we follow the protocol of [5] and train the
student for 200 epochs with a batch size of 128. The initial learning rate is set
to 0.1 which decays by a factor of 0.2 at 60th, 120th, 160th epoch. The hyper-
parameters of our distillation method are set to α = 1, β = 1, τ = 0.005 and
K = 256.

C.2 Transfer learning to small-sized datasets

For the transfer learning experiments in Section 4.2 of the main paper, we used
the hyper-parameters α = 1, K = 4096, and τ equal to 0.2 and 0.002 for layer4
and layer3 of ResNet34 respectively (for both layers the τ value was chosen so
that, as mentioned in the main paper, the softmax probability for the closest
visual teacher-word is on average around 0.996). We found that in the transfer
learning experiments it is important to tune properly the β hyper-parameter
so as to prevent overfitting on the classification task of the training images. To
that end, as it is recommended in the evaluation protocol of [1], we used 20% of
the training images as validation images and we tuned the β hyper-parameter
on them. Specifically, for the ResNet18 student experiments we used β = 10.0
and for the VGG9 student experiments we used β = 20.0. To train the students
we follow the training protocol of [1], i.e., 200 training epochs with an initial
learning rate of 0.05 which is dropped by a factor of 10 after 150 epochs. The
batch size is 128 for the ResNet18 student and 32 for the VGG9 student.

D Model compression in CIFAR-100 experiments

Table 1 gives the number of parameters of all the networks used in Tables 2 and
3 for CIFAR-100 experiments. The table shows that we can get high reduction
in parameters with significantly less drop in performance with our proposed
method of knowledge distillation. In case of WRN-40-2 to WRN-16-2 and to
ShuffleNetV1, we even get an improvement of 0.49% and 1.14% in accuracy over
the teacher with compression of 68.81% and 57.91% respectively.
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Table 1: Number of parameters of the teacher and student networks used in
CIFAR-100 experiments and compression obtained by replacing the teacher with
the student network. The compression is computed as percentage of reduction in
number of parameters with respect to the teacher network

Model Accuracy

Teacher network Student network compression (%) teacher student Ours

WRN-40-2 (2.26M) WRN-16-2 (0.70M) 68.81 75.61 73.26 76.10
WRN-40-2 (2.26M) WRN-40-1 (0.57M) 74.73 75.61 71.98 74.58
ResNet56 (0.86M) ResNet20 (0.28M) 67.70 72.34 69.06 71.84
ResNet110 (1.73M) ResNet20 (0.28M) 83.97 74.31 69.06 71.89
ResNet110 (1.73M) ResNet32 (0.47M) 72.78 74.31 71.14 74.08
ResNet32x4 (7.43M) ResNet8x4 (1.23M) 83.41 79.42 72.50 75.88
VGG13 (9.46M) VGG8 (3.96M) 58.10 74.64 70.36 73.81
VGG13 (9.46M) MobileNetV2 (0.81M) 91.41 74.64 64.6 68.79
ResNet50 (23.7M) MobileNetV2 (0.81M) 96.57 79.34 64.6 69.81
ResNet50 (23.7M) VGG8 (3.96M) 83.27 79.34 70.36 75.17
ResNet32x4 (7.43M) ShuffleNetV1 (0.95M) 87.23 79.42 70.50 76.28
ResNet32x4 (7.43M) ShuffleNetV2 (1.36M) 81.77 79.42 71.82 77.09
WRN-40-2 (2.26M) ShuffleNetV1 (0.95M) 57.91 75.61 70.50 76.75

E Effect of vocabulary size on CIFAR-10 experiments

In Section 4.3 of the main paper, we discussed the impact of teacher vocabulary
size K, based on the plot of accuracy versus K for CIFAR-100 in Figure 3(b).
Here we provide the analogous plot for CIFAR-10 in Figure 1. As we mentioned
in the paper, K between 128 to 256 leads to better performance.

F Qualitative results: Alignment of teacher and student
quantized feature maps

As we claim in Section 3.3 of the main paper, our distillation loss enforces a
quantization of the student feature maps into visual words that is in accordance to
the quantization at the teacher side. As defined in paper’s Section 3.2, we compute
the soft-assignment maps pT and pS from fT and fS respectively (see equations
(4) and (5) of main paper). In Figure 2, we illustrate here the alignment of the
soft-assignment maps by providing image retrieval results where the query is
represented by the teacher soft-assignment map pT while each database image is
represented by the student soft-assignment map pS . To compute the similarity, we
flatten pT and pS from K×H×W -sized tensors (where H×W are the common
spatial dimensions of the teacher and student networks and K is the vocabulary
size) to KHW -dimensional vectors and then compute the dot product of the two
vectors. We see that we manage to retrieve semantically and structurally similar
images, which means that the two representations pT and pS match well.
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Fig. 1: Effect of varying K. Error rate vs. K on CIFAR-10 with WRN-16-1 as
the student networks. The students are trained on the proposed distillation loss
with WRN-40-1 as the teacher with varying number K of visual teacher-words.
The solid straight line represents student trained without distillation loss
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Query Retrieved images

Fig. 2: Image retrieval in the quantized embedding spaces. For the query
image we used the quantized features of a WRN-40-2 teacher network and for
the database images we used the predicted quantized features of a WRN-16-2
student network trained with our distillation method. As database we used the
10K images of CIFAR-100 test set, and as queries we used randomly sampled
images from this database. The figure shows the query on the left-most column
and top-10 retrieved images (in that order) next to the query. We see that, as
top results, we always retrieve the query itself (framed with red box) as well as
other semantically and structurally similar images. This indicates that the two
quantized embedding spaces are well aligned


