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A Appendix

In Section A.1, we compare the performance of GradCon with other benchmark-
ing and state-of-the-art algorithms on fMNIST. In Section A.2, we perform sta-
tistical analysis and highlight the separation between inliers and outliers achieved
by using the gradient-based representations in CIFAR-10. In Section A.3, we an-
alyze di↵erent parameter settings for GradCon. Finally, we provide additional
details on CURE-TSR dataset in Section A.4.

A.1 Additional Results on fMNIST

We compared the performance of GradCon with other benchmarking and state-
of-the-art algorithms using CIFAR-10 and MNIST in Table 3 and 4. In Table 5
of the paper, we mainly focused on rigorous comparison between GradCon and
GPND which shows the second best performacne in terms of the average AU-
ROC on fMNIST. In this section, we report the average AUROC performance
of GradCon in comparison with that of additional benchmarking and state-
of-the-art algorithms using fMNIST in Table 7. The same experimental setup
for fMNIST described in Section 5.1 is utilized and the test set contains the
same number of inliers and outliers. GradCon outperforms all the compared al-
gorithms including GPND. Given that ALOCC, OCGAN, and GPND are all
based on adversarial training to further constrain the activation-based repre-
sentations, GradCon achieves the best performance in fMNIST only based on a
CAE and requires significantly less computations.

Method ALOCC DR [29] ALOCC D [29] DCAE [30] OCGAN [22] GPND [24] GradCon
AUROC 0.753 0.601 0.908 0.924 0.933 0.934

Table 7: Average AUROC result of GradCon compared with benchmarking and
state-of-the-art anomaly detection algorithms on fMNIST.
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Figure 6. Histogram analysis on activation losses and gradient loss in CIFAR-
10. For each class, we calculate the activation losses and the gradient loss from
inliers and outliers. The losses from all 10 classes are visualized using histograms.
The percentage of overlap is calculated by dividing the number of samples in
the overlapped region of the histograms by the total number of samples.
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A.2 Histogram Analysis on CIFAR-10

We presented histogram analysis using gray scale digit images in MNIST to
explain the state-of-the-art performance achieved by GradCon in Fig. 5. In this
section, we perform the same histogram analysis using color images of general
objects in CIFAR-10 to further highlight the separation between inliers and
outliers achieved by the gradient-based representations. We obtain histograms
for CIFAR-10 through the same procedures that are used to generate histograms
for MNIST visualized in Fig. 5. In Fig. 6, we visualize the histograms of the
reconstruction error, the latent loss, and the gradient loss in CIFAR-10. Also, we
provide the percentage of overlap between histograms from inliers and outliers.
The measured error on each representation is expected to di↵erentiate inliers
from outliers and achieve as small as possible overlap between histograms. The
gradient loss shows the smallest overlap compared to other two losses defined
in activation-based representations. This statistical analysis also supports the
superior performance of GradCon compared to other reconstruction error or
latent loss-based algorithms reported in Table 3.

Comparison between histograms from MNIST visualized in Fig. 5 and those
from CIFAR-10 shows that the gradient loss is more e↵ective when data becomes
complicated and challenging for anomaly detection. In MNIST, simple low-level
features such as curved edges or straight edges can be class discriminant features
for anomaly detection. On the other hand, CIFAR-10 contains images with richer
structure and features than MNIST. Therefore, normal and abnormal data are
not easily separable and the overlap between histograms is significantly larger
in CIFAR-10 than MNIST. In CIFAR-10, the overlap of the gradient loss is
smaller than the second smallest overlap of the reconstruction error by 12.4%.
In MNIST, the overlap of the gradient loss is smaller than the second smallest
overlap by 5.7%. GradCon also outperforms other state-of-the-art methods by a
larger margin of AUROC in CIFAR-10 compared to MNIST. The overlap and
performance di↵erences show that the contribution of the gradient loss becomes
more significant when data is complicated and challenging for anomaly detection.

A.3 Parameter Setting for the Gradient Loss

We analyze the impact of di↵erent parameter settings on the performance of
GradCon. The final anomaly score of GradCon is given as L+ �Lgrad, where L
is the reconstruction error and Lgrad is the gradient loss. While we use ↵ param-
eter to weight the gradient loss and constrain the gradients during training, we
observe that the gradient loss generally shows better performance as an anomaly
score than the reconstruction error. Hence, we use � = n↵, where n is constant,
to weight the gradient loss more for the anomaly score. We evaluate the average
AUROC performance of GradCon with di↵erent � parameters using CIFAR-10
in Fig. 7. In particular, we change the scaling constant, n, to change � in the
x-axis of the plot. The performance of GradCon improves as we increase � in
the range of � = [0, 2↵]. Also, GradCon consistently achieves state-of-the-art
performance across a wide range of � parameter settings when � � 1.67↵. To
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Figure 7. Average AUROC results with di↵erent � parameters in CIFAR-10.
↵ = 0.03 is utilized to train the CAE. The dotted line (average AUROC =
0.657) indicates the performance of OCGAN which achieves the second best
performance in CIFAR-10.

be specific, GradCon always outperforms OCGAN which achieves the second
best average AUROC performance of 0.657 in CIFAR-10 when � � 1.67↵. This
analysis shows that GradCon achieves the best performance in CIFAR-10 across
a wide range of �.

A.4 Additional Details on CURE-TSR Dataset

We visualize tra�c sign images with 8 di↵erent challenge types and 5 di↵erent
levels in Fig. 8. Level 5 images contain the most severe challenge e↵ect and
level 1 images are least a↵ected by the challenging conditions. Since level 1
images are perceptually most similar to the challenge-free image, it is more
challenging for anomaly detection algorithms to classify level 1 images as outliers.
The gradient loss from CAE + Grad outperforms the reconstruction error from
CAE in all level 1 challenge types. This result shows that the gradient loss
consistently outperforms the reconstruction error even when inliers and outliers
become relatively similar under mild challenging conditions.
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Figure 8. A challenge-free stop sign and stop signs with 8 di↵erent challenge types
and 5 di↵erent challenge levels. Challenging conditions become more severe as
the level becomes higher.


